

الآية

قال تعالى :

O

[وَالشَّمْسُ تَجْرِي لِمُسْتَقْرٍ لَّهَا ذَلِكَ تَقْدِيرٌ
الْعَزِيزُ الْعَلِيمُ * وَالْقَمَرُ قَدْرُنَاهُ
مَنَازِلَ حَتَّىٰ عَادَ كَالْعُرْجُونِ الْقَدِيمِ * لَا
الشَّمْسُ يَنْبَغِي لَهَا أَنْ تُذْرِكَ الْقَمَرَ وَلَا
اللَّيْلُ سَابِقُ النَّهَارِ وَكُلُّ فِي فَلَكٍ
يَسْبَحُونَ]

صدق الله العظيم
(سورة يس)

الآية :
40-38

Dedication

For every one who gives me the ability to find my self ,
encourages me to keep walking in this path and helps me in
solving problems .

To my mother , father , brothers and sisters .

To whom who gave me the straight light in my brain , my
teachers .

To those who strengthen me in a middle of depressions and
make me standing to a gain

Always . . . my friends and all care about me .

Acknowledgments

I would like to express my gratitude to many persons , who gave me indispensable help in writing this research . Ahead of them my supervisor Dr. Fakher Eldin Mohamed Suliman , who despite his crowded time table was too kind and patient to go over and comment on what I wrote and accomplishment and presentation of the research in it is present shape and contents .

My great indebtedness to my teachers in the department of electronics Engineering in Sudan University of science & Technology , and to my family who gave me great offers to overcome my research .

Also I'am indebted to Abdalazeez (Sudatel Telecommunication Company- Umharaz station) who supported me by technical assistant , and Bashar (Faisal Bank) who helped me in writing the program code .

Last but not least my gratitude extended to my friends in this college who kept encouraging me during my research .

Abstract

Satellite link design is nothing but estimation of power that is to be transmitted from an earth station towards the satellite or from a satellite towards the earth station, so that the study and calculation of power budget is reasonable. This link design calculation takes into account several factors such as look angel, absorption of signal , various kinds of noise sources in the satellite system , parameters of transmitting and receiving antennas of both the satellite and earth stations (e.g: effective area of antenna (A_0), Equivalent isotropic radiated power (EIRP)) and also uplink and downlink frequencies (atmospheric absorption varies with frequencies) .

This research helps in calculating and estimating the received power at both ends, and evaluate the [EIRP] and carrier to noise (C/N) ratio in each case.

The calculator was designed by using Visual Basic .Net to work with every windows environment.

The calculator contributes in calculating the power budget of satellite communication system easily and also gives some practical solutions for good link budget.

المستخلص

إن عملية ربط القمر الصناعي بالمحطة الأرضية ما هي الا تقدير القدرة التي يجب ارسالها من المحطة الأرضية الى القمر الصناعي (uplink power) أو من القمر الصناعي الى المحطة الأرضية (Down link power) ، لذلك تعتبر دراسة وحساب القدرة الوائلة الى كلا من القمر الصناعي والمحطة الأرضية على قدر كبير من الأهمية ، وعند حساب هذه القدرة نأخذ في الاعتبار عدة عوامل مؤثرة مثل زوايا النظر ، امتصاص الإشارة ، الأنواع المختلفة من التشويش في نظام القمر الصناعي ، بارامترات هوائي الإرسال والاستقبال لكل من المحطة الأرضية والقمر الصناعي (المساحة الفعالة للهوائي - A_0) الاستطاعة المشعة الأيزوتropic [EIRP] (أيضاً ترددات الإرسال والاستقبال) وذلك لأن امتصاص الإشارة في الفراغ يعتمد على قيمة التردد .

هذا البحث يساعد في حساب وتقدير القدرة الوائلة الى كلا الطرفين (المحطة الأرضية والقمر الصناعي) ويقوم بتحديد وتقدير نسبة قدرة الحامل [EIRP] الى الضوضاء (noise) أي (C/N) ratio .

تم تصميم البرنامج بلغة Visual Basic .Net للعمل مع جميع بثات ويندوز ، يساهم البرنامج في تسهيل حساب القدرة لوصلة الأقمار الصناعية ويعطي كذلك بعض الحلول العملية التي تعطي وصلة جيدة .

Table of contents

الآداب	I
Dedication	II
Acknowledgment	III
Abstract in English	IV
Abstract in Arabic	V
Table of Contents	VI
List of Figures	X
List of Tables	XII
List of Abbreviation	XIII
Chapter One : Introduction	1-3
1-1 Research Background	1
1-2 Research Problem Statement	2
1-3 Research Objectives	2
1-4 Research Methodology	2
1-5 Expected Result	3
1-6 Dissertation Outline	3
Chapter Two : Satellite Communication	4-13
2-1 Satellite Definition	4
2-2 The Important of Satellite	5
2-3 Satellite System Organizations	5
2-4 Kepler's Law and Orbits in Satellite	6
2-4-1 Kepler's First Law	6
2-4-2 Kepler's Second Law	7

