

Sudan University of science and
technology

College of graduate studies

Investigation and optimization of voltage
deterioration in Khartoum ring

التحق من تدهور الفولتية

*A Thesis Submitted in partial Fulfillment of the Requirements for the Degree of
M.Sc. in Electrical Engineering (power and machines)*

Presented by:-

Mohammed hussien Hassan musa

Supervisor:-

A. KHAMEES ARBEEESH

October 2010

فَالَّهُ تَعَالَى

١٣٣ إِنَّ فِي خَلْقِ السَّمَاوَاتِ

وَالْأَرْضِ وَآخْتِلَافِ الْيَلِ وَالنَّهَارِ وَالْفُلْكِ الَّتِي تَجْرِي فِي
الْبَحْرِ بِمَا يَنْفَعُ النَّاسَ وَمَا أَنْزَلَ اللَّهُ مِنَ السَّمَاءِ مِنْ مَاءٍ فَأَحْيَا
بِهِ الْأَرْضَ بَعْدَ مَوْتِهَا وَبَثَّ فِيهَا مِنْ كُلِّ دَآبَةٍ وَتَصْرِيفِ الرِّيحِ
وَالسَّحَابِ الْمُسَخَّرِ بَيْنَ السَّمَاءِ وَالْأَرْضِ لَا يَكُونُ لِقَوْمٍ
يَعْقِلُونَ ١٣٤

صدق الله العظيم
سورة البقرة

DEDICATION

To my father

For his supplication of succession

To my sister

She is always engaging her heart with me;

To my wife

She is always my propellant for successful.

And To all my colleagues

ACKNOWLEDGMENT

In the name of Allah, Most Gracious, and Most Merciful

Praise is to Almighty Allah (Subhanahu Wa Ta'ala) who gave me the courage and patience to carry out this work. Peace and blessing of Allah be upon his last prophet Mohammed (Sallulaho-Alaihe Wassalam) and all his companions (Sahaba), (Razi-Allaho-Anhum) who devoted their lives towards the prosperity and spread of Islam.

My deep appreciation and heart full gratitude goes to my supervisor. AUST KHAMEES ARBEEESH for his kindness, constant endeavor, guidance and the numerous moments of attention he devoted throughout this work.

I sincerely appreciate the efforts that have been put by all the people above which truly cannot be describe by words. I would like to thank all the staff of Electrical Engineering Department of Sudan University of science and technology for their help. As well as people who are work in projects and planning department and load dispatch center, I would sincerely appreciate their comments, criticisms, corrections and suggestions for improving the project.

Finally, my sincere thankfulness goes to my family for their prayers and encouragement that always helped me to take the right step in life.

Abstract

The objective of this thesis is to investigate and study problems and voltage congestion facing the engineers involved into the operation of a network of the National Authority for electricity in Khartoum region. The thesis looked into the effects that advanced control techniques have on electric compensation of power generation and transmission system.

The thesis explained first the power system components of National Electricity Corporation such as the generation quantity and types, substation, transmission line and voltage control procedures which are used. It then proceeded to give a brief introduction to the location of Khartoum ring and purpose of its establishment.

A load flow studies is made for the network of the National electricity corporation by using actual value of networks (busbars voltage, loads at peak load, line parameter, capacitors and reactors rates and types, rates of generation and its MVAr limitations).

A load flow program (HADI SADAT load flow program) is applied for improving of voltage deterioration in Khartoum ring in two cases, first one is operating the costly units in minimum load and the second case is totally shutdown of costly units. Some results are obtained appear that problem which is expected, and some solutions are discussed for this problem.

The thesis studied the dependence on Marawi dam for generating electricity and possibility of shutting down the costly unit (thermal power station in KHN and GARI complex), the contribution of costly unit in reactive power compensation in Khartoum region and possibility of constructing compensation units for reactive power management.

الهدف: هذا المشروع هو دراسة المشاكل و إختنات الفولتية التي تواجه المهندسين الذين يعملون في تشغيل شبكة الهيئة القومية للكهرباء حول منطقة الخرطوم. وكذلك البحث يهدف نظام التعويض للقدرة الكهربائية في نظام إرسال وتوليد الطاقة.

هذا البحث تم شرح مكونات نظام القدرة للهيئة القومية للكهرباء بدءاً بكمية الطاقة المولدة وأنواع محطات التوليد المستخدمة ثم المحطات التحويلية و الخطوط الناقلة للطاقة و النظم المستخدمة في التحكم في الجهد المرسل. بعد ذلك تناول البحث الخط الدائري الناقل للكهرباء حول منطقة الخرطوم من حيث الموقع . كذلك تم عمل دراسة لإنسياب الحمولة في شبكة الهيئة القومية

للكهرباء و ذلك بأخذ القيم الحقيقة لبرامترات شبكة الهيئة القومية للكهرباء(جهود الباسبارات وأنواعها،
، سعات المكثفات و المحاثات وساعات التوليد و
أنواعه وكذلك محددات مساهمة كل محطة توليد من القدرة الرد فعلية).

