

**Sudan University of Science and Technology
College of Graduate Studies and Scientific
Research**

**ASSESSMENT OF RADIATION EFFECTS IN BLOOD
COMPONENTS FROM ^{99m}TC FOR BONE
SCINTIGRAPHY**

تقويم الاثر الاشعاعى على مكونات الدم من التكتنيليزيوم- ۹۹ لفحص العظام با لطب النووي

**A research Submitted for Partial fulfillment for the Requirement of
M. Sc. Degree in Nuclear Medicine Technology**

By:
Amira Omer Hamed Ali Nasir
B. Sc. in Nuclear Medicine

Supervisor:
Dr. Mohammed Ahmed Ali Omer

June 2011

DEDICATION
THIS WORK DEDICATES

To My Father.
To My Mother.
To My Husband.
To Dr. Mohammed Ahmad Ali
To Dr. Mohmad Elfadil Mohamed
To My Sisters Salma and Heba.
To My Brother Mohmad.
To The University Of Sudan.
To The Department of Nuclear Medicine of (RICK)
To Ahmed Albadry(nurse) at the Nuclear Medicine Department of (RICK).
To Labrotory of Hematology of Khartoum hospital.
To Labrotory of Heamatology of(RICK).
To All my Teatchers at all level Studies.
To My Friend Razan.
To My Colllquae in The university in Sudan.
To My all Friends

Acknowledgement

I am grateful to Dr. Mohammed Ahmed who supervised this study because he used to present huge aids which are: he encouraged the idea of this study, supported this study with information, he helped me to analyze the data and he made physical efforts to direct this study.

I thank Dr. Mohamed Elfadil because he encouraged me and gave me some recommendations to go ahead in this study.

I thank my father Omer Hamad Ali Nasir because, he has enhanced me to complete my educations and he has presented all supports which indeed.

I thank s my mother Nadia Ismaeil Mohamed Osman because she has encouraged me all times for education and she has help me since young.

I thank my husband Khalid because, he dedicate me the chance of this study.

I thank the family of the Nuclear Medicine in Sudan that includes the colleagues and management.

Abstract

This study has been carried out in Radiation and Isotopes Center of Khartoum and Khartoum hospital, its aim was to the assessment of the effect of radiation in Blood Components from Tc-99m/MDP Bone Scintigraphy, such as the effects in WBCs, RBCs, PLT, HCT, MCV, LYM and HGB in addition to geographical distribution of cancer and highlighting the most common cancer in Sudan. The study conducted on 50 patients (50) as 76% female and 24 % male with different ages that candidate to the bone Scintigraphy with different indications except the patients who have proliferative disease in (RICK). Some data were obtained which were :gender, weight, height, recent diagnoses, address, actual dose (administrated dose-residual dose) and the interval time (time of the second sample collection-time of the administration dose) .The samples of blood were taken from the patients before and after the bone Scintigraphy were analyzed as complete blood counts in (RICK) and Khartoum hospital laboratories.

The result shows that there were reduction effects in the counts of the blood components in the second samples. The decrement of the blood components from initial counts as 3.8% in WBCs, 3.6% in RBCs , 3.1% in HGB , 4.9% in HCT, 12.5% in PLT, 10.3% in LYM and 1.5% in MCV . The result shows there are not significant or weak correlations between age and blood components like: RBCs, HGB and HCT before and after interval time of the bone scan. The weak correlations above show in the following equations as: $Y=432.11X+5E+06 (R^2=9E-05)$ and $Y=392.87X+4E+06 (R^2=9E-05)$ for RBCs, $Y=0.0017X+12.258 (R^2=0.0002)$ and $Y=-0.002X+12.081 (R^2=0.0004)$ for HGM and $Y=0.0011X+38.679 (R^2=1E-05)$ and $Y=-0.0175X+37.772 (R^2=0.0033)$ for HCT before and after interval time of the bone scan

respectively where, y represents the blood component and x represents the age. that there were some correlations between age, interval time and the BMI versus the blood components before and after the administrated dose. Which reveal that: as the age increases as the reduction in WBC% increases following the equation of the form:

$$y = 0.03x + 2.7 \text{ where } x \text{ refers to Age in year and } y \text{ refers to reduction in WBC\%}.$$

Also the reduction in WBC% increases as the interval time of bone scintigraphy increases and the correlation could be fitted in the following equation:

$$y = 0.02x + 3.5 \text{ where } x \text{ refers to interval time of bone scintigraphy and } y \text{ refers to reduction in WBC\%}.$$

In addition to, the WBC count also increases as the BMI increases with a correlation could be fitted in the following equation: $y = 14.6x + 5323$ where x refers to BMI and y refers to WBC count.

