## SUDAN UNIVERSITY OF SCIENCE & TECHNOLIGY COLLEGE OF GRADUATE STUDIES DEPARTMENT OF MECHANICAL ENGINEERING



THE EFFECT OF AMBIENT TEMPERATURE UPON GARRI POWER PLANT
COMBINED CYCLE

تأثير درجة حرارة الجوعلى محطة كهرباء قري ذات الدورة المزدوجة SUBMITTED BY REASHEARER:
NASSIR ELZUBEAR EBDEL LATEF

SUPERVISED BY:
Dr. HASSAN EBDEL LATEF

THIS THESIS IS SUBMITTED TO THE SUDAN UNIVERSITY OF SCIENCE &TECHNOLIGY IN FULFILMENT OF THE DEGREE OF M.Sc.IN

MECHANICAL ENGINEERING

ILII V 2000

# The increase in power demands was require additional power plants in the Sudan or any other source of power supply to meet the demand .





The main problem was that the units out put were always less than the installed design capacity for all units of this group. This drop of power output is referred to Khartoum climate. This is true if compared to the output at ISO condition(15°C, 14.7 psia at sea level)



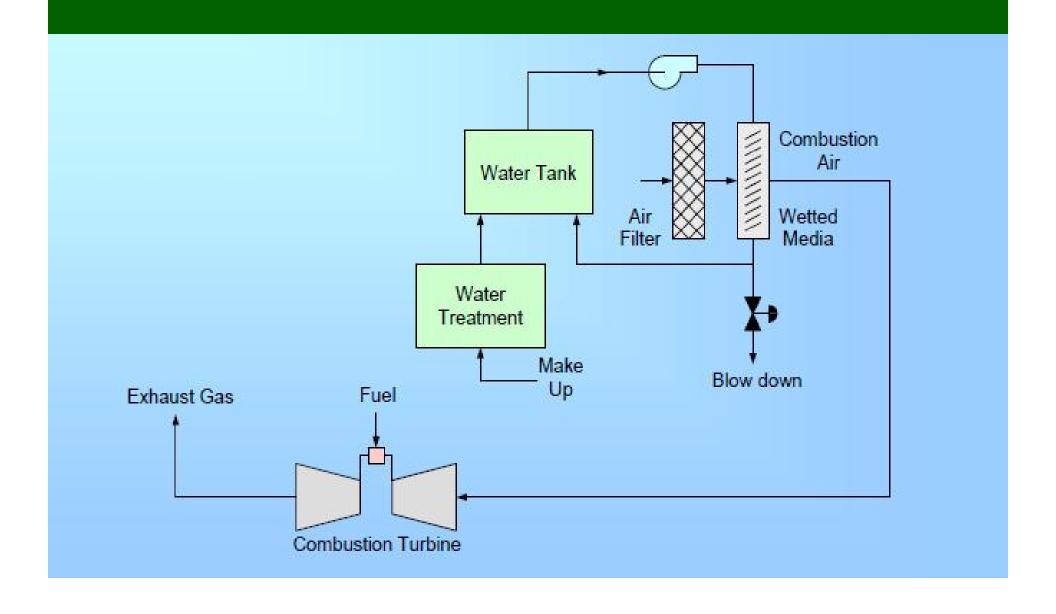
The gas turbines are generally used for large scale power generation. The basic gas turbine cycle has low thermal efficiency, so it is important to look for improved gas turbine based cycles. The following methods are helpful in Increasing the performance

- 1- Inlet Air Cooling
- 2-Steam injected gas turbine cycle (STIG).
- 3- Evaporative Regenerative Gas Turbine Cycle (ERGT)
- 4- Humid Air Turbine (HAT)

 The main purpose of this thesis is to investigate, analyze and calculate the effect of inlet air cooling. This method applies efficiently in garii power plant gas turbine

