بسم الله الرحمن الرحي

قال تعالى :

(اقرأ باسم ربك الذى خلق . خلق الانسان من علق . اقرأ وربك الاكرم. الذى علم بالقلم. علم الانسان مالم يعلم).

(صدق الله العظيم)

(سورةالعلق الاية (1-5))

Dedication

To: my father.

To: my mother.

To: my brothers & Sister.

To: my family.

Acknowledgment

Thanks before and after to Allah for His giving me strength and powerful to complete this project.

I would like to express my great thanks to those who helped me to complete this thesis successfully:

- Staff of Refrigeration and Air conditioning works shop, Sudan University of Science and Technology.
- Really my great thanks to Dr.Eng.Hassan A.latif for his guidance and supervision to this project.

Abstract

This study has been carried out to determine the effect of refrigerants on ozone layer, global warming and resultant environmental effect.

Also the efforts exerted from international community and the Republic of the Sudan to solve this problem.

No dought that phenomena of the ozone depletion and global warming causes hazardous effects on human being. From the begging of this century this phenomena has not been contend to conferences and lecture rooms, but become a day to day question that must be solved by earth citizens. Because it threaten the existence of human life on earth.

Causes of zone depletion and global warming phenomena are the bad uses to the natural resources, and the reduction of this phenomena will be implemented by reducing the emission of some gases to the atmosphere, like CO₂,CH₄, CFC.

This research will concentrate on the refrigerants effect.

Refer the program adopted by UN for the treatment of ozone depletion, which has been implemented in Sudan in conjunction with Sudan University of Science and Technology

(Refrigeration and Air Conditioning workshop).

Training courses have been carried out on the field of new alternative refrigerant which has zero effect on ozone layer, these alternative refrigerants has negative effect to global warming

The result of this study, LPG has no effect on ozone layer and very small affection on global warming the experiment showed that, LPG give more cooling compared with (R-12, R-134a) and has low rate of power (about 10% less than R-12,R134) and has similar C.O.P.

From the above mentioned, the future researches must concentrate on HC refrigerants to avoid hazard effect on ozone layer and solving G.W.P Problems, resulting from using old refrigerants, which has negative effect on ozone layer and global warming .

Also attention must be given to the treatment adopting precautions, taken to save the world from disaster.

التجريدة

هذه الدراسة أجريت لمعرفة مدي تأثير وسائط التبريد علي تآكل طبقة الأوزون والاحترار العالمي والآثار البيئية المترتبة علي ذلك، والجهود المبذولة من المجتمع الدولي وجمهورية السودان لمعالجة هذه المشكلة .

لا يختلف اثنان علي أن ظاهرة تآكل طبقة الأوزون والاحتباس الحراري تشكل خطراً كبيراً علي الإنسان فمنذ بداية هذا القرن لم تقتصر هذه الظاهرة علي قاعات الدرس والمؤتمرات بل تعدتها لتصبح واقعاً معاشاً في كوكب الأرض يهدد حياة الانسان.

إن ظاهرة تآكل الأوزون والاحتباس الحراري جاء نتيجة لسوء استغلال الإنسان لموارد الأرض، و إن تقليل تآكل طبقة الأوزون والاحترار العالمي يتم بتقليل بعض الغازات المنطقة الى الغلاف الجوى مثل CH4، CO₂ ووسائط التبريد (CFC-HCFC-HFC) وغيرها من الغلزات، ولكن في هذا البحث سنركز على تاثير سائط التبريد.

تم النطرق إلي البرامج التي وضعت بواسطة منظمة الأمم المتحدة لمعالجة تآكل طبقة الأوزون والتي تم تنفيذها في السودان انطلاقاً من جامعة السودان – كلية الهندسة – ورشة التبريد والتكييف لتدريب العاملين في مجال التبريد والتكييف لإحلال وسائط ليس لها تأثير علي طبقة الأوزون وإعادة تعبئة الغازات المستعملة وعدم اطلاقها في الغلاف الجوى، لكن اتضح إن هذه الوسائط البديلة لها تأثير علي الاحتراق الكوني فكان لابد من البحث مرة أخري من وسائط ليس لها تأثير علي طبقة الأوزون و الاحترار العالمي مع الاستمرار في هذا البرنامج.

لحل هذه المشكلة تم إتباع المنهج التجريبي على ثلاثة أنواع من وسائط التبريد وهي:

- -1 (R-12-CFC) ذو التأثير السلبي على طبقة الأوزون و الاحترار الكوني .
- -2 الوسيط الثانى هو (R-134a-HFC) الذي ليس له تأثير على طبقة الأوزون وهو البديل المستعمل الآن للوسيط (R-12) ولكن تأثيره سلبي على الاحترار العالمي.
 - 3- الوسيط الثالث غاز (LPG) والذي ليس له تأثير على طبقة الأوزون على الاحترار الكوني.

