DEDICATION:

First of all, I would like to thank God, the greatest, for everything I am granted, I am really so much grateful.

Then I would like to dedicate this thesis to my dear mother, the greatest woman in my life who taught me how to cope and fight for my goals.

To my precious father who taught me patience and forgiveness. I wish them all pleasure, God bless them.

Also, I want to mention my dear sisters, all of them. And my brother whom I miss so much, wishing him all happiness and success.

And then, the unforgettable supervisor, Dr. Magdi, my precious teacher. This person is so much great and helpful. He has been so much patient and very cooperative. He has been very comprehensive. He taught and helped me a lot; he is really an ideal professor. He would remain one of my favorite professors.

Moreover, my co-workers, all of them, especially Alwathiq, Muhand and Huda who always help and support me, both in life and career. And without their everlasting encouragement, this work could never be done.

And a very special thanks to my real teacher, Eng. Osman Mukhtar, my great teacher, my real father.

Also, I don't want to forget my precious manger Eng. Tariq Ishac. I am his real daughter.

ACKNOWLEDGMENT:

Above all, I would like to thank God for giving me this great opportunity of M.Sc., and enabling me to accomplish this research.

Also, I would like to thank the Constructional & Environmental Laboratories Centre Co. Ltd. And want to thank all the nice and wonderful people who work there and helped me during this research. Without them this work could never be done or accomplished. They have been very collaborated and open hearted.

Especial thanks to Dr. Magdi for his continuously support and enhancement.

Especial thanks to Centre for Engineering Technology Studies (Cets) & University Of Sudan.

ABSTRACT:

This research is about the mechanical treatment of base course material.

The base course in Khartoum state is facing a problem of scarcity. Nowadays, it is hard to find base course materials comply with the specifications for constructing roads. Therefore, some of the materials supplied from quarries to constructional locations need to be treated. There are several ways and methods of soil treatment and stabilization but in this research, the soil treated by the mechanical stabilization.

The purpose of treatment is for improving of soil properties. This method is so simple and easy as well as the good results obtained. Moreover, it is not costly, comparing to other soil treatment methods such as the chemical stabilization.

In the research, three samples were collected from materials supplied to construction locations from quarries.

For treating the samples, percentages of sand, natural gravels and crushed stone were added in many trials, so as to improve the engineering properties of the material and to conform to the requirements.

The results were magnificent and base course materials conformed to the specifications were obtained which could be used in roads construction as base materials.

From the research, it is obvious that the subbase material could be treated to act as base course materials.

مستخلص:

تعانى ولاية الخرطوم من ندرة مواد الاساس و بالتالى صعوبة الحصول على مواد اساس مطابقة للمواصفات تصلح لتشيد الطرق. و عليه، بعض مواد الاساس التى يتم توريدها للموقع قد تحتاج للمعالجة حيث هنالك العديد من الطرق المستخدمة لمعالجة التربة. و هذا البحث يتناول معالجة مواد طبقة الاساس ميكانيكيا.

معالجة التربة ميكانيكيا من اسهل و ابسط طرق المعالجة و ارخصها مقارنة مع المعالجات الاخرى كالمعالجة باستخدام المواد الكيميائية مثل الاسمنت. كما ان معالجة التربة ميكانيكيا تعطى نتائج جيد بحيث يمكن الحصول على مواد اساس وفقا للمواصفات.

فى هذا البحث، استخدامت ثلاثة عينات، اخذت من مواقع تشييد من مقالع مختلفة بولاية الخرطوم حيث تم اختبار ها معمليا لتحديد مواصفات تلك العينات.

تمت المعالجة باضافة نسب مختلفة من الرمل، الخرسانة الطبيعية أو الحجر المكسور في عدة محاولات و ذلك لتحسين الخواص الهندسية لها و الحصول على مواد اساس وفقا للمواصفات المطلوبة.

من النتائج المعملية، تم الحصول على مواد اساس مطابقة للمواصفات بعد معالجتها ميكانيكيا، صالحة الاستخدام في تشييد الطرق.

الدراسة توصلت الى امكانية معالجة مواد الاساس المساعد ميكانيكيا لاستخدامها كمواد لطبقة الاساس.