## Gas Turbine Inlet Air Cooling Available Technologies

- 1. Evaporative cooler
- 2. Fogging system
- 3. Mechanical refrigeration system (direct type)
- 4. Mechanical refrigeration system (indirect type)
- 5. Mechanical refrigeration with ice storage
- 6. Mechanical refrigeration system with chilled water storage
- 7. Single stage Lithium Bromide Absorption chiller
- 8. Two stage Lithium Bromide Absorption chiller


#### Evaporative cooling system Advantage

- evaporative inlet-cooling is economical and simple (Quick delivery and installation time)
- Lowest capital cost & Lowest O&M cost
- Uncomplicated system
- Can operate on raw or treated water(no need demine water)
- suitable for only dry hot climates
- reducing the NOx emissions from the gas turbine (Operates as an air washer and cleans the inlet air.

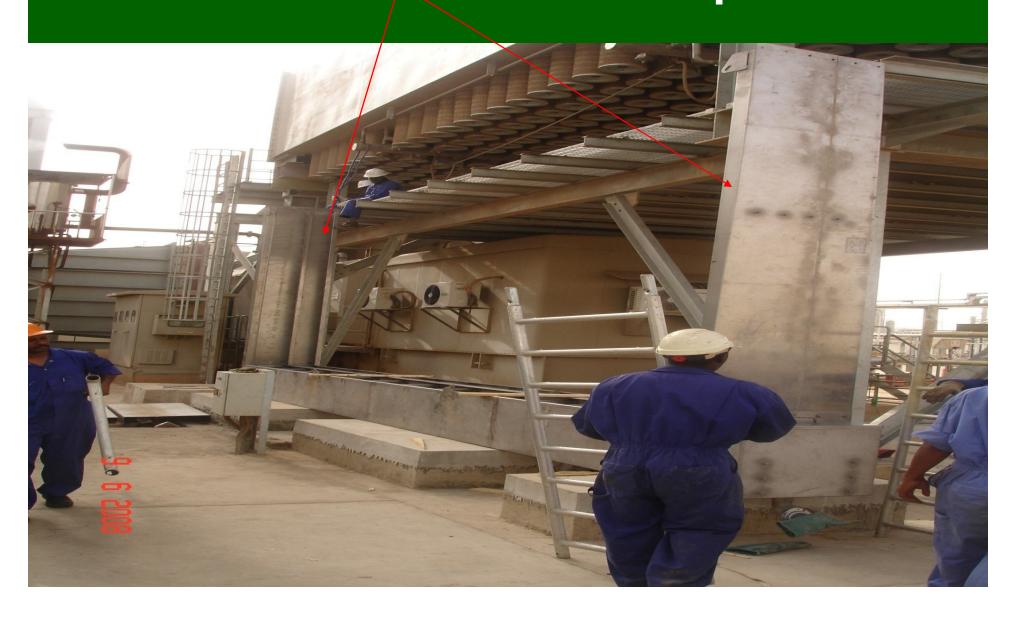
# Evaporative cooling system Disadvantage

