

Dedication

To my parents

To my supportive family

To my beloved country

Acknowledgement

All praise and thanks is due to Almighty God, the creator and sustainer of the worlds. I wish to thank Him for all that He has gifted us with, although, He can never be praised or thanked enough.

My deepest thanks to my supervisor, Ustaz.Abd -Alla Salih Ali, for his patience, support, helpful advices, systematic guidance, and encouragement.

Thanks to all who helped and I forgot to mention them.

Abstract

In this project, a compensated control system was designed using Bode plot technique.

The system required must have a phase margin about 45^0 and gain margin about $35dB$. The original system when plotted the phase margin is 0.005^0 . This means that the system need a phase – lead network as a compensator.

The velocity error of the original system is found by using the final value theorem. The maximum phase is obtained from which α was calculated. From Bode plot w_m is obtained at gain crossover frequency and from w_m and α , the lead network transfer function was obtained.

When the obtained transfer function was cascaded with the original system, the required gain and phase margin were obtained.

مستخلص

في هذا البحث، تم تصميم نظام تحكم معوض باستخدام مخطط بود. نظام التحكم المطلوب أن يكون له هامش طور حوالي 45^0 و هامش كسب حوالي $35dB$. النظام الأصلي بعد رسم الإستجابة التردية وجد أن له هامش طور 0.005^0 ، وبالتالي النظام يحتاج إلى معوض تقدمي .

تم إيجاد ثابت السرعة بإستخدام نظرية القيمة النهاية ثم إيجاد أقصى طور ومن ثم تم حساب α .

من مخطط بود تم إيجاد w_m عند عبور مخطط المقدار لخط $0dB$. تم إستخدام w_m و α لإيجاد ثابت الزمن للمعوض .

عند توصيل المعوض تابعيا مع النظام وتشغيله تم الحصول على هامش الكسب والطور المطلوبين لبناء النظام .

Table of Contents

Contents	Page
Dedication	I
Acknowledgement	II
Abstract	III
مستخلص	IV
Table of Contents	V
List of Figures	VII
List of Tables	IX
Chapter One: Introduction to Control System	1
1.1 Introduction	1
1.2 Objectives	1
1.3 Problem Definition	1
1.4 Thesis Layout	1
1.5 Open loop control system	2
1.6 Closed loop control system	3
1.7 Transfer function	4
Chapter Two: Control System Analysis	7
2.1 Time domain analysis	7
2.2 Test signal for Transient Analysis	8
2.3 Time Response First Order System	9
2.4 Time Response Second Order system	12
2.5 Transient Response Specification of Second order system	17
2.6 Response with P,PI and PID controllers	18
2.7 Frequency Domain analysis	23
2.7.1 Polar plot	24
2.7.2 Bode plot	24
2.8 Stability	25
Chapter Three: Linear Feed Back System Design	27
3.1 Introduction	27
3.2 Cascade Compensation	28
3.2.1 Phase - lag network	28

3.2.2 Phase - lead network	30
3.2.3 A phase Lag-Lead network	32
3.3 Minor loop feedback compensation techniques	32
Chapter Four: Design by Frequency Response	34
4.1 Frequency Response	34
4.2 Design by Frequency Response	34
4.2.1 Design by Bode Diagram	35
4.2.1.1 Bode's theorems	35
4.2.2 Design steps for phase lead compensation	37
4.2.2.1 Phase lead compensator	38
4.2.3 Design Method	40
4.3 Results and Discussion	44
Chapter Five: Conclusion and Recommendation	45
5.1 Conclusions	45
5.2 Recommendations	45
References	46
Appendix	A

List of Figures

No.	Title	Page
1.1	Process to be Controlled	1
1.2	Open Loop Control System	2
1.3	Field Control d-c meter	2
1.4	Closed Loop Control System	3
1.5	Transfer Function $G(s)$	5
2.1	Transient and Steady State error	7
2.2	Step Function	8
2.3	Ramp Function	8
2.4	Parabolic Function	9
2.5	Unity Feedback System	9
2.6	Simplified unity feedback system	9
2.7	Exponential curve for two systems having $T_1 < T_2$	11
2.8	Unit ramp response of the system	12
2.9	Second order System	12
2.10	System response for $\zeta > 1, \zeta = 0$ & $\zeta < 1$	14
2.11	Sustained Oscillation	15
2.12	Critically damped	16
2.13	Response for different values of ζ	17
2.14	Transient response specification	17
2.15	Proportional Control action	18
2.16	Derivative Control	19
2.17	Derivative feed back Control	20
2.18	Integral Control block diagram	21
2.19	PID Control	22
2.20	Undamped Oscillation	26
3.1	Cascade Compensation	27
3.2	Minor loop feed back Compensation	27
3.3	Phase log network	28
3.4	Polar plot	29
3.5	Bode plot	29
3.6	Phase lead network	30
3.7	Polar plot of phase lead Compensation	31
3.8	Bode plot of lead Compensation	31

3.9	Lag-Lead network Compensation	32
3.10	Polar plot of $G_c(j\omega)$	33
3.11	Bode plot of Lag-Lead Compensation	33
4.1	Control Compensated system	37
4.2	Uncompensated system	41
4.3	Compensated system	43

List of Tables

No.	Title	Page
1.1	Comparison between open and closed loop	4
2.1	Table 2.2 effects of P,I,D	23
4.1	Result of uncompensated and compensated system	44