()

List of Abbreviations

Bus No	Abbreviation	Meaning of abbreviation
1	RUS	Ruseires power station
2	MUG	Al mujahdeen substation
3	OMD	Omdurman substation
4	MHD	Al mahidia substation
5	IZG	Al zirgab substation
6	IBAB	Id Babikir Substation
7	KHN	Khartoum North power station
8	KUKU	Kuku Substaion
9	KLX	Kilo X substation
10	LOM	Local Market substation
11	SHG	Al Shajara Substation
12	SENJ220	Sennar junction substation 220 side
13	MAR220	Marinjan substation side 220
14	GIAD220	Giad substation side 220
15	JAS220	Jable Aowlia substation side 220
16	MRK220	Markhiat substation side 220
17	MHD220	Al Mahadia substation side 220
18	KLX	Kilo X substation side 220
19	KBA220	Al Kabashi substation side 220
20	IBAB	Id Babikir Substation side 220
21	GAR	Gari complex power station
22	FRZ	Free Zone substation side 220

23	MAR110	Marinjan substation side 110
24	HAS	Al Hasahisa substation
25	GAD110	Giad substation 110 side
26	BAG	Al Bagear substation
27	HAG	Hag Abdalla substation
28	SENJ110	Sinnar Junction 110 side
29	SENP	Sinnar hydro power station
30	JAS110	Jable Aowlia substation 110 side
31	JAP	Jable Aowlia hydro power station
32	MHDTRA1	Mahidia transformer 1
33	IBABTRA1	Id babikir substation transformer 1
34	KLXTRA1	Kilo X substation transformer 1
35	IBABTRA2	Id babikir substation transformer 2
36	MARTRA1	Marijan substation transformer 1
37	SENJTRA1	Sinnar junction substation transformer 1
38	JABTRA1	Jabl aowlia substation transformer 1
39	MWP500	Marawi hydro power station
40	MRK500	Markhiat substation side 500Kv
41	MWSS220	Marawi substation side 220
42	KBA500	Kabashi substation transformer side 500Kv
43	KLXTRA2	Kilo X substation transformer 2
44	KLXTRA3	Kilo X substation transformer 3
45	MARTRA2	Marijan substation transformer 2
46	SENJTRA2	Sinnar Junction transformer 2
47	JASTRA2	Jabl Aowlia substation transformer 2

48	KBATRA1	Kabashi substation transformer 1
49	MRKTRA1	Makhiat substation transformer 1
50	MHDTRA2	Mahidia substation transformer 2
51	KBATRA2	Kabashi substation transformer 2
52	MRKTRA2	Markhiat substation transformer 2
53	JIADTRA1	Jiad substation transformer1

The table of contents

NO	contents	Page
	الآية	I
	DEDICATION	II
	ACKNOWLEDGEMENT	III
	ABSTRACT	IV
	المقدمة	V
	ABBREVIATION LIST	VI
	TABLE OF CONTENTS	IX
CHAPTER ONE		
Power system network components		
1.1	Introduction	1
1.2	NEC power system components	2
1.2.1	Voltage control and reactive power management in NEC grid	4
1.3	Khartoum ring	5
CHAPTER TWO		
Voltage control and reactive power management		
2.1	Introduction	8
2.1.1	Load Compensation	13
2.1.2	System compensation	13
2.2	Voltage control devices	14
2.2.1	Generation	15
2.2.2	Synchronous Condensers	17
2.2.3	Capacitors And Inductors	18
2.2.4	FACT technology	18

2.2.4.1	Static Shunt Compensators	19
2.2.4.1.1	Static Var Compensators (SVCs)	19
2.2.4.1.2	Static Synchronous Compensators (STATCOMs)	20
2.2.4.2	Static Series Compensators	21
2.2.5	Distributed Generation	21
2.2.6	Transformers	22
2.2.7	The difference between the equipment types	24

CHAPTER THREE
Static Synchronous Compensator (STATCOM)

3.1	Introduction	26
3.1.1	Main benefits of FACT techniques	27
3.2	Static Synchronous Compensator (STATCOM)	28
3.2.1	Principle of Operation of STATCOM	30
3.2.2	A Simplified Analysis of a Three Phase Six Pulse STATCOM	35
3.2.2.1	AC Current Waveform	39
3.2.2.2	DC Capacitor Current and Voltage	39
3.2.3	Analysis of a Six Pulse VSC Using Switching Functions	43
3.2.4	Steady State Model	45
3.2.5	STATCOM control	49
3.2.6	Harmonic effect in the STATCOM	54
3.2.7	Comparison between STATCOM and SVCs	54
3.2.8	Application of STATCOM	55

CHAPTER FOUR
Voltage Deterioration In Khartoum Ring Investigation And Discussion

4.1	Introduction	57
4.2	Voltage Deterioration Investigation In AL Khartoum Ring	57

4.3	Discussion	59
4.3.1	Building a large substation for distribution inside the domestic area	59
4.3.2	Breaking Khartoum ring 110kV into isolated areas and using at distribution level	59
4.3.3	Using compensating devices	60
CHAPTER FIVE Conclusions And Recommendations		
5.1	Conclusions	66
5.2	Recommendations	67
References		68
Appendixes		69