- Limitation on capacity improvement
- Highly influenced by the site wet bulb

### Schematic of Evaporative Air Cooling



### Some photo show erection stapes


after remove cover plate, and check ref.point



## Install main water tank



## Install lower side plate.



### Install intermediate tank



#### Install upper side plate. And cooler support



## Carry and Install upper tank.



## Finish cooler frame



#### Install The cedlek and drop separator

12inch



# install the cooler for garii power station gas turbine NO 1 - 4



# Erection the evaporative cooler for gas turbine 5-7 garii power plant





Erection the evaporative cooler for gas turbine 5-7 garii power plant

# Erection the evaporative cooler for gas turbine 5-7 garii power plant





# REMOVE TRANSITION PEACE FROM GAS TURBINE 5-7 TO INSTALL THE COOLER



REMOVE TRANSITION PEACE FROM GAS TURBINE 5-7 TO INSTALL THE COOLER

### Install the cooler to the gas turbine



### Install the cooler to the gas turbine

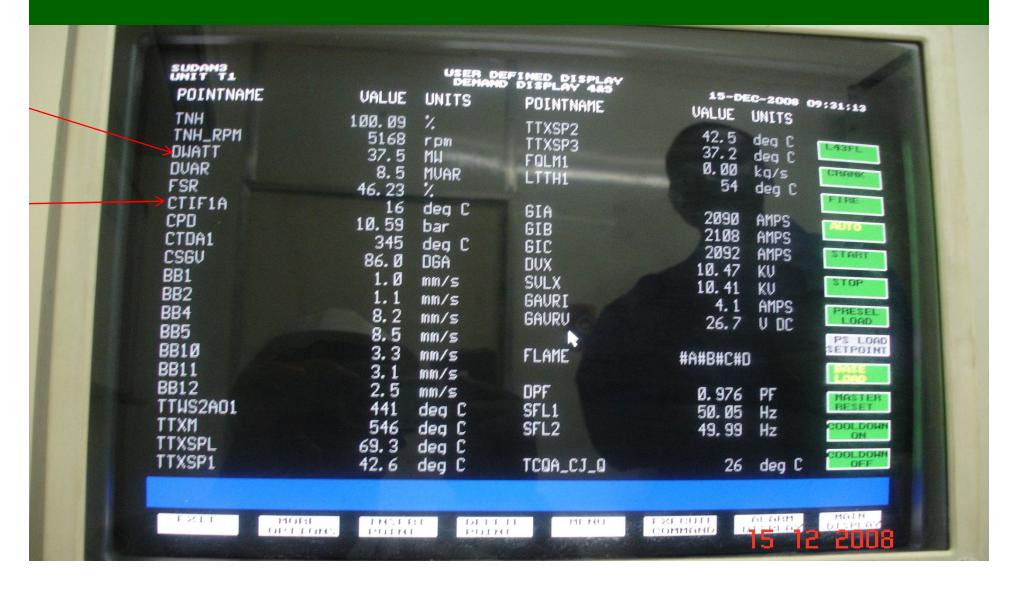




Remove weather hood from GT 8

# install the cooler for garii power station gas turbine NO 8




## Evaporative cooler control skid



# The dust removed from the inlet air after the system running for 6 months



# The power for unit 1 increase 5 MW after install the evaporative cooling system



# The power generation enhances in garriplant

• 1\ the gas turbine :- 5mwX8units =40MW

• 2\the steam turbine :- 0,5X4units=2 MW

The total MW enhance

= 42MW

### Evaporative cooling system cost

The evaporative cooling system which applied in garri combined power plant costs 3763427.65 SDG for material and engineering. 450000 SDG installations cost and allowance for reaction and commissioning team.

## PAY PACK PERIOD

- The calculation of the pay back period based on :-
- The system is working 9 months because from 15/10 up to 15/01 yearly the demand for power supply is very low and the system is also working 12hours per day.
- The saving of 42MW=42X12X9X30X1000X0.2=27216000 SDG
- The water consumption for 8 cooler=19X8X12X9X30X0,08= 39398,4 SDG

- The power consumption
   =3.5X8X12X9X30X0,2=18144 SDG
- The total fuel saving = 2.88 X 12X7X30X1200= 8709120 SDG
- The pay pack period :-

```
\frac{\left[3763427,65+39398,4+18144+450000\right]}{\left[27216000+8709120\right]} = 0,119 year (1.4 months)
```

• Where:-

0.2=the price of Kwhr

0.08 = the price of water (in ton)

1200= the price of fuel LDO (in ton)

19m3/hr=water consumption per gas turbine

### RECOMMENDATIONS

- any new installation of gas turbines in Khartoum area should be With wetted media evaporative cooling system.
- using the inlet air chiller for cooling system in garri power plant Should be investigate due to availability of steam from (HRSG)
- installed the inlet air cooling system for the existing gas turbine Should be looked into. Due to the hot dry climates almost nine months.
- more studies should be done to study the effect of cooling Systems in HRSG