

۱۰۰۰۰

۲﴿ ﴿۰۰۰۰۰۰ ۰۰۰ ﴾۱﴿ ﴿۰۰۰۰۰۰﴾

۴﴿ ﴿۰۰۰۰۰۰ ۰۰۰ ﴾۳﴿ ﴿۰۰۰۰۰۰ ۰۰۰﴾

(۰۰۰۰۰۰ ۰۰۰)

۰۰۰۰۰۰ ۰۰۰ ۰۰۰

DEDICATION

Dedicated to
My Father Elfadel Haroon Ahamed

A CKNOWLEDGEMENT

O my lord! So order that I may be grateful for thy favors, which thou has bestowed on me and on my parents, and that I may work the righteousness that will please thee.

I would like to thank all those who supported me, my mother, my father, my brothers, and my sisters. Special thanks are due to my Supervisor/

Head of Electrical Engineering Department, Sudan University: Dr. Martino Ojwok Ajang, for his supporting me. I greatly express my thanks to all persons whom supported me in preparing this research.

ABSTRACT

Fuzzy control systems have been successfully applied to a wide variety of practical problems. It has been shown that these controllers may perform better than conventional controllers, especially when applied to processes difficult to model, with nonlinearities, and when there is heuristic knowledge from human operators. Direct Current (DC) motor has been used because it is one of the most common actuator used in control system.

The main objective of this research is to control the speed of DC motor using fuzzy logic controller. Firstly, speed has been controlled with Proportional –Integral –Derivative (PID) controller and simulated the model by using MATLAB/SIMULINK.

In this research the design and implementation of the fuzzy logic speed controller for the DC motor have been accomplished by using Fuzzy Logic Toolbox (FLT) in MATLAB/SIMULINK. Simulation results have been presented.

أنظمة التحكم الغامض طبقت بنجاح على مجموعة واسعة من الميكانيك العمليّة. ولقد ثبت أنّ اداء هذه المتحكمات أفضّل من اداء المتحكمات التقليدية، وخصوصاً عندما تطبق على عمليات ذات طبيعة لا خطية. مع صعوبة ايجاد النموذج لها، وعندما يكون هناك حاجة لمعرفة مجريات الأمور من العاملين من البشر. وقد استخدم محرك التيار المستمر لأنّه واحد من أكثر المشغلات شيوعاً في أنظمة التحكم. والهدف الرئيسي من هذا البحث هو التحكم في سرعة محرك المستمر باستخدام متحكم منطق غامض. اولاً، تم التحكم بالسرعة باستخدام المتحكم التناصي- التكميلي - التفاضلي ومحاكاة النموذج باستخدام MATLAB/SIMULINK . في هذا البحث تم تصميم وتنفيذ وحدة المتحكم المنطق الغامض للتحكم في سرعة محرك التيار المستمر باستخدام أدوات المنطق الغموضي (FLT) الموجودة في MATLAB/SIMULINK . ونتائج المحاكاة تم عرضها.

TABLE OF CONTENTS	
	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	x
LIST OF TABLES	xii
CHAPTER ONE: INTRODUCTION	
1.1 Introduction	1
1.2 Problem Statement	2
1.3 Objectives and Methodologies	2
1.4 Motivation	3
1.5 Thesis Structure	3
CHAPTER TWO: CONTROL OF DC MOTOR	
2.1 Basic DC Motors Equation	5
2.2 Classification of DC Motors	7
2.3 Starter for DC Motors	7
2.4 Necessary for Starter	7
2.5 Speed Control of DC Motors	8
2.6 Methods of Speed Control	9

