00000 000:

﴿ قَالُواْ سُبْحَانَكَ لا عِلْمَ لَنَا إِلاَّ مَا عَلَّمْنَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ ﴾

البقرة٣٢

وعن أبي هريرة رضي الله عنه عن النبي عليه وسلم الله عليه وسلم الله عليه من سلك طريقا يلتمس فيه علما سهل...)

(...الله له به طريقا إلى الجنة رواه مسلم

DEDICATION

To who like the learning

To all our friends and all who made this project come true

To my dear parents and brothers

ACKNOWLEDGEMENT

I wish to express my true thanks, first of all, to ALLAH (SWT) who helped supported, and guided me by every mean during the stages of this work.

I am deeply obliged to the many people who generously assisted in the preparation of this thesis. My special appreciation is to Dr. Ashraf Gasim Elsid Abdallah, my Supervisor for his guidance and continues encouragement, thanks for all the engineers of the mobile Networks Operators and all teachers in the Electronic Department for all the efforts they put to us to make what we are now.

•

ABSTRACT

In this thesis an adaptive handover algorithm was developed which attempted to minimize probability of handover occurrence and decreased the number of handovers in the cellular system in the mobile network and in turn it reduce the load on the switching center based on the traffic in the neighboring cells and considering the quality of call.

The extracted results compared with latest traditional handover algorithm and these results showed noticeable improvement in reduce the probability of handover occurrence and in turn reduce the number of handover based on the traffic and consider to quality of call in the same time.

This showed the importance of this algorithm and its implementation will get the wanted results.

TABLE OF CONTENTS

الآية	•••••
i	
DEDICATION	ii
ACKNOWLEDGEMENT	iii
تجريد	i
ABSTRACT	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ACRONYMS	xi
CHAPTER 1: INTRODUCTION	1
1.1 Introduction	2
1.2 Problem Statement	3
1.3 Objectives	3
1.4 Approach	4
1.5 Expected Results	4
1.6 Thesis structure	4
CHAPTER 2: MOBILE COMMUNICATIO	DN 5
2.1 Introduction	6
2.2 The channel assignment	11
2.3 The handover process	11
2.3.1 Introduction	11
2.3.2 Roaming	16
2.4 The performance limitations	17
2.5 The size of cell	19
2.6 The mobile traffic	21
2.7 The Erlang B model	24
2.7.1 Limitations of the Erlang B	26
2.8 The Erlang C model	28

2.9 Alternative Models for Mobile Network Traffic	30
2.10 Measurement the quality level	32
2.9.1 Error Rate	32
2.9.2 Bet Error Rate	32
CHAPTER 3: PROPOSED HANDOVER ALGORITHM	33
3.1 Introduction	34
3.2 Handover scenario.	34
3.2.1Synchronized versus Nonsynchronized handover	34
3.2.2 The types of handover	35
3.2.2.1 Intra-BTS handover	35
3.2.2.2 Intra-BSC handover	36
3.2.2.3 Intra-MSC handover	36
3.2.2.4 Inter-MSC handover	37
3.3 The handover Decision Algorithm	39
3.3.1 The previous handover algorithms	39
3.3.2 Two classes of handover decision algorithms	40
3.3.2.1 Traditional of handover decision algorithms	41
3.4.2.2 Pattern recognition of handover decision algorithms	43
3.4 Distance-based dynamic hysteresis value algorithm	45
3.5 The proposed handover algorithm	50
CHAPTER 4: THE SIMULATION	55
4.1 Introduction.	56
4.2 Physical model	56
4.3 Mathematical model	57
4.4 Simulation model	57
4.5 Simulation flow chart	59
4.6 Description of algorithm	60
4.7 Simulation code	61
CHAPTED 5. THE DESIII TS & DISCUSSIONS	65

5.1	The generated random variable	66
5.2 The results		66
CHA	PTER 6: CONCLUSION & RECOMMENDATION	81
6.1	Conclusion	82
6.2	Recommendations	83
REFE	ERENCES	84

LIST OF TABLES

Table No. Title	
	no
4.1 The simulation parameters.	58
5.1 case (1) the traffic high for all cells and the distance-	67
hysteresis small	
5.2 case (2) the traffic low for serving cell but the call quality	68
low and the distance-hysteresis small	
5.3 case (3) the traffic low for serving cell and the call	70
quality high and the distance-hysteresis small	
5.4 case (4) the traffic high for all cells and the distance-	71
hysteresis medium	
5.5 case (5) the traffic low for serving cell but the call quality	73
low and the distance-hysteresis medium	
5.6 case (6) the traffic low for serving cell and the call quality	74
high and the distance-hysteresis medium	
5.7 case (7) the traffic high for all cells and the distance-	76
hysteresis large	
5.8 case (8) the traffic low for serving cell but the call quality	78
low and the distance-hysteresis large	
5.9 case (9) the traffic low for serving cell and the call quality	89
high and the distance-hysteresis large	

