
 61 

References 

 

1- Rob Miles, "C# Development", Department of Computer Science 

University of     Hull, 2008. 

2- Fiach Reid, "Network Programming in .NET With C# and Visual  

Basic .NET", Elsevier Digital Press, 2004. 

3- Richard Blum, "C# Network Programming", Sybex, 2003. 

4- Tariq Latif Kranthi and Kumar Malkajgiri, "Adoption of VoIP", 

Master thesis, Lulea University of Technology, 2007. 

5- David Alonso Tlahuetl Herrera, "Analysis and Implementation of TCP 

Friendly Rate Control in the Context of VoIP", Master thesis, Royal 

Institute of Technology, 2005. 

6- Sharam Hekmat, "Communication Networks", PragSoft Corporation,  

2000  

    www.pragsoft.com 

6- By John Q. Walker, Jeffrey T. Hicks (2004), "Taking Charge of Your 

VoIP Project". 

 7- Jonathan Davidson, James Peter, “Voice Over IP Fundamentals”, 

Cisco Press, 2000. 

8- "A number of VoIP-related white papers" 

      http://www.voip-news.com/wp/wphome.html      access 1/2009. 

9- Valdes, R. “How VoIP Works” 

     http://electronics.howstuffworks.com/ip-telephony.htm     access 7/2008 

10- BHUMIP KHASNABISH, "IMPLEMENTING VOICE OVER IP", 

A JOHN WILEY & SONS, 2003. 

www.pragsoft.com
http://www.voip-news.com/wp/wphome.html
http://electronics.howstuffworks.com/ip-telephony.htm


 62 

11- "Microsoft VoIP Introduction", Microsoft, 2008.        

http://download.microsoft.com/download/b/0/6/b06e9c6e-cf9c-481f-

a6ed-c674e82ed1d1/VOIP.doc access 10/2008 

13- Jim Doherty, Neil Anderson, "Internet Phone Services Simplified", 

      Cisco press, 2006. 

14- http://www.packetizer.com/ipmc/papers/understanding_voip access 

5/2008 

 ` 

 

 

 

http://download.microsoft.com/download/b/0/6/b06e9c6e-cf9c-481f-a6ed-c674e82ed1d1/VOIP.doc
http://download.microsoft.com/download/b/0/6/b06e9c6e-cf9c-481f-a6ed-c674e82ed1d1/VOIP.doc
http://www.packetizer.com/ipmc/papers/understanding_voip


 63 

Appendix 

 

A- Program codes 

 I- Main program (voip) code  

   

using System; 

using System.Windows.Forms; 

using System.Net; 

using System.Net.Sockets; 

using System.Threading; 

using Voice; 

using System.IO; 

using System.Text; 

using System.Diagnostics; 

using System.Collections.Generic; 

using System.ComponentModel; 

 

namespace VOIP 

{ 

 

 public class Form1 : System.Windows.Forms.Form 

 { 

 

  #region variables 

  private Socket r; 

  private Thread t; 

  private bool connected = false; 

        private bool receive = false; 

  private System.Windows.Forms.TextBox textBox1; 

  private System.Windows.Forms.Label label1; 

  private Button Call; 

  private Button Exit; 

  private System.ComponentModel.Container components = 

null; 

        private int ReceivePort = 6000; 

        private Button On; 



 64 

        private int SendPort = 5000;         

        private PictureBox pictureBox1; 

        private Button button1; 

        private bool run = false; 

  #endregion 

         

  #region Form1() 

  public Form1() 

  { 

            InitializeComponent(); 

            r = new Socket(AddressFamily.InterNetwork, 

SocketType.Dgram, ProtocolType.Udp); 

            t = new Thread(new ThreadStart(Voice_In));   

  } 

  #endregion 

 

  #region For Desginer 

  /// <summary> 

  /// Clean up any resources being used. 

