

DEDICATION

Dedicated to:

My mother

My father

My wife (**Amal**)

My Sons (**Ahmed & Mokhtar**)

My family and my **Friends**

With my love and respect

ACKNOWLEDGMENT

Thanks to my supervisor

Dr. Mohammed Eltayeb Mansour

For his assistance, guidance and endless help throughout the step of this research work.

My sincere thanks to

Dr. Al khawad Ali Alfaki

Thanks for any one helped me to make this work, thanks for my wife for her stand with me side by side during my studies.

Abdallah Mokhtar Mohammed

M.Sc. Student

Mechanical Engineer

ABSTRACT

A Heat Exchanger System has been designed in this research, to be used in an industrial field. The system consists of an industrial unit for chemical process; shell and tube heat exchanger to produce heating fluid and an insulated pipe to transport fluid between them. The required temperature for the product has been taken into consideration through the process of evaluating the necessary calculations for fluid heating and the dimensions and sizes of varied facilities of the system are identified.

An overall heat transfer coefficient has been assumed and compared with its calculated value from the design of shell and tube heat exchanger according to the international standards and codes available. As a result the percentage difference between the assumed and calculated values was found within the allowable range.

A computer program was built, and verified with known data. The results for the designing calculations from the program were acceptable compared to that achieved.

الخلاصة

في هذا البحث تم تصميم منظومة تبادل حراري تستخدم في الحقل الصناعي وت تكون المنظومة من وحدة صناعية للمعالجة الكيميائية ، مبادل حراري من النوع القشرى وانبوب معزول لنقل مائع التسخين بينهما.

تم مراعاة حفظ المنتج في درجة الحرارة المطلوبة بعمل الحسابات الازمة لمائع التسخين وتحديد أبعاد وأحجام مواضعين النظام المختلفة.

تم افتراض قيمة لمعامل انتقال الحرارة الكلى ومن ثم تمت مقارنه معامل انتقال الحرارة الكلى الذى افترض والنتائج من التصميم للمبادل الحرارى القشرى وفق المواصفات العالمية حيث أن النسبة المئوية بين القيمة المفترضة والمحسوبة لا تتعدى القيمة المسموح بها.

تم عمل برنامج حاسوب لتغطية حسابات التصميم وتم اختباره بواسطة قيم حقيقية وكانت مخرجات البرنامج مساويه لتلك القيم التي تم الحصول عليها بواسطة اجراء العمليات الحسابيه.

Table of Contents

Subject	Page No
Dedication	I
Acknowledgement	II
Abstract	III
الخلاصة	IV
Table of Contents	V
List of Symbols	VII
Greek Symbols	IX
Abbreviations	X
List of figures	XI
List of tables	XII
Chapter One: Introduction	
1.1 Introduction	1
1.2 Heat Exchangers Classification	2
1.3 Shell-and-Tube Heat Exchanger	3
1.3.1 Advantages of Shell-and-Tube Heat Exchanger	3
1.3.2 Disadvantages of Shell-and-Tube Heat Exchanger	4
1.4 Project Objectives	4
Chapter Two: Literature Review	
Literature review	5
Chapter Three : Theoretical Background	
3.1 Introduction	8
3.2 Material Selection	9
3.3 System Design Theory	9
3.3.1 Industrial Unit	9

3.3.2 Insulation Pipe Equation	12
3.4 Shell and Tube Heat Exchanger	15
3.4.1 Design Procedures	17
3.4.2 Design Equations	18
Chapter Four: Calculation of the System	
4.1 Case Study and System Materials	24
4.2 Calculation Assumption	24
4.3 System Calculations	25
4.3.1 Industrial Unit	25
4.3.2 Insulation Pipe	29
4.3.3 Shell and Tube Heat Exchanger	32
4.3.4 Shell and Tube Heat Exchanger Calculations	34
4.3.5 Heat Exchanger Data Sheet	39
4.4 Computer Program	40
4.4.1 Introduction	40
4.4.2 Computer Program Flow chart	41
4.4.3 Input Data	40
4.4.4 Output Data	43
Chapter Five: Results and Discussion	
5.1 Results	46
5.2 Discussions	47
Chapter Six: Conclusion and Recommendations	
6.1 Conclusion	48
6.2 Recommendations	48
References	50
Appendices	

List of symbols

Symbols	Means	Unit
A	The heat transfer surface area of the inner cylinder	[m ²]
A _i	Total area of flow in tube side	[m ²]
A _{sh}	Total area of flow in shell side	[m ²]
A _T	Effective heat transfer area in shell and tube heat exchanger	[m ²]
C _p	Specific heat capacity	[J/kg °K]
C _{p_c}	Specific heat capacity for cold water	[J/kg °K]
C _{p_h}	Specific heat capacity for hot water	[J/kg °K]
C _{p_s}	Specific heat capacity of the sulfur	[J/kg °K]
C _{p_w}	Specific heat capacity of water inside outer cylinder	[J/kg °K]
C _{p_{co}}	Specific heat capacity of coil water	[J/kg °K]
D	Diameter	[m]
D _i	Inner cylinder diameter	[m]
D _o	Outer cylinder diameter	[m]
d _{co}	Coil tube outer diameter	[m]
d _i	Inner diameter of tube in shell and tube heat exchanger	[m]
d _o	Outer diameter of tube side in shell and tube heat exchanger	[m]
d _{max}	Maximum diameter of helical coil	[m]
d _{min}	Minimum diameter of helical coil	[m]
d _{sh}	Diameter of shell in shell and tube exchanger	[m]
h _i	Heat transfer coefficient inside tube	[W/m°K]
h _o	Heat transfer coefficient outside tube	[W/m°K]
J _f	Frication factor	
K _{ins}	Thermal conductivity of insulation material	[W/m°K]
K _m	Thermal conductivity of cylinder or pipes material	[W/m°K]
k ₁	Constant	
L	Length	[m]
L _{co}	Coil length	[m]
L _i	Inner cylinder length	[m]
L _o	Outer cylinder length	[m]

