References

1- Rob Miles, "C# Development"”, Department of Computer Science
University of Hull, 2008.
2- Fiach Reid, "Network Programming in .NET With C# and Visual
Basic .NET", Elsevier Digital Press, 2004.
3- Richard Blum, "C# Network Programming", Sybex, 2003.
4- Tarig Latif Kranthi and Kumar Malkajgiri, "Adoption of VolP",
Master thesis, Lulea University of Technology, 2007.
5- David Alonso Tlahuetl Herrera, "Analysis and Implementation of TCP
Friendly Rate Control in the Context of VolP", Master thesis, Royal
Institute of Technology, 2005.
6- Sharam Hekmat, "Communication Networks", PragSoft Corporation,
2000

www.pragsoft.com
6- By John Q. Walker, Jeffrey T. Hicks (2004), "Taking Charge of Your
VoIP Project".

7- Jonathan Davidson, James Peter, “Voice Over IP Fundamentals™,

Cisco Press, 2000.

8- "A number of VVolP-related white papers"
http://www.voip-news.com/wp/wphome.html access 1/2009.

9- Valdes, R. “How VoIP Works”

http://electronics.howstuffworks.com/ip-telephony.htm access 7/2008
10- BHUMIP KHASNABISH, "IMPLEMENTING VOICE OVER IP",

A JOHN WILEY & SONS, 2003.

www.pragsoft.com
http://www.voip-news.com/wp/wphome.html
http://electronics.howstuffworks.com/ip-telephony.htm

11- "Microsoft VolP Introduction”, Microsoft, 2008.
http://download.microsoft.com/download/b/0/6/b06e9c6e-cf9c-481f-
abed-c674e82ed1d1/VVOIP.doc access 10/2008

13- Jim Doherty, Neil Anderson, "Internet Phone Services Simplified",

Cisco press, 2006.
14- http://www.packetizer.com/ipmc/papers/understanding voip access
5/2008

AN

http://download.microsoft.com/download/b/0/6/b06e9c6e-cf9c-481f-a6ed-c674e82ed1d1/VOIP.doc
http://download.microsoft.com/download/b/0/6/b06e9c6e-cf9c-481f-a6ed-c674e82ed1d1/VOIP.doc
http://www.packetizer.com/ipmc/papers/understanding_voip

Appendix

A- Program codes

I- Main program (voip) code

using
using
using
using
using
using
using
using
using
using

using

System
System

System.
System.
System.

Voice;

System.
System.
System.
System.
System.

’

.Windows.Forms;

Net;
Net.Sockets;

Threading;

I10;
Text;

Diagnostics;

namespace VOIP

{

null;

public
{

class Forml

Collections.Generic;

ComponentModel;

System.Windows.Forms.Form

#region variables

private Socket

private Thread

r;

t;

private bool connected = false;

private bool receive = false;

private System
private System
private Button
private Button

private System

.Windows.Forms.TextBox textBoxl;
.Windows.Forms.Label labell;
Call;

Exit;

.ComponentModel.Container components

private int ReceivePort = 6000;

priv

ate Button On;

private int SendPort = 5000;
private PictureBox pictureBoxl;
private Button buttonl;

private bool run = false;

#endregion

#region Forml ()

public Forml ()

{

InitializeComponent () ;

r = new Socket (AddressFamily.InterNetwork,
SocketType.Dgram, ProtocolType.Udp):;

t = new Thread(new ThreadStart (Voice In));

}

fendregion

#region For Desginer
/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose (bool disposing)
{

if (disposing)

{

if (components != null)

{

components.Dispose () ;

}

base.Dispose (disposing) ;

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

private void InitializeComponent ()

{

System.ComponentModel.ComponentResourceManager resources

= new System.ComponentModel.ComponentResourceManager (typeof (Forml)) ;
this.textBoxl = new System.Windows.Forms.TextBox()
this.labell = new System.Windows.Forms.Label ();
this.Call = new System.Windows.Forms.Button();

this.On = new System.Windows.Forms.Button();

this.buttonl = new System.Windows.Forms.Button();
this.pictureBoxl = new System.Windows.Forms.PictureBox();
this.Exit = new System.Windows.Forms.Button();