  /// </summary> 

  protected override void Dispose(bool disposing) 

  { 

   if (disposing) 

   { 

    if (components != null) 

    { 

     components.Dispose(); 

    } 

   } 

   base.Dispose(disposing); 

  } 

 

  #region Windows Form Designer generated code 

  /// <summary> 

  /// Required method for Designer support - do not modify 

  /// the contents of this method with the code editor. 

  /// </summary> 

  private void InitializeComponent() 

  { 



 65 

            System.ComponentModel.ComponentResourceManager resources 

= new System.ComponentModel.ComponentResourceManager(typeof(Form1)); 

            this.textBox1 = new System.Windows.Forms.TextBox(); 

            this.label1 = new System.Windows.Forms.Label(); 

            this.Call = new System.Windows.Forms.Button(); 

            this.On = new System.Windows.Forms.Button(); 

            this.button1 = new System.Windows.Forms.Button(); 

            this.pictureBox1 = new System.Windows.Forms.PictureBox(); 

            this.Exit = new System.Windows.Forms.Button(); 

            

((System.ComponentModel.ISupportInitialize)(this.pictureBox1)).BeginI

nit(); 

            this.SuspendLayout(); 

            //  

            // textBox1 

            //  

            this.textBox1.BackColor = 

System.Drawing.Color.FromArgb(((int)(((byte)(255)))), 

((int)(((byte)(255)))), ((int)(((byte)(192))))); 

            this.textBox1.BorderStyle = 

System.Windows.Forms.BorderStyle.FixedSingle; 

            this.textBox1.Font = new System.Drawing.Font("Tahoma", 

9.75F, System.Drawing.FontStyle.Regular, 

System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.textBox1.Location = new System.Drawing.Point(114, 

214); 

            this.textBox1.Name = "textBox1"; 

            this.textBox1.Size = new System.Drawing.Size(136, 23); 

            this.textBox1.TabIndex = 4; 

            //  

            // label1 

            //  

            this.label1.Location = new System.Drawing.Point(9, 219); 

            this.label1.Name = "label1"; 

            this.label1.Size = new System.Drawing.Size(77, 16); 

            this.label1.TabIndex = 5; 

            this.label1.Text = "Destination IP"; 

            //  

            // Call 



 66 

            //  

            this.Call.BackColor = System.Drawing.Color.White; 

            this.Call.Enabled = false; 

            this.Call.Font = new System.Drawing.Font("Tahoma", 9.75F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, 

((byte)(0))); 

            this.Call.ForeColor = System.Drawing.Color.Lime; 

            this.Call.Location = new System.Drawing.Point(55, 249); 

            this.Call.Name = "Call"; 

            this.Call.Size = new System.Drawing.Size(99, 56); 

            this.Call.TabIndex = 10; 

            this.Call.Text = "Call"; 

            this.Call.UseVisualStyleBackColor = false; 

            this.Call.Click += new 

System.EventHandler(this.Call_Click); 

            //  

            // On 

            //  

            this.On.BackColor = System.Drawing.Color.White; 

            this.On.Location = new System.Drawing.Point(285, 25); 

            this.On.Name = "On"; 

            this.On.Size = new System.Drawing.Size(93, 41); 

            this.On.TabIndex = 12; 

            this.On.Text = "Power ON"; 

            this.On.UseVisualStyleBackColor = false; 

            this.On.Click += new System.EventHandler(this.On_Click); 

            //  

            // button1 

            //  

            this.button1.BackColor = System.Drawing.Color.White; 

            this.button1.DialogResult = 

System.Windows.Forms.DialogResult.Cancel; 

            this.button1.Location = new System.Drawing.Point(285, 

93); 

            this.button1.Name = "button1"; 

            this.button1.Size = new System.Drawing.Size(93, 41); 

            this.button1.TabIndex = 15; 

            this.button1.Text = "Exit"; 

            this.button1.UseVisualStyleBackColor = false; 



 67 

            this.button1.Click += new 

System.EventHandler(this.button1_Click); 