2-4-3 Kepler's Third Law	7
2-5 Classifications of Satellite Orbit	8
2-6 The Geostationary Orbit	9
2-6-1 Advantages of Geostationary Orbit	10
2-6-2 Disadvantages of Geostationary Orbit	10
2-7 Polar Orbits	11
2-8 Inclined Orbits	12
2-9 Services Type In Satellite Communication	13
Chapter Three : Link Budget and Power Budget	14-30
3-1 The Satellite Link Budget	14
3-2 Understanding and Performance Satellite Link Budget	14
3-3 What Exactly is Link Budget	14
3-4 The Link Budget Equation	15
3-4-1 Antenna Gain	16
3-4-2 Equivalent Isotropic Radiated Power [EIRP]	16
3-4-3 Free Space Losses (FSL)	17
3-4-4 Received Power	17
3-4-5 Atmospheric Absorption Loss	18
3-4-6 Receiver Noise Power Density	19
3-4-7 Noise Power	19
3-4-8 Noise Temperature	20
3-4-9 Carrier to Noise Ratio	21
3-4-10 Gain/temperature (G/T)	22
3-4-11 Equivalent Input Noise Temperature	22

3-4-12 Noise Figure	22
3-5 Power Budget Calculations	23
3-5-1 Equivalent Isotropic Radiated Power [EIRP]	23
3-5-2 Carrier to Noise Ratio [C/N]	24
3-5-3 [C/N] Overall Percentage Calculation	25
3-6 The Power Flux Density	26
3-7 The Gain of Antenna	26
3-8 Directivity Gain	26
3-9 Transmission Losses	27
3-9-1 Free Space Transmission	27
3-9-2 Feeder Losses	28
3-10 General Notes about System Noise	29
Chapter Four : Calculator Design	31-42
4-1 Flow Chart and code steps	31
4-1-1 Introduction to Microsoft Visual Basic.Net	31
4-2 program calculations	31
4-2-1 Equivalent Isotropic Radiated Power [EIRP]	31
4-2-2 Carrier To Noise Ratio [C/N]	32
4-3 Calculator Flowchart	33
4-4 Code of Program	34
4-4-1 Code Steps	34
4-4-2 Graphical User Interface (GUI)	34
Chapter Five : Results And Discussion	43-49
5-1 Calculator Test	43
5-2 Results Comparison	47

5-3 General Result	47
5-4 Discussions	48
Chapter Six : Conclusion and Recommendation	50-51
6-1 Conclusion	50
6-2 Recommendations	50
6-3 The Future Work	50
References	52
Appendix technical users guides (Arabsat 30.5°E)	53

List of figures

Figure No	Title	Page
2-1	Uplink and downlink process	4
2-2	Kepler's first law	7
2-3	Kepler's second law	7
2-4	Satellite orbits (LEO, MEO, GEO)	9
2-5	Satellite in geostationary orbit	11
2-6	Polar orbit satellite	11
3-1	Relationship between frequency and atmospheric absorption	19
3-2	Equivalent noise temperature of an amplifier	20
3-3	Main parameters of link budget	25
3-4	Satellite system noise	29
4-1	Flow chart of program	33
4-2	Graphical user interface	34
4-3	Compute of [EIRP] and [C/N]	35
4-4	The main Window	35
4-5	The parameters of [EIRP]	36
4-6	The parameters of [C/N]	37
4-7	The help window	37
4-8	Overview window	38
4-9	How to make a good link	38
4-10	Window of Result evaluation	39
4-11	Solutions window	39

4-12	About calculator window	40
4-13	The main parameters to be calculated	40
4-14	Make good satellite link	41
4-15	Result evaluation window	41
4-16	Solutions menu	42
5-1	[EIRP] _{uplink} window	45
5-2	[EIRP] _{downlink} window	45
5-3	Station [C/N] result window	46
5-4	Satellite [C/N] result window	46

List of Tables

Table no	Title	Page
2-1	Frequency Bands available for satellite communication	12
2-2	Frequency band According to the rain fall effect	12
5-1	Um-haraz station $[EIRP]_{uplink}$ parameters	44
5-2	Um-haraz station $[EIRP]_{downlink}$ parameters	44
5-3	Um-haraz station $[C/N]$ parameters	45
5-4	Arabsat satellite $[C/N]$ parameters	45
5-5	Comparison between practical and calculator values	48

List of abbreviation

AA	Atmospheric Absorption Loss
AML	Antenna Misalignment Loss
ARABSAT	Arab Satellite Communication Organization
BSS	Broadcasting Satellite Service
CNSA	China National Administration
DBS	Direct Broadcast Satellite
EIRP	Equivalent Isotropic radiated power
ESA	European space agency
FEC	Forward Error Correction
FL	Feeder Loss
FSL	Free Space Loss
FSS	Fixed Satellite Service
GEO	Geostationary earth Orbit
GHz	Giga hertz
GPS	Global Positioning Satellite
G/T	Gain / Temperature
GUI	Graphical User Interface
HPA	High Power Amplifier
INTELSAT	International Telecommunication Satellite
ITSO	International telecommunications satellite organization
LEO	Low Earth Orbit
LNA	Low Noise Amplifier
MEO	Medium Earth Orbit
MHZ	Mega Hertz
MSS	Mobile Satellite Service
NF	Noise Figure
OL	Other Losses

RFL	Rain Fall Loss
SSPA	Slide Single Power Amplifier
TWTA	Traveling Wave tube Amplifier