نتيجة التجارب أن غاز (LPG) الذي ليس له تأثير على طبقة الاوزون والاحترار العالمى، يعطي تأثير تبريدي أفضل من (R134a-R12) ومعدل استهلاك قدره أقل بنحو 10% ومعدل أداء قريب من (R134a-R12).

مما سبق يجب أن تتجه البحوث نحو الهيدروكربون (HC) لتلافي المخاطر التي تهدد الوجود البشرى نتيجة لاستعمال الوسائط ذات التأثير السلبي علي طبقة الأوزون والاحترار العالمي، والاهتمام بمعالجة مساوي HC المتمثلة في قابلية الانفجار بوضع الاحتياطات اللازمة، ولن تكون صعبة مقارنة بالفوائد المتحصل عليها وهي حماية كوكب الأرض من الدمار الذي سيلحق به نسبة لاستعمال وسائط التبريد المستعملة الان.

Contents

Contents	Page	
	الآية	I

	Dedication	II
	Acknowledgment	III
	Abstract	IV
	التجريدة	V
	Contents	VI
	List of figures	X
	List of Tables	XI
	Abbreviations	XIII
	Chapter One: Introduction	
	Introduction	1
	Chapter Two: Literature Review	
2-1	Refrigerants	3
2-1-1	Properties of refrigerants	3
2-1-2	Classification of Refrigerants	4
2-1-3	Halo-carbon refrigerants	4
2-1-4	Azeotrope refrigerants	5
2-1-5	Inorganic refrigerants	5
2-1-6	Hydrocarbon refrigerants	5
2-1-7	Chlorofluorocarbons	6
2-1-8	Hydrochlorofluorocarbons	6
2-1-9	Hydro fluoro compounds	6
2-1-10	Ferons(CFC, HCFC's, HFC)	7
2-1-11	Liquefied petroleum gas	8
2-1-12	Propane	8
2-1-13	Carbon Dioxide	8
2-1-14	Selecting of refrigerants	9
2-1-15	Refrigerants by class	9
2-1-16	Numbering	9
2-1-17	Color Codes	10

2-2	1-3Ozone Depletion	16
2-2-1	1-3Ozone layer	16
2-2-2	3-2 Stratospheric Ozone	16
2-2-3	3-3 the composition of air (mixing ratio)	16
2-2-4	The composition of the atmosphere change with altitude	17
2-2-5	Vertical transport in the troposphere	17
2-2-6	Ozone layer and Dobson Unit	18
2-2-7	ozone distributed in the stratosphere	18
2-2-8	Ozone layer work	18
2-2-9	Regional and Seasonal	20
2-2-10	Variations of ozone layer	20
2-2-11	The most important CFC's for ozone depletion are:	21
2-2-12	How do CFC's destroy ozone	22
2-2-13	Ozone Depletion Potential	24
2-2-14	The effect of HCFC's and HFC's on ozone	25
2-2-15	The Effects of Ozone Depletion	27
2-3	Global warming	27
2-3-1	Terminology	27
2-3-2	Major Global Warming Substances and Global 24- Warming Potential	28
2-3-3	Greenhouse Green house gas and effect	30
2-3-4	4-5 Global Warming and Ozone Depletion relation	32
2-3-5	4-6 Effects of global warming - Positive feedback effects	32
2-3-6	Temperature record	34
2-3-7	Effects of Global Warming	35
2-4	Action Plan For Organizations Using Refrigerants	36
2-4-1	Responsible Choices	38
2-4-2	Detection of Leaks	40

		-
2-4-3	Mount a local campaign against global warming	40
2-4-4	International Regulations	41
2-4-5	International effort on ozone depletion	42
2-5	Sudan efforts to reduce ODP&GWP	43
2-5-1	Refrigerant Management plan (RMP) with special reference to recovery and recycling (R&R)projects	43
2-5-2	Project design	44
2-5-3	Achievements and Experience gained	45
2-5-4	Economics of refrigerant R&R and operating costs	45
2-5-5	Attitudes towards CFC recycling	48
2-5-6	Outstanding questions	48
	Chapter Three: Material and Methods	
3-1	Historical Review	49
3-2	Alternative refrigerants used to day	50
3-2-1	domestic refrigerators and freezers:	50
3-2-2	Industrial Refrigeration	51
3-3	Comparison of refrigerant performance	52
3-4	Hazards and precautions for refrigerants	56
3-5	The Explosion Risk	57
3-6	Economic evaluation	60
3-6-1	LPG cost compared with R12&R134a	61
3-6-2	Charging of LPG by weight compared with R12&R134a	61
3-6-3	Charging of LPG by volume compared with R12&R134a	61
3-7	Experimental work	61
3-7-1	Objective	61
3-7-2	Properties of R-12, R-134a and LPG refrigerants	62
3-7-3	The Apparatus:	62
3-7-4	Procedure	62