((System.ComponentModel.ISupportInitialize) (this.pictureBox1l)) .BeginI

nit () ;

this.SuspendLayout () ;

//

// textBoxl

//

this.textBoxl.BackColor =
System.Drawing.Color.FromArgb (((int) (((byte) (255)))),
((int) (((byte) (255)))), ((int) (((byte) (192)))));

this.textBoxl.BorderStyle =
System.Windows.Forms.BorderStyle.FixedSingle;

this.textBoxl.Font = new System.Drawing.Font ("Tahoma",
9.75F, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, ((byte) (0)));

this.textBoxl.Location = new System.Drawing.Point (114,
214);

this.textBoxl.Name = "textBoxl";

this.textBoxl.Size = new System.Drawing.Size (136, 23);

this.textBoxl.TabIndex = 4;

//

// labell

//

this.labell.Location = new System.Drawing.Point (9, 219);

this.labell.Name = "labell";

this.labell.Size

new System.Drawing.Size (77, 16);
this.labell.TabIndex = 5;

this.labell.Text = "Destination IP";

//

// Call

//

this.Call.BackColor = System.Drawing.Color.White;

this.Call.Enabled = false;

this.Call.Font = new System.Drawing.Font ("Tahoma"™, 9.75F,
System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point,
((byte) (0)));

this.Call.ForeColor = System.Drawing.Color.Lime;

this.Call.Location = new System.Drawing.Point (55, 249);

this.Call.Name = "Call";

this.Call.Size = new System.Drawing.Size (99, 56);

this.Call.TabIndex = 10;

this.Call.Text = "Call";

this.Call.UseVisualStyleBackColor = false;

this.Call.Click += new
System.EventHandler (this.Call Click);

//

// On

//

this.On.BackColor = System.Drawing.Color.White;

this.On.Location = new System.Drawing.Point (285, 25);

this.On.Name = "On";

this.On.Size = new System.Drawing.Size (93, 41);

this.On.TabIndex = 12;

this.On.Text = "Power ON";

this.On.UseVisualStyleBackColor = false;

this.On.Click += new System.EventHandler (this.On Click);

//

// buttonl

//

this.buttonl.BackColor = System.Drawing.Color.White;

this.buttonl.DialogResult =
System.Windows.Forms.DialogResult.Cancel;

this.buttonl.Location = new System.Drawing.Point (285,
93) ;

this.buttonl.Name = "buttonl";

this.buttonl.Size new System.Drawing.Size (93, 41);
this.buttonl.TabIndex = 15;
this.buttonl.Text = "Exit";

this.buttonl.UseVisualStyleBackColor = false;

this.buttonl.Click += new
System.EventHandler (this.buttonl Click);

//

// pictureBoxl

//

this.pictureBoxl.Image =
global::cswavrec.Properties.Resources.background;

this.pictureBoxl.Location = new System.Drawing.Point (-3,
=2);

this.pictureBoxl.Name = "pictureBoxl";

this.pictureBoxl.Size = new System.Drawing.Size (282,
210);

this.pictureBoxl.TabIndex = 13;

this.pictureBoxl.TabStop = false;

//

// Exit

//

this.Exit.BackColor = System.Drawing.Color.White;

this.Exit.DialogResult =
System.Windows.Forms.DialogResult.Cancel;

this.Exit.Enabled = false;

this.Exit.Font = new System.Drawing.Font ("Tahoma", 9.75F,
System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point,
((byte) (0)));

this.Exit.ForeColor = System.Drawing.Color.Red;

this.Exit.Location = new System.Drawing.Point (194, 249);

this.Exit.Name = "Exit";

this.Exit.Size

new System.Drawing.Size (99, 56);
this.Exit.TabIndex = 11;
this.Exit.Text = "Close";
this.Exit.UseVisualStyleBackColor = false;
this.Exit.Click += new

System.EventHandler (this.Exit Click);
//
// Forml
//
this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);

this.AutoScroll = true;

this.