L_{pip}	Length of insulation pipe	[m]
M	Mass	
m_s	Mass of sulfur inside inner cylinder	[kg]
m_w	Mass of water inside outer cylinder	[kg]
N_t	Number of tubes in shell and tube exchanger	
Nu	Nusselt number	
n_l	Constant	
n_{co}	Total number of coil turn	
Pr	Prandtl number	
Pt	Tube pitch	[m]
Pt_{co}	Coil pitch	[m]
Q_{con}	Heat transfer by conduction through inner cylinder thickness	[W]
Q_{loss}	Total heat loss in insulation pipe	[W]
Q_{req}	Heat transfer rate required to heat sulfur	[W]
Q_s	Heat transfer rate gain by sulfur	[W]
Q_w	Heat gain by water inside outer cylinder	[W]
Re	Reynolds number	
r_1	Insulation pipe inner radius	[m]
r_2	Insulation pipe outer radius	[m]
r_3	Radius of pipe and insulation cover combined	[m]
T_{amb}	Ambient temperature	[°C]
T_{Cin}	Inlet temperature of coil water into outer cylinder	[°C]
T_{Cout}	Outlet temperature of coil water into outer cylinder	[°C]
T_{mean}	Mean temperature	[°C]
T_{meanco}	Mean temperature of coil water	[°C]
T_{means}	Mean temperature of sulfur powder	[°C]
T_{req}	Required temperature	[°C]
T_s	Temperature of sulfur inside inner cylinder	[°C]
T_{sin}	Inlet temperature of sulfur into inner cylinder	[°C]
T_w	Temperature of water inside outer cylinder	[°C]
T_{win}	Inlet temperature of water into outer cylinder	[°C]
T_1	Temperature in the beginning of insulation pipe	[°C]
T_2	Temperature in the end of the insulation pipe	[°C]
T	The time required to the process	[second]
U	Overall heat transfer coefficient for Shell and tube exchanger	[W/m°K]

U_{ins}	Overall heat transfer coefficient for insulation pipe	[W/m ^o K]
u	Velocity	[m/s]
u_{co}	Velocity of water inside coil tube	[m/s]
V	Volume	[m ³]
V_{co}	Coil volume	[m ³]
V_i	Inner cylinder volume	[m ³]
V_p	Total volume of product inside inner cylinder	[m ³]
V_s	Sulfur inside inner cylinder total volume	[m ³]
V_o	Outer cylinder volume	[m ³]
V_w	Water inside outer cylinder total volume	[m ³]
X	Inner cylinder thickness	[m]
X_{ins}	Insulation thickness	[m]

Greek Symbol

η_p	Percentage of the product from the total volume inner cylinder	
η_{con}	Efficiency of heat transfer by conduction through inner cylinder thickness	
\dot{m}	Mass flow rate of the fluid	[kg/s]
μ	Viscosity of the fluid	[kg/ms]
ρ	Density	[kg/m ³]
ρ_c	Density of hot water in tube side heat exchanger	[kg/m ³]
ρ_h	Density of hot water in shell side heat exchanger	[kg/m ³]
ρ_s	Density of sulfur powder inside inner cylinder	[kg/m ³]
ρ_w	Density of water inside outer cylinder	[kg/m ³]

Abbreviations

DE	Differential Evaluation
GA	Genetic Algorithms
HE	Heat Exchanger
HED	Heat Exchanger Design
HTFS	Heat Transfer Flow Systems
HTRI	Heat Transfer Research Institute
IU	Industrial Unit
IP	Insulation Pipe
LMTD	LOG-Mean Temperature Difference
SA	Simulated Annealing
STHE	Shell and Tube Heat Exchanger
TEMA	Tube Exchanger Manufacturers Association
NTU	Number of Transfer Unit

List of Figures

Figure		Page No
Fig (1.1)	Shell and Tube Heat Exchanger	3
Fig (3.1)	Heat Exchanger system	9
Fig (3.2)	Parallel Flow Heat Exchanger	17

Fig (3.3)	Counter-Flow Heat Exchanger	17
Fig (3.4)	Shell and Tube Heat Exchanger Design Flow Chart	19
Fig (4.1)	Industrial Unit	27
Fig (4.2)	Insulation Material	30
Fig (4-3)	Shell and Tube Heat Exchanger	33
Fig (4.4)	Temperatures Distribution in Shell and Tube Heat Exchanger	34
Fig (4.5)	Computer Program Flow Chart	45

List of Tables

Table		Page No
Table (3.1)	Insulation Minimum Thickness	13
Table (4.1)	Heat Exchanger Data Sheet	40
Table (5.1)	Calculation Results	45