            //  

            // pictureBox1 

            //  

            this.pictureBox1.Image = 

global::cswavrec.Properties.Resources.background; 

            this.pictureBox1.Location = new System.Drawing.Point(-3, 

-2); 

            this.pictureBox1.Name = "pictureBox1"; 

            this.pictureBox1.Size = new System.Drawing.Size(282, 

210); 

            this.pictureBox1.TabIndex = 13; 

            this.pictureBox1.TabStop = false; 

            //  

            // Exit 

            //  

            this.Exit.BackColor = System.Drawing.Color.White; 

            this.Exit.DialogResult = 

System.Windows.Forms.DialogResult.Cancel; 

            this.Exit.Enabled = false; 

            this.Exit.Font = new System.Drawing.Font("Tahoma", 9.75F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, 

((byte)(0))); 

            this.Exit.ForeColor = System.Drawing.Color.Red; 

            this.Exit.Location = new System.Drawing.Point(194, 249); 

            this.Exit.Name = "Exit"; 

            this.Exit.Size = new System.Drawing.Size(99, 56); 

            this.Exit.TabIndex = 11; 

            this.Exit.Text = "Close"; 

            this.Exit.UseVisualStyleBackColor = false; 

            this.Exit.Click += new 

System.EventHandler(this.Exit_Click); 

            //  

            // Form1 

            //  

            this.AutoScaleBaseSize = new System.Drawing.Size(5, 13); 

            this.AutoScroll = true; 



 68 

            this.BackColor = 

System.Drawing.Color.FromArgb(((int)(((byte)(192)))), 

((int)(((byte)(255)))), ((int)(((byte)(192))))); 

            this.ClientSize = new System.Drawing.Size(384, 310); 

            this.Controls.Add(this.button1); 

            this.Controls.Add(this.pictureBox1); 

            this.Controls.Add(this.On); 

            this.Controls.Add(this.Exit); 

            this.Controls.Add(this.Call); 

            this.Controls.Add(this.textBox1); 

            this.Controls.Add(this.label1); 

            this.FormBorderStyle = 

System.Windows.Forms.FormBorderStyle.FixedSingle; 

            this.Icon = 

((System.Drawing.Icon)(resources.GetObject("$this.Icon"))); 

            this.MaximizeBox = false; 

            this.Name = "Form1"; 

            this.StartPosition = 

System.Windows.Forms.FormStartPosition.CenterScreen; 

            this.Text = "VoIP"; 

            this.Load += new System.EventHandler(this.Form1_Load_1); 

            

((System.ComponentModel.ISupportInitialize)(this.pictureBox1)).EndIni

t(); 

            this.ResumeLayout(false); 

            this.PerformLayout(); 

 

  } 

  #endregion 

 

  /// <summary> 

  /// The main entry point for the application. 

  /// </summary> 

  ///  

 

  [STAThread] 

  static void Main() 

  { 

   Application.Run(new Form1()); 



 69 

  } 

  #endregion 

           

  #region Voice_In() 

  private void Voice_In() 

  { 

   byte[] br; 

            r.Bind(new IPEndPoint(IPAddress.Any, ReceivePort)); 

   while (true) 

   { 

    br = new byte[16384]; 

    r.Receive(br); 

    m_Fifo.Write(br, 0, br.Length); 

   } 

  } 

  #endregion 

        #region Voice_Out() 

 

        private void Voice_Out(IntPtr data, int size) 

        { 

            //for Recorder 

            if (m_RecBuffer == null || m_RecBuffer.Length < size) 

                m_RecBuffer = new byte[size]; 

            System.Runtime.InteropServices.Marshal.Copy(data, 

m_RecBuffer, 0, size); 

            //Microphone ==> data ==> m_RecBuffer ==> m_Fifo  

            try 

            { 

                r.SendTo(m_RecBuffer, new 

IPEndPoint(IPAddress.Parse(this.textBox1.Text), SendPort)); 

            } 

            catch 

            { 

 

                //MessageBox.Show("This IP is out of local subnet 

mask"); 

                //KillTask("listener"); 

                //KillTask("voip"); 

 



 70 

            } 

 

        } 

 

        #endregion 

 

 

 

        