TABLE OF CONTENTS

No.	Descriptions				
	ABBREVIATIONS				
CHAPTER ONE : INTRODUCTION					
1.1	General				
1.2	Pavement Granular Materials				
1.3	Objectives And Aims Of Study				
1.4	Structure Of Thesis				
CHAPTER T	WO: LITERATURE REVIEW				
2.1	Introduction				
2.2	Base Course Materials	27			
2.3	Materials Classifications	30			
2.4	Soil Treatment Methods	42			
CHAPTER THREE : EXPERIMENTAL WORK					
3.1	Introduction	56			
3.2	Soils Used	56			
3.3	Laboratory Experiments	57			
3.4	Tests Results and Discussion				
CHAPTER FOUR : CONCLUSIONS					
4.1	Summary				
4.2	Recommendations	66			
REFERENCES		68			
APPENDICES					

FIGURES, TABLES & PLATES

1. The Figures :		Page				
Figure 1.1	Typical Cross Section of Road					
2. The Tables :						
Table (2.1)	Grading limits for graded crushed stone roadbase materials	31				
Table (2.2)	Mechanical strength requirements for the aggregate fraction of crushed stone roadbases (GB1,A; GB1,B) as defined by the ten percent fines test (TFV)					
Table (2.3)	Recommended particle size distributions for mechanically stabilized natural gravels and weathered rocks for use as roadbase					
Table (2.4)	The grading requirements for soil aggregates (AASHTO T 27/ T 88)					
Table (2.5)	Minimum unconfined compressive strength for cement, lime, lime-cement, and lime-cement-fly ash stabilized soils					
Table (2.6)	Durability requirements					
Table (3.1)	Laboratory Tests Results for Sample (S1)					
Table (3.2)	Laboratory Tests Results for Sample (1) - 15% Natural Gravel-10% Sand	59				
Table (3.3)	Laboratory Tests Results for Sample (1) - 15% Natural Gravel-10% Sand	59				
Table (3.4)	Laboratory Tests Results for Sample (1) - 12% Crushed Stone-10% Sand	60				
Table (3.5)	Laboratory Tests Results for Sample (S2)	60				
Table (3.6)	Laboratory Tests Results for Sample (2) - 17% Natural Gravel-10% Sand	61				

Table (3.7)	Laboratory Tests Results for Sample (2) - 12% Crushed Stone-10% Sand	62			
Table (3.8)	Laboratory Tests Results for Sample (S3)				
Table (3.9)	Laboratory Tests Results for Sample (3) - 17% Natural Gravel-10% Sand	63			
3. The Plates :					
Plate no. (1.1) Swampy Area in the South of Sudan					
Plate no. (1.2)	Plate no. (1.2) Swampy Area in the South of Sudan				
Plate no. (1.3)	Plate no. (1.3) Swampy Area in the South of Sudan				
Plate no. (1.4)	.4) Sandy Area in the West and North of Sudan				
Plate no. (2.1)	10mm graded crushed stone for use in concrete				
Plate no. (2.2)	20mm graded aggregate				

ABBREVIATIONS:

N.G.L.	Natural Ground Level			
CBR	California Bearing Ratio			
M.D.D.	Maximum dry Density			
O.M.C.	Optimum Moisture Content			
PI	Plasticity Index			
PL	Plastic Limits			
LL	Liquid Limit			
PM	Maximum Plasticity Modulus			
TFV	Ten Percent Fines Value			
U.C.S.	Unconfined Compressive Strength			
h.p.	Horsepower			
psi	Pound per square inch			
F	Fahrenheit			
mm	Millimeter			
dm	Decimeter			
km	Kilometer			
kg	Kilogram			
KN	Kilo Newton			
T1, T2,	Traffic Categories			
GBI,A	Granular roadbase, fresh, crushed rock			
GB1,B	Granular roadbase, crushed rock, gravel or boulders			
GB2,A	Granular roadbase, dry-bound Macadam			
GB2,B	Granular roadbase, water-bound Macadam			
GB3	Granular roadbase, natural coarsely graded granular material including processed and modified gravels			
GS				
GC	Granular subbase, natural gravel			
	Granular capping layer, gravel or gravel soil			
AASHTO	American Associated States of Highway and Transportation Official			
BS	British Standard Transport Passarah Laboratory, Overseas Pata note 21			
TRL	Transport Research Laboratory - Overseas Rote note 31			