BackColor =

System.Drawing.Color.FromArgb (((int) (((byte) (192)))),
((int) (((byte) (255)))), ((int) (((byte) (192)))));

this.
this
this
this
this
this
this
this
this

ClientSize = new System.Drawing.Size (384, 310);

.Controls.Add (this.buttonl);
.Controls.Add (this.pictureBoxl) ;
.Controls.Add(this.On) ;
.Controls.Add (this.Exit) ;
.Controls.Add(this.Call);
.Controls.Add (this.textBoxl) ;
.Controls.Add (this.labell);
.FormBorderStyle =

System.Windows.Forms.FormBorderStyle.FixedSingle;

this.

((System.Drawing.

this
this
this

Icon =

Tcon) (resources.GetObject ("$this.Icon")));

.MaximizeBox = false;
.Name = "Forml";

.StartPosition =

System.Windows.Forms.FormStartPosition.CenterScreen;

this.
this.

Text = "VoIP";

Load += new System.EventHandler (this.Forml Load 1);

((System.ComponentModel.ISupportInitialize) (this.pictureBoxl)) .EndIni

t();

this.Resumelayout (false);
this.PerformLayout () ;

}

#endregion

/// <summary>

/// The main entry point for the application.

/// </summary>

/17

[STAThread]

static void Main ()

{

Application.Run(new Forml ());

}

#endregion

#region Voice In()
private void Voice In()
{
bytel[] br;
r.Bind (new IPEndPoint (IPAddress.Any, ReceivePort));
while (true)
{
br = new byte[16384];
r.Receive (br);

m Fifo.Write(br, 0, br.Length);

}
fendregion

#region Voice Out()

private void Voice Out (IntPtr data, int size)
{
//for Recorder
if (m_RecBuffer == null || m RecBuffer.Length < size)
m RecBuffer = new byte[size];
System.Runtime.InteropServices.Marshal.Copy(data,
m RecBuffer, 0, size);
//Microphone ==> data ==> m RecBuffer ==> m Fifo
try
{
r.SendTo (m RecBuffer, new
IPEndPoint (IPAddress.Parse (this.textBoxl.Text), SendPort));
}

catch

//MessageBox.Show ("This IP is out of local subnet

mask") ;
//KillTask("listener") ;

//KillTask ("voip") ;

#endregion

//***
*************//

private WaveOutPlayer m Player;

private WaveInRecorder m Recorder;

private FifoStream m Fifo = new FifoStream();

private byte[] m PlayBuffer;

private byte[] m RecBuffer;

private void button3 Click(object sender, EventArgs e)

{

private void Start ()

{
try

WaveFormat fmt = new WaveFormat (44100, 16, 2);
m Player = new WaveOutPlayer (-1, fmt, 16384, 3, new
BufferFillEventHandler (Filler));

m _Recorder = new WavelInRecorder (-1, fmt, 16384, 3,

new BufferDoneEventHandler (Voice Out));

}

catch

Stop () ;

throw;

private void Stop ()
{

if (connected == true && ReadfromFile("c:/receive.txt")
== nqm)
{
WriteinFile ("c:/reply.txt"™, "c:/disconnect");
System.Diagnostics.Process.Start ("c:/reply.exe");
}
else
if (connected == false &&
ReadfromFile ("c:/receive.txt") == "1")

{
WriteinFile ("c:/reply.txt"™, "c:/reject");

System.Diagnostics.Process.Start ("c:/reply.exe");

WriteinFile ("c:/receive.txt"™, "0");
if (m_Player != null)
try
{
m_Player.Dispose();
}
finally
{
m Player = null;
}
if (m_Recorder != null)
try
{
m Recorder.Dispose();
}
finally
{
m Recorder = null;
}
m Fifo.Flush(); // clear all pending data
WriteinFile ("c:/status.txt", "disconnect");
receive = false;

connected = false;

private void Filler (IntPtr data, int size)
{
if (m_PlayBuffer == null || m PlayBuffer.Length < size)
m PlayBuffer = new byte[size];
if (m_Fifo.Length >= size)
m Fifo.Read(m PlayBuffer, 0, size);
else
for (int 1 = 0; i1 < m PlayBuffer.Length; i++)
m_PlayBuffer[i] = 0;
System.Runtime.InteropServices.Marshal.Copy (m PlayBuffer,
0, data, size);