//*******************************************************************

*************// 

        private WaveOutPlayer m_Player; 

        private WaveInRecorder m_Recorder; 

        private FifoStream m_Fifo = new FifoStream(); 

        private byte[] m_PlayBuffer; 

        private byte[] m_RecBuffer; 

 

        private void button3_Click(object sender, EventArgs e) 

        { 

 

        } 

 

        private void Start() 

        {           

            try 

            { 

                WaveFormat fmt = new WaveFormat(44100, 16, 2); 

                m_Player = new WaveOutPlayer(-1, fmt, 16384, 3, new 

BufferFillEventHandler(Filler)); 

                m_Recorder = new WaveInRecorder(-1, fmt, 16384, 3, 

new BufferDoneEventHandler(Voice_Out)); 

            } 

            catch 

            { 

                Stop(); 

                throw; 

            } 

        } 

 



 71 

        private void Stop() 

        { 

            if (connected == true && ReadfromFile("c:/receive.txt") 

== "1") 

            { 

                WriteinFile("c:/reply.txt", "c:/disconnect"); 

                System.Diagnostics.Process.Start("c:/reply.exe"); 

            } 

            else 

                if (connected == false && 

ReadfromFile("c:/receive.txt") == "1") 

                { 

                    WriteinFile("c:/reply.txt", "c:/reject"); 

                    System.Diagnostics.Process.Start("c:/reply.exe"); 

                } 

 

            WriteinFile("c:/receive.txt", "0"); 

            if (m_Player != null) 

                try 

                { 

                    m_Player.Dispose(); 

                } 

                finally 

                { 

                    m_Player = null; 

                } 

            if (m_Recorder != null) 

                try 

                { 

                    m_Recorder.Dispose(); 

                } 

                finally 

                { 

                    m_Recorder = null; 

                } 

            m_Fifo.Flush(); // clear all pending data                        

            WriteinFile("c:/status.txt", "disconnect"); 

            receive = false; 

            connected = false; 



 72 

 

        } 

 

        private void Filler(IntPtr data, int size) 

        { 

            if (m_PlayBuffer == null || m_PlayBuffer.Length < size) 

                m_PlayBuffer = new byte[size]; 

            if (m_Fifo.Length >= size) 

                m_Fifo.Read(m_PlayBuffer, 0, size); 

            else 

                for (int i = 0; i < m_PlayBuffer.Length; i++) 

                    m_PlayBuffer[i] = 0; 

            System.Runtime.InteropServices.Marshal.Copy(m_PlayBuffer, 

0, data, size); 

            // m_Fifo ==> m_PlayBuffer==> data ==> Speakers 

        } 

 

        private void KillTask(string procname) 

        { 

            foreach (Process p in 

System.Diagnostics.Process.GetProcessesByName(procname)) 

            { 

                try 

                { 

                    p.Kill(); 

                    p.WaitForExit(); // possibly with a timeout 

                } 

                catch (Win32Exception winException) 

                { 

                    // process was terminating or can't be terminated 

- deal with it 

                } 

                catch (InvalidOperationException invalidException) 

                { 

                    // process has already exited - might be able to 

let this one go 

                } 

            } 

        } 



 73 

 

        private void On_Click(object sender, EventArgs e) 

        { 

            if (On.Text == "Power ON") 

            { 

                Call.Enabled = true; 

                Exit.Enabled = true; 

                On.Text = "Power OFF"; 

                System.Diagnostics.Process.Start("c:\\listener.exe"); 

 

            } 

            else 

            { 

                Call.Enabled = false; 

                Exit.Enabled = false; 

                On.Text = "Power ON"; 

                foreach (Process p in 

System.Diagnostics.Process.GetProcessesByName("listener")) 

                { 

                    try 

                    { 

                        p.Kill(); 

                        p.WaitForExit(); // possibly with a timeout 

                    } 

                    catch (Win32Exception winException) 

                    { 

                        // process was terminating or can't be 

terminated - deal with it 

                    } 

                    catch (InvalidOperationException 

invalidException) 