3-8	Reading	63
3-8-1	R12 system measurements	63
3-8-2	LPG system measurements	63
3-8-3	R134a system measurements	63
3-9	Calculations	64
	Chapter Four: Results and Discussion	
4-1	The Results	65
4-1-1	Enthalpy of refrigerants	65
4-1-2	Summary of the Results	66
4-2	Analysis of results	66
4-2-1	Discharge and Suction pressure, Discharge and Suction temperature	66
4-2-2	Compressor work	67
4-2-3	Refrigerant effect	67
4-2-4	The coefficient of performance	67
	Chapter Five: Conclusions & Recommendations	
5-1	Conclusions	68
5-2	Recommendations	69
	References	70
	Appendix	

List of figures

No. of figure	Name of figure	Page No.
Fig(2-1)	Ozone depletion process	23
Fig (2-2)	Carbon Dioxide Concentration	30
Fig (2-3)	Efficiency comparison for various refrigerants	32
Fig (2-4)	Global temperature changes(1880-2000)	35
Fig (3-1)	LPG refrigerant concentration assumed in passenger compartment to calculate maximum flammable time for Pulsar.	59

List of Tables

No. of table	Name of table	Page No.
Table(2-1)	Commonly used halo- carbon refrigerants.	4
Table(2-2)	some Azeotrope refrigerants.	5
Table (2-3)	inorganic refrigerants.	5
Table (2-4)	hydro-carbon refrigerants.	6
Table (2-5)	CFCs Refrigerants.	11
Table (2-6)	HCFCs Refrigerants.	13
Table(2-7)	HFCs Refrigerants.	15
Table (2-8)	Regional and Seasonal Variation of ozone layer.	20
Table(2-9)	environmental characteristics for a few refrigerants.	29
Table (2-10)	Substances covered by the Kyoto Protocol & Montreal Protocol	41
Error! Not a valid link.	Production of domestic refrigerators (million units) (UNEP, 2002)	50
Table (3-2)	Comparison of refrigerant properties and parameters.	52
Table (3-3)	Fire and explosion data for HC refrigerants.	56
Table (3-4)	Measured LPG refrigerant charge and passenger compartment air flow give the maximum time a flammable concentration exists in the passenger compartment with fan and vent operating.	58
Error! Not a valid link.	Comparison cost of LPG with R-12&R-134a	60

Table(3-6)	Properties of R-12, R-134a and LPG	61
Table (3-7)	R12 system measurements.	63
Table (3-8)	LPG system measurements.	63
Table (3-9)	R134a system measurements.	63
Table (4-1)	Enthalpy of refrigerants.	65
Table (4-2)	Shows measured and calculated parameters in each refrigerant.	66
Table (4-3)	Shows Discharge Suction pressure and Discharge Suction temperature.	66
Table (4-4)	Shows Compressor work.	67
Table (4-5)	Shows Refrigerant effect.	67
Table (4-6)	Shows The coefficient of performance (C.O.P).	67

Abbreviations

R	Refrigerant
CFC	Chloro Fluorocarbon
HCFC	Hydro Chlorotluro Carbon
HFC	Hydrofuoro Carbon
LPG	Liquefied Petroleum Gas
НС	Hydro Carbon
UN	United Nations
C.O.P	Coefficient of Performance
UV	Ultra Violet Radiation
ODP	Ozone Depletion
GWP	Global Warming Potential
DU	Dobson Unit
RMR	Refrigerant Management Plan
R & R	Recovery and Recycling
ASHRAE	American Society Of Heating, Refrigeration and Air- Condition
	Engineers
UNFCCC	United Nations Frame Work Convention on Climate Change
IPPC	Inter government Panel on Climate Change
HVAC	Heating, Ventilation and Air Conditioning
RES	Renew able electricity standard
UN IDO	United Nations of Industrial Development Organization
NOU	National Organization Unit
Co ₂	Carbon Dixiod
CH ₄	Methane
MAC	Mobile Air Condition