// m Fifo ==> m PlayBuffer==> data ==> Speakers

private void KillTask (string procname)
{
foreach (Process p in
System.Diagnostics.Process.GetProcessesByName (procname))
{
try
{
p.Kill();
p.WaitForExit(); // possibly with a timeout
}
catch (Win32Exception winException)
{
// process was terminating or can't be terminated
- deal with it
}
catch (InvalidOperationException invalidException)
{
// process has already exited - might be able to
let this one go

private void On_ Click(object sender, EventArgs e)
{
if (On.Text == "Power ON")
{
Call.Enabled = true;
Exit.Enabled = true;
On.Text = "Power OFF";

System.Diagnostics.Process.Start ("c:\\listener.exe");

else

Call.Enabled = false;
Exit.Enabled = false;
On.Text = "Power ON";

foreach (Process p in
System.Diagnostics.Process.GetProcessesByName ("listener"))
{
try
{
p.Kill();
p.WaitForExit(); // possibly with a timeout
}
catch (Win32Exception winException)
{
// process was terminating or can't be
terminated - deal with it
}
catch (InvalidOperationException

invalidException)

// process has already exited - might be able
to let this one go

private void Call Click(object sender, EventArgs e)
{

On.Enabled = false;

run = true;

Call.Enabled = false;

textBoxl.Enabled = false;

WriteinFile ("c:/status.txt", "busy");

string state ReadfromFile ("c:/receive.txt");
if (state == "0")
{
WriteinFile ("c:/ip.txt", this.textBoxl.Text);
CreatePort () ;
System.Diagnostics.Process.Start ("c:/CallSetup.exe");
}
else
if (state == "1")
{
receive = true;
int i;
WriteinFile ("c:/reply.txt", "c:/connected");
System.Diagnostics.Process.Start ("c:/reply.exe");
textBoxl.Text = ReadfromFile ("c:/ip.txt");

string ports = ReadfromFile ("c:/ports.txt");

for (1 = 0; 1 <= 5; i++)
{
if (ports[i] == ':")
{

break;

SendPort = int.Parse (ports.Substring(0, 1i));

ReceivePort = int.Parse (ports.Substring(i + 1));

}

if (connected == false)

{

r = new Socket (AddressFamily.InterNetwork,
SocketType.Dgram, ProtocolType.Udp):;
t = new Thread(new ThreadStart (Voice In));
t.Start () ;
connected = true;
}
Start () ;

private void CreatePort ()

{
Random r = new Random() ;
ReceivePort = r.Next (1025, 32000);
SendPort = r.Next (1025, 32000);

WriteinFile ("c:/ports.txt", ReceivePort.ToString() + ":"
+ SendPort.ToString());
}

private string ReadfromFile (string FilePath)

{
FileStream fs = new FileStream(FilePath, FileMode.Open);
byte[] fileContents = new byte[fs.Length];
fs.Read (fileContents, 0, (int)fs.Length);
string receiv =

Encoding.UTF8.GetString (fileContents) .Substring(l);

fs.Close () ;

return receiv;

private void WriteinFile(string FilePath, string content)
{

FileStream fs = new FileStream(FilePath,

FileMode.Create) ;

BinaryWriter bw = new BinaryWriter (fs);

bw.Write (content) ;

bw.Close();

fs.Close();

private void Exit Click(object sender, EventArgs e)
{

Call.Enabled = true;

textBoxl.Enabled = true;

Stop () 7

t.Abort () ;

r.Close();

return;

private void Forml Load 1 (object sender, EventArgs e)
{
if(
System.Diagnostics.Process.GetProcessesByName ("voip") .Length>1) //here
to determining th NO of processes that running now.
{
try
{
Application.Exit ();
}
catch (Win32Exception winException)
{
// process was terminating or can't be terminated
- deal with it
}
catch (InvalidOperationException invalidException)
{
// process has already exited - might be able to

let this one go

}

WriteinFile ("c:/receive.txt"™, "0");
WriteinFile ("c:/run.txt"™, "1");