LIST OF FIGURES

Figure No. Title	
2.2 Frequency Reuse	8
2.3 handover process	12
2.4 handover occurs when user moves from one cell	10
to another	12
2.5 handover requests are queued while users move from	13
point (a) to point (b).	13
2.6 The four different cases of handover	14
2.7 handover or handoff between two MSCs	15
3.1 Intra-BTS Handover	35
3.2 Intra-BSC Handover	36
3.3 Intra-MSC Handover	37
3.4 Inter-MSC Handover and Subsequent Handover	
3.4 Inter-MSC Handover and Subsequent Handover Two classes of handover algorithms 3.5 41	
3.6 traditional handover algorithms (threshold)	42
3.7 traditional handover algorithms	43
3.8 handover decision algorithm using pattern	4.4
Recognition	44
3.9 handover probability and distance	48
3.10 an umbrella cell	50
3.11 flow chart of the proposed algorithm	53
3.12 Example for BSC area	54
4.1 Cluster with 7 cells	56
5.1 case (1) the traffic high for all cells and the distance-	67
hysteresis small	67
5.2 case (2) the traffic low for serving cell but the call	60
quality low and the distance-hysteresis small	69
5.3 case (3) the traffic low for serving cell and the call	
quality high and the distance-hysteresis small	70
5.4 case (4) the traffic high for all cells and the distance-	_
hysteresis medium	72
5.5 case (5) the traffic low for serving cell but the call	73

	quality low and the distance-hysteresis medium	
5.6	case (6) the traffic high for serving cell and the call	75
	quality high and the distance-hysteresis medium	
5.7	case (7) the traffic low for all cells and the distance-	77
	hysteresis large	
5.8	case (8) the traffic high for serving cell but the call	78
	quality low and the distance-hysteresis large	
5.9	case (9) the traffic low for serving cell and the call	80
	quality high and the distance-hysteresis large	

LIST OF ACRONYMS

Symbol	Acronym
1G	First Generation
2G	Second Generation
3G	Third Generation
4G	Fourth Generation
AM	Amplitude Modulation
AMPS	Advanced Mobile Phone Service
AP	Access Point
ASS	Adaptive Antenna System
ATM	.Asynchronous Transfer Mode
BS	Base Station.
BSC	Base Station Controller
BTS	Base Transceiver Station
CCS	Control Channel System
CDF	Cumulative Distribution Functions
CDMA	Code Division Multiple Access
C/I	Carrier to Interference Ratio
CRC	Cyclic Redundancy Checking
DCA	Dynamic Channel Assignment
ETSI	European Telecommunications Standards Institute
FCA	Fixed Channel Assignment
FDD	Frequency Division Duplexing
FDM	Frequency Division Multiplexing
FDMA	Frequency Division Multiple Access
FM	Frequency Modulation
FRF	Frequency Re-use Factor
GSM	Global System for Mobile
НО	Handover or Hand off
ISM	Industrial-Scientific-Medical
ISPs	Internet Service Providers
LAN	Local Area Network
LLC	Logical Link Control
LOS	Line Of Sight
MAC	Media Access Control
MAN	Metropolitan Area Network
MBWA	Mobile Broadband Wireless Access
MSC	Mobile switching center
MTSO	Mobile Telephone Switching Office
NSS	Network and switching system
OFDMA	Orthogonal Frequency Division Multiple Access

OSS	Operation Subsystem
P	Probability
PCM	Pulse Code Modulation
PCS	Personal Communication System
PHY	Physical Layer
PLMN	Public Land Mobile Network
PoB	Probability of Blocking
PSTN	Public Switched Telephone Network
QoS/GoS	Quality of Service(or Grade of Service)
RF	Radio Frequency
RSS	Radio Subsystem
SACCH	Slow Associated Control Channel
SDCCH	Standalone Dedicated Control Channel
S/I	Signal to Interference Ratio
SME	Small to Medium Enterprise
SMSs	Short Message Services
SOHYP	Sum of Hyper exponential
SS	Subscriber Station
TDD	Time Division Duplexing
TDM	Time Division Multiplexing
TDMA	Time Division Multiple Access
WCDMA	Wideband Code Division Multiple Access