The study showed that the effects of radiation in RBCs were the semi constancy along the age period of man with an average of (4560800) cells/mm³ in contrast with the normal range $4.8 \times 10^6 - 5.8 \times 10^6$ cells/mm³ (male) and $4.2 \times 10^6 - 5.2 \times 10^6$ cells/mm³ (females).

Also the study reveal that shows that the RBCs count has been increases as the BMI increases but usually remain within the normal range and the correlation fitted in the following equation: $y = 19635x + 10^6$ where x refers to BMI and y refers to RBCs count.

While the correlation between RBCs and the interval time reveals that the RBCs% decreases by the increment of interval time of bone Scintigraphy and the correlation could be fitted in the following equation: $y = -0.02x + 4.1$ where x refers to

interval time of bone scan and y refers to reduction in RBs %.

The studying of radiation effect in hemoglobin shows that the amount of hemoglobin in g/dl doesn't have significant effect by aging generally and their correlation could be fitted in the following equation: $y = x + 12.3$ where x refers to age and y refers to HGB count.

Regarding the correlation versus BMI, the study reveals that there is strong correlation ($R^2 = 1$) between HGB count and the BMI which shows that the HGB count increases as the BMI increases which follows the following equation:

$y = 0.09x + 10.1$ where x refers to BMI and y refers to HGB count.

The study also showed that the HGB decreases as the interval time of bone scan increases and the correlation could be fitted in the following equation: $y = -x + 0.4$ where x refers to interval time and y refers to HGB count.

Regarding the hematocrit HCT, the study reveal that there is no significant effect relative to aging, but in case of BMI correlation, the study showed that the HCT% increases as the BMI increases and their correlation could be fitted in the following equation: $y = 0.24x + 32.6$ where x refers to BMI and y refers to HCT %. While there was a decrease in HCT % following the increment of interval time of bone scan and their correlation could be given by the equation: $y = 0.03x + 2.7$ where x refers to interval time of bone scan and y refers to reduction in HCT %.

Regarding the platelets (PLT), the study reveal that the PLT count does not influenced by the aging normally. While it reveals that the PLT count % normally decreases as

the BMI increases, following the equation: $y = -7817x + 53637$ with significant correlation at $R^2 = 0.09$, where x refers to BMI and y refers to PLT %. And also there was a reduction in PLT%, which increases as the interval time of bone scan increases with a correlation fitted in the following equation: $y = 2E6x + 3E8$ with a significant correlation point at $R^2 = 0.02$, where x refers to interval time in years and y refers to reduction in PLT.

Regarding the lymphocyte (LYM), the study reveal that Lymphocytes count generally decreases following the aging and their correlation could be given by the following equation: $y = -0.07x + 37.4$ where x refers to age in years and y refers to Lymphocytes %. While in correlation versus BMI, the data reveals that the lymphocytes % increases following the increment of BMI before and after interval time of bone scan with the following equation: $y = 0.4x + 23.6$ and $y = 0.4x + 19.1$ respectively. And also reduction in Lymphocytes % increases as the interval time of bone scan increases which follows the equation of the form: $y = 0.4x + 2.5$ where x refers to interval time of bone scan and y refers to reduction in lymphocytes %

Regarding the mean cell volume (MCV), the study shows that the MCV decreases following the aging generally according to equation: $y = x - 86.0$ where x refers to age in years and y refers to MCV in fl. While the correlation versus BMI shows that the MCV% increases as the BMI increases in a correlation of the form: $y = 0.08x + 83.7$ (before interval time of bone scan) and in the form of $y = 0.09x + 82.3$ (after interval time of bone scan) where x refers to BMI and y refers to MCV %. But in case of interval time of exposure, the data shows that the MCV % decreases as the interval time of bone scan increases and their correlation

could be given by the equation: $y = -0.02x + 1.9$ where x refers to interval time and y refers to reduction in MCV %.