                    { 

                        // process has already exited - might be able 

to let this one go 

                    } 

                } 

            } 

        } 

 



 74 

        private void Call_Click(object sender, EventArgs e) 

        { 

            On.Enabled = false; 

            run = true; 

            Call.Enabled = false; 

            textBox1.Enabled = false; 

            WriteinFile("c:/status.txt", "busy"); 

            string state = ReadfromFile("c:/receive.txt"); 

            if (state == "0") 

            {                 

                WriteinFile("c:/ip.txt", this.textBox1.Text); 

                CreatePort(); 

                System.Diagnostics.Process.Start("c:/CallSetup.exe"); 

            } 

            else 

                if (state == "1") 

                { 

                    receive = true; 

                    int i; 

                    WriteinFile("c:/reply.txt", "c:/connected"); 

                    System.Diagnostics.Process.Start("c:/reply.exe"); 

                    textBox1.Text = ReadfromFile("c:/ip.txt"); 

                    string ports = ReadfromFile("c:/ports.txt"); 

 

                    for (i = 0; i <= 5; i++) 

                    { 

                        if (ports[i] == ':') 

                        { 

                            break; 

                        } 

                    } 

 

                    SendPort = int.Parse(ports.Substring(0, i)); 

                    ReceivePort = int.Parse(ports.Substring(i + 1)); 

; 

 

                } 

            if (connected == false) 

            {                 



 75 

                r = new Socket(AddressFamily.InterNetwork, 

SocketType.Dgram, ProtocolType.Udp); 

                t = new Thread(new ThreadStart(Voice_In)); 

                t.Start(); 

                connected = true; 

            } 

            Start(); 

        } 

 

        private void CreatePort() 

        { 

            Random r = new Random(); 

            ReceivePort = r.Next(1025, 32000); 

            SendPort = r.Next(1025, 32000); 

 

            WriteinFile("c:/ports.txt", ReceivePort.ToString() + ":" 

+ SendPort.ToString()); 

        } 

 

        private string ReadfromFile(string FilePath) 

        { 

            FileStream fs = new FileStream(FilePath, FileMode.Open); 

            byte[] fileContents = new byte[fs.Length]; 

            fs.Read(fileContents, 0, (int)fs.Length); 

            string receiv = 

Encoding.UTF8.GetString(fileContents).Substring(1); 

            fs.Close(); 

            return receiv; 

        } 

 

        private void WriteinFile(string FilePath, string content) 

        { 

            FileStream fs = new FileStream(FilePath, 

  FileMode.Create); 

            BinaryWriter bw = new BinaryWriter(fs);             

            bw.Write(content); 

            bw.Close(); 

            fs.Close(); 

        } 



 76 

 

        private void Exit_Click(object sender, EventArgs e) 

        { 

            Call.Enabled = true; 

            textBox1.Enabled = true; 

            Stop(); 

            t.Abort(); 

            r.Close(); 

            return; 

        } 

 

        private void Form1_Load_1(object sender, EventArgs e) 

        { 

           if( 

System.Diagnostics.Process.GetProcessesByName("voip").Length>1)//here 

to determining th NO of processes that running now. 

            { 

                try 

                {                     

                    Application.Exit();  

                } 

                catch (Win32Exception winException) 

                { 

                    // process was terminating or can't be terminated 

- deal with it 

                } 

                catch (InvalidOperationException invalidException) 

                { 

                    // process has already exited - might be able to 

let this one go 

                } 

            } 

            WriteinFile("c:/receive.txt", "0"); 

            WriteinFile("c:/run.txt", "1"); 

            WriteinFile("c:/status.txt", "disconnect"); 

            KillTask("listener"); 

        } 

 

        private void Form1_Closing(object sender, EventArgs e) 



 77 

        { 

            button1_Click(sender, e); 

 

        } 

 

        private void button1_Click(object sender, EventArgs e) 

        { 

            WriteinFile("c:/run.txt", "0"); 

            Stop(); 

            t.Abort(); 

            r.Close(); 