WriteinFile ("c:/status.txt", "disconnect"):;

KillTask("listener");

private void Forml Closing(object sender, EventArgs e)

buttonl Click(sender, e);

private void buttonl Click(object sender,
{

WriteinFile ("c:/run.txt"™, "0");

Stop () ;

t.Abort () ;

r.Close () ;

KillTask("listener");

KillTask ("voip");

Application.Exit();

11I- Listener code

using
using
using
using
using
using

using

System;

System.Net;
System.Net.Sockets;
System.Text;
System.Threading;
System.IO;

System.Diagnostics;

namespace WindowsApplication?2

{

class ThreadedTcpListener

{

private Tcplistener client;
public ThreadedTcpListener ()
{
client = new TcpListener (9050);

client.Start () ;

EventArgs e)

Console.WritelLine ("Waiting for a call...");

while (true)
{
while (!client.Pending())
{
Thread.Sleep (1000) ;
}
ConnectionThread newconnection = new
ConnectionThread() ;
newconnection.threadlListener = this.client;
Thread newthread = new Thread (new

ThreadStart (newconnection.HandleConnection)) ;

newthread.Start () ;

}
public static void Main ()
{

ThreadedTcpListener server = new ThreadedTcpListener();

}
class ConnectionThread
{
public TcplListener threadListener;
private void WriteinFile(string FilePath, string content)
{
FileStream fs = new FileStream(FilePath,
FileMode.Create) ;
BinaryWriter bw = new BinaryWriter (fs);
bw.Write (content);
bw.Close();
fs.Close();
}
public void HandleConnection ()
{
string income;
int recv;
int i;

byte[] data = new byte[1024];

TcpClient client = threadListener.AcceptTcpClient () ;
NetworkStream ns = client.GetStream();
Console.WriteLine ("New call accepted");
string welcome = "Welcome";
data = Encoding.ASCII.GetBytes (welcome) ;
ns.Write(data, 0, data.Length);

data = new byte[1024];

recv ns.Read(data, 0, data.Length);
income = Encoding.ASCII.GetString(data, 0, recv);
if (income == "c:/disconnect" || income ==
"c:/connected" || income == "c:/reject")
{
System.Diagnostics.Process.Start (income) ;
if (income=="c:/connected")
WriteinFile ("c:/receive.txt"™, "1");

else

WriteinFile ("c:/receive.txt"™, "0");

else

string ip =

client.Client.RemoteEndPoint.ToString() ;

for (i = 5; i <= 15; i++)
{

if (ip[i] == ':')

{

break;

}
ip = ip.Substring (0, 1i);

WriteinFile ("c:/ip.txt", ip);
string status = ReadfromFile("c:/status.txt");
if (status != "busy")
{
WriteinFile ("c:/ports.txt", income);
WriteinFile ("c:/receive.txt™, "1");

WriteinFile ("c:/status.txt", "busy");

System.Diagnostics.Process.Start ("c://newcall.exe");
}
else
{
Console.WriteLine(" " + ip + " Trying to call
you") ;
}
data = Encoding.ASCII.GetBytes (status);
ns.Write(data, 0, data.Length);
}
ns.Close();
client.Close () ;
connections--;
}
private string ReadfromFile(string FilePath)
{
FileStream fs = new FileStream(FilePath, FileMode.Open);
byte[] fileContents = new byte[fs.Length];
fs.Read (fileContents, 0, (int)fs.Length);
string receiv =
Encoding.UTF8.GetString (fileContents) .Substring (1) ;
fs.Close () ;

return receiv;

IIT- CallSetup code

using System;

using System.Net;

using System.Net.Sockets;
using System.Text;

using System.IO;

class CallSetup

public static void Main ()
{
byte[] data = new byte[1024];
string input, stringData;
string IP = ReadfromFile ("c:\\ip.txt");
Console.WriteLine ("Trying to call with " + IP);
IPEndPoint ipep = new IPEndPoint (
IPAddress.Parse (IP), 9050);
Socket server = new Socket (AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
try
{
server.Connect (ipep) ;
}
catch (SocketException e)
{