The study also reveals that the breast cancer represented 52% relative to all cancer types in current study, while prostate recorded as 25%, thyroid cancer and sarcoma represented 6.3% for each, squamous cell carcinoma represented 4.2% and 2.1% recorded for the cancer of cervix, maxilla and nasopharyngeal carcinoma. While the geographical distribution of cancer in the Sudan showed that 45.6% in Omdurman, 18.8% in Khartoum, 14.6% in the north of Sudan, 8.3% in the west of Sudan, 6.3% in Aljazeera, 4.2% in Aldowiam and 2.1% in the east of Sudan.

الخلاصة

تكمن هذه الدراسة في تقييم الاثر الاشعاعي لمكونات الدم وذلك باستخدام التكنولوجيا ٩٩ الغير مستغر في المسح الذري للعظام بعد خلطه بمادة صيدلانية تعرف ب(MDP) وذلك لأن الجرعة المستخدمة في هذا الفحص يتوقع لها ان تحدث تأثيرا على مستوى الدم وهذا يستوحى من الدراسات السابقة التي تناولت دراسة تأثير الاشعاع الخارجي على مكونات الدم مما ادى الى التفكير في هذا الموضوع من حيث التعرض الداخلي لأشعة جاما رغم اعراضها المعرفة مما جعل احتمالية حدوث التأثير على مستوى مكونات الدم ممكنه. اضافة الى ذلك ، يعتبر المسح الذري للعظام من اكثرب الفحوصات شيوعا بعد فحوصات الغدة في الاونة الاخيرة.

الهدف من هذه الدراسة هو معرفة ما اذا كانت المادة المشعة التي تعطى للمريض المتقدم لفحص العظام وذلك لتحقيق اي غرض من اغراض الفحص تؤثر على مكونات الدم مثل: كريات الدم البيضاء والحماء بالإضافة للصفائح الدموية والهيموغلوبين وبقية المكونات الاخرى. هذا بالإضافة معرفة علاقة التغير في مكونات الدم مع عوامل اخرى مثل: عمر المريض، وزن المريض، الجرعة، الزمن (هو الزمن الذي يفصل بين زمن حقن المريض وזמן اخذ عينة الدم الثانية من المريض وذلك بعد الفحص ويتراوح هذا الزمن بين ساعتين الى ست ساعات) و التخسيص الحالى للمريض. و يتم كذلك تقييم الجرعة الفعلية التي يتناولها كل مريض وذلك بطرح الجرعة المتبقية من المريض بعد الحقن من الجرعة المعدة لحقن المريض مباشرة بواسطه جهاز معاير الجرعة وايضا من الاهداف الاخرى للبحث هو تقييم انواع السرطان في السودان واماكن انتشاره.

لإجراء هذا البحث ،تم اختيار خمسين مريضا بصورة عشوائية ٢٤٪ من الذكور و ٧٦٪ من الاناث من المرضى اللذين تواجدوا الى المركز السوداني للعلاج بالأشعة والطب النووي (RICK) بغرض المسح الذري للعظام وذلك لمتابعة مستوى علاج السرطان وانتشاره او لاى غرض اخر ولكنه تم استبعاد المرضى اللذين يعانون من امراض في الدم. تم اخذ عينتين من الدم لكل مريض، الاولى قبل الحقن والثانية عقب المسح الذري. وتم قراءة عينات الدم بواسطه جهاز يعرف بال Sysmex system في معمل الدم بمستشفى الخرطوم التعليمي.

من نتائج هذا البحث ، انخفاض مستوى مكونات الدم في العينات الثانية (بعد الاشعاع) وذلك على النحو التالي : انخفاض كريات الدم البيضاء (WBCs) الى ٣.٨٪، كريات الدم الحمراء (RBCs) الى ٣.٦٪، الصفائح الدموية (PLT) الى ١٢.٥٪، (HGB) الى ٣.١٪، (LYM) الى ٤.٩٪، (HCT) الى ١٠.٣٪ (MCV) علامة طردية بين