            KillTask("listener"); 

            KillTask("voip"); 

            Application.Exit(); 

        } 

 

    } 

} 

 

II- Listener code 

   

using System; 

using System.Net; 

using System.Net.Sockets; 

using System.Text; 

using System.Threading; 

using System.IO; 

using System.Diagnostics; 

 

namespace WindowsApplication2 

{ 

    class ThreadedTcpListener 

    { 

        private TcpListener client; 

        public ThreadedTcpListener() 

        { 

            client = new TcpListener(9050); 

            client.Start(); 



 78 

            Console.WriteLine("Waiting for a call..."); 

 

            while (true) 

            { 

                while (!client.Pending()) 

                { 

                    Thread.Sleep(1000); 

                } 

                ConnectionThread newconnection = new 

ConnectionThread(); 

                newconnection.threadListener = this.client; 

                Thread newthread = new Thread(new 

                     ThreadStart(newconnection.HandleConnection)); 

                newthread.Start(); 

            } 

        } 

        public static void Main() 

        { 

            ThreadedTcpListener server = new ThreadedTcpListener(); 

        } 

    } 

    class ConnectionThread 

    { 

        public TcpListener threadListener; 

        private void WriteinFile(string FilePath, string content) 

        { 

            FileStream fs = new FileStream(FilePath, 

  FileMode.Create); 

            BinaryWriter bw = new BinaryWriter(fs); 

            bw.Write(content); 

            bw.Close(); 

            fs.Close(); 

        } 

        public void HandleConnection() 

        { 

            string income; 

            int recv; 

            int i; 

            byte[] data = new byte[1024]; 



 79 

            TcpClient client = threadListener.AcceptTcpClient(); 

            NetworkStream ns = client.GetStream();             

            Console.WriteLine("New call accepted"); 

            string welcome = "Welcome"; 

            data = Encoding.ASCII.GetBytes(welcome); 

            ns.Write(data, 0, data.Length); 

                data = new byte[1024]; 

                recv = ns.Read(data, 0, data.Length); 

                income = Encoding.ASCII.GetString(data, 0, recv);                 

                if (income == "c:/disconnect" || income == 

"c:/connected" || income == "c:/reject") 

                { 

                    System.Diagnostics.Process.Start(income); 

                    if(income=="c:/connected") 

                        WriteinFile("c:/receive.txt", "1"); 

                    else 

                        WriteinFile("c:/receive.txt", "0");                     

                } 

                else 

                { 

                    string ip = 

client.Client.RemoteEndPoint.ToString(); 

 

                    for (i = 5; i <= 15; i++) 

                    { 

                        if (ip[i] == ':') 

                        { 

                            break; 

                        } 

                    } 

                    ip = ip.Substring(0, i); 

 

                    WriteinFile("c:/ip.txt", ip); 

                    string status = ReadfromFile("c:/status.txt"); 

                    if (status != "busy") 

                    { 

                        WriteinFile("c:/ports.txt", income); 

                        WriteinFile("c:/receive.txt", "1"); 

                        WriteinFile("c:/status.txt", "busy"); 



 80 

                        

System.Diagnostics.Process.Start("c://newcall.exe");  

                    } 

                    else 

                    { 

                     Console.WriteLine("  " + ip + "  Trying to call 

you"); 

                    } 

                    data = Encoding.ASCII.GetBytes(status); 

                    ns.Write(data, 0, data.Length); 

                }                

            ns.Close(); 

            client.Close(); 

            connections--; 

        } 

        private string ReadfromFile(string FilePath) 

        { 

            FileStream fs = new FileStream(FilePath, FileMode.Open); 

            byte[] fileContents = new byte[fs.Length]; 

            fs.Read(fileContents, 0, (int)fs.Length); 

            string receiv = 

Encoding.UTF8.GetString(fileContents).Substring(1); 

            fs.Close(); 

            return receiv; 

        } 

 

    } 

 

} 

 