Console.WriteLine ("Unable to connect to target.");

System.Diagnostics.Process.Start ("c:\\unabletoconnect.exe") ;
return;
}
int recv = server.Receive (data);
stringData = Encoding.ASCII.GetString(data, 0, recv);
Console.WriteLine (stringData) ;
input = ReadfromFile ("c:\\ports.txt
server.Send (Encoding.ASCII.GetBytes (input)) ;
data = new byte[1024];
recv = server.Receive (data);
stringData = Encoding.ASCII.GetString(data, 0, recv);
if (stringData == "busy")
System.Diagnostics.Process.Start ("c:\\busy.exe");
server.Shutdown (SocketShutdown.Both) ;

server.Close();

private static string ReadfromFile (string FilePath)

{

FileStream fs = new FileStream(FilePath, FileMode.Open):;

byte[] fileContents = new byte[fs.Length];
fs.Read (fileContents, 0, (int) fs.Length);

string receiv =

Encoding.UTF8.GetString (fileContents) .Substring (1) ;

}

private static void WriteinFile(string FilePath,

{

fs.Close();

return receiv;

FileStream fs = new FileStream(FilePath,

FileMode.Create) ;

BinaryWriter bw = new BinaryWriter (fs);
bw.Write (content);

bw.Close() ;

fs.Close();

IV- Reply code

using
using
using
using
using

class

System;

System.Net;
System.Net.Sockets;
System.Text;
System.IO;

Reply

public static void Main ()

{

byte[] data = new byte[l1024];

string input, stringData;

string IP = ReadfromFile ("c:\\ip.txt");

string content)

Console.WriteLine ("Trying to call with " + IP);
IPEndPoint ipep = new IPEndPoint (
IPAddress.Parse (IP), 9050);
Socket server = new Socket (AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
try
{
server.Connect (ipep) ;
}
catch (SocketException e)
{
return;
}
int recv = server.Receive (data);
stringData = Encoding.ASCII.GetString(data, 0, recv);
Console.WritelLine (stringData) ;
input = ReadfromFile ("c:\\reply.txt");
server.Send (Encoding.ASCII.GetBytes (input));
server.Shutdown (SocketShutdown.Both) ;

server.Close () ;

private static string ReadfromFile(string FilePath)

{
FileStream fs = new FileStream(FilePath, FileMode.Open) ;
byte[] fileContents = new byte[fs.Length];
fs.Read(fileContents, 0, (int)fs.Length);
string receiv =

Encoding.UTF8.GetString (fileContents) .Substring(l) ;

fs.Close();

return receiv;

B- Classes' diagrams

}}_

| woip

Class

= Farm

= Fieldz
o buttonl
o Cal
g components
o connected
o Exit
o labell
o m_Fifa
o m_PlapBuffer
o m_Flayer
g m_RecBuffer
o m_Recorder
o On
o pictureBox]
o
2 receive
2 ReceivePort
g 1un
o SendPort
ot
o textBoxl

= Methods
a4 buttor_Click,
&% button3_Click
4% Call_Click
¥ CreatePort
=% Dispose
a9 Exit_Click
&% Filler
2" Forrml_Clazing
¥ Form_Load 1
4 InitiaizeCornmponent
2% KilTask
a7 Main
& On_Click
4% ReadfromFile
o Start
&4 Stop
4% Yoice_ln
¥ Yoice_Dut
W woip
a9 WiteinFile

Class diagram of voip program.

»

| CallSetup

}}_

[-Hepl}l Clazs
Class
= Methods
= Methods @ Main
i@ Main 4" ReadfromFile
2% ReadframFile . | A" WiiteinFile
Class diagram of Reply module Class diagram of CallSetup module
' ConnectionThread [# | | ThreadedT cplistener 2
Class Class
= Fields =l Fields
4# connections ¢ client
threadlistener = Methods
= Methods gl M ain
W HandleConnection W ThreadedT cpLlistener
4% ReadiromFile '
49 WihiteinFile

Class diagram of Listener module