CHAPTER THREE: MATHEMATICAL MODEL OF DC MOTOR	
3.1 Introduction	10
3.2 Types of Mathematical Models	11
3.3 Model of the DC Motor	12
3.3.1 System equations	13
3.3.2 State equations	13
3.4 MATLAB Representation	15
3.4.1 Motivation	15
3.4.2 S-function m-file	15
3.4.3 Insert the S-Function block into the simulink	19
3.4.4 Add other simulink blocks and simulate	20
3.5 Design of the PID Controller	21
3.5.1 The three-term controller	22
3.5.2 The characteristics of P, I, and D controllers	24
3.5.3 PID tuning	24
3.5.3.1 Manual tuning	25
3.5.3.2 Ziegler–Nichols method	25
3.5.3.3 PID tuning software	26
3.6 Simulation Results	26
CHAPTER FOUR: FUZZY CONTROLLER DESIGN	
4.1 Fuzzy Controller Design	29
4.2 Fuzzy Sets	30
4.3 Membership Function	31

4.4 Linguistic Variables	33
4.5 Fuzzy Logic Operations	34
4.6 Fuzzy Implication	35
4.7 Fuzzy Controller Structure	36
4.7.1 Fuzzifier	37
4.7.2 Knowledge base	38
4.7.3 Fuzzy rules processing	38
4.7.3.1 Mamdani-type fuzzy processing	39
4.7.3.2 Fuzzy Rule Table	39
4.7.4 Choice of shape, number, and distribution of fuzzy sets	40
4.7.5 Fuzzy inference	43
4.7.6 Defuzzification	43
4.8 Implementation of the Fuzzy Logic System	43
4.9 Fuzzy Controllers as MATLAB Superblocks	44
4.10 Features of Fuzzy Logic Toolbox	44
4.10.1 FIS editor	45
4.10.2 Membership function editor	46
4.10.3 Rule editor	47
4.10.4 Rule viewer	48
4.10.5 Defuzzification methods in FLT	49
4.10.6 FLT commands	49

CHAPTER FIVE: FUZZY LOGIC MATLAB IMPLEMENTATION FOR DC MOTOR SPEED CONTROL	
5.1 Fuzzy Controller Design For DC Motor	50
5.2 MATLAB Representation	52
5.3 Simulation Results and Discussion	57
CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS	
6.1 Conclusions	60
6.2 Recommendations	61
References	62

LIST OF FIGURES	
Figure 2.1: The DC machine	6
Figure 3.1: The structure of a DC motor	12
Figure 3.2: S-function m-file	16
Figure 3.3: Simulink library browser	19
Figure 3.4: S-function block parameters	20
Figure 3.5: Simulink model of the DC motor	20
Figure 3.6: S-function block DC motor parameters	21
Figure 3.7: Simulink model of the DC motor speed control using PID controller	22
Figure 3.8: PID controller	23
Figure 3.9: Step response of the DC motor without any controller	27
Figure 3.10: Speed response of the DC motor with PID controller	28
Figure 4.1: The structure of a fuzzy logic controller	30
Figure 4.2: Typical shapes of membership functions	31
Figure 4.3: Fuzzification and its position in fuzzy system	38
Figure 4.4: FIS editor	45
Figure 4.5: Membership function editor.	46
Figure 4.6: Forms of fuzzy membership functions in FLT	47
Figure 4.7: Rule editor	47
Figure 4.8: Rule viewer	48

Figure 5.1: Block diagram of fuzzy logic for armature voltage change	50
Figure 5.2: Design of fuzzy controller	52
Figure 5.3: Prototype membership functions for DC motor control	53
Figure 5.4: Control surface	55
Figure 5.5: Simulink model of the DC motor speed control using FLC	56
Figure 5.6: Simulated output of DC motor speed control with FLC	57
Figure 5.7: DC motor speed control response	58

LIST OF TABLES	
Table 3.1: DC motor parameters	14
Table 3.2: Types of flags	17
Table 3.3: types of Sys	18
Table 3.4: PID controller characteristic parameters	24
Table 3.5: Ziegler–Nichols method	25
Table 4.1: A fuzzy rule base displayed as a fuzzy rule table	40
Table 4.2: Some commonly used fuzzy controller inputs	41
Table 4.3: Several FLT commands	49
Table 5.1: Fuzzy linguistic	52
Table 5.2: Fuzzy associative memory table for DC motor control	54
Table 5.3: performance comparison between FLC and PID controller	59