III- CallSetup code 

 

using System; 

using System.Net; 

using System.Net.Sockets; 

using System.Text; 

using System.IO; 

class CallSetup 



 81 

{ 

     

    public static void Main() 

    { 

        byte[] data = new byte[1024]; 

        string input, stringData; 

        string IP = ReadfromFile("c:\\ip.txt");  

        Console.WriteLine("Trying to call with " + IP); 

        IPEndPoint ipep = new IPEndPoint( 

                IPAddress.Parse(IP), 9050); 

        Socket server = new Socket(AddressFamily.InterNetwork, 

                SocketType.Stream, ProtocolType.Tcp); 

        try 

        { 

            server.Connect(ipep); 

        } 

        catch (SocketException e) 

        { 

            Console.WriteLine("Unable to connect to target."); 

            

System.Diagnostics.Process.Start("c:\\unabletoconnect.exe"); 

            return; 

        } 

        int recv = server.Receive(data); 

        stringData = Encoding.ASCII.GetString(data, 0, recv); 

        Console.WriteLine(stringData);         

            input = ReadfromFile("c:\\ports.txt 

            server.Send(Encoding.ASCII.GetBytes(input)); 

            data = new byte[1024]; 

            recv = server.Receive(data); 

            stringData = Encoding.ASCII.GetString(data, 0, recv); 

            if (stringData == "busy")             

                System.Diagnostics.Process.Start("c:\\busy.exe"); 

        server.Shutdown(SocketShutdown.Both); 

        server.Close(); 

        

    } 

 

    



 82 

    private static string ReadfromFile(string FilePath) 

    { 

        FileStream fs = new FileStream(FilePath, FileMode.Open); 

        byte[] fileContents = new byte[fs.Length]; 

        fs.Read(fileContents, 0, (int)fs.Length); 

        string receiv = 

Encoding.UTF8.GetString(fileContents).Substring(1); 

        fs.Close(); 

        return receiv; 

    } 

    private static void WriteinFile(string FilePath, string content) 

    { 

        FileStream fs = new FileStream(FilePath, 

FileMode.Create); 

        BinaryWriter bw = new BinaryWriter(fs); 

        bw.Write(content); 

        bw.Close(); 

        fs.Close(); 

    } 

} 

 

IV- Reply code 

 

using System; 

using System.Net; 

using System.Net.Sockets; 

using System.Text; 

using System.IO; 

class Reply 

{ 

 

    public static void Main() 

    { 

        byte[] data = new byte[1024]; 

        string input, stringData; 

 

 

        string IP = ReadfromFile("c:\\ip.txt"); 



 83 

        Console.WriteLine("Trying to call with " + IP); 

        IPEndPoint ipep = new IPEndPoint( 

                IPAddress.Parse(IP), 9050); 

        Socket server = new Socket(AddressFamily.InterNetwork, 

                SocketType.Stream, ProtocolType.Tcp); 

        try 

        { 

            server.Connect(ipep); 

        } 

        catch (SocketException e) 

        { 

            return; 

        } 

        int recv = server.Receive(data); 

        stringData = Encoding.ASCII.GetString(data, 0, recv); 

        Console.WriteLine(stringData); 

        input = ReadfromFile("c:\\reply.txt");  

        server.Send(Encoding.ASCII.GetBytes(input));       

        server.Shutdown(SocketShutdown.Both); 

        server.Close(); 

    } 

     

    private static string ReadfromFile(string FilePath) 

    { 

        FileStream fs = new FileStream(FilePath, FileMode.Open); 

        byte[] fileContents = new byte[fs.Length]; 

        fs.Read(fileContents, 0, (int)fs.Length); 

        string receiv = 

Encoding.UTF8.GetString(fileContents).Substring(1); 

        fs.Close(); 

        return receiv; 

    } 

    

} 

  

 

 



 84 

B- Classes' diagrams 

 

 

 

Class diagram of voip program. 



 85 

                                           

  Class diagram of Reply module                       Class diagram of CallSetup module 

 

 

 

 

 

 

Class diagram of Listener module 

 

 

 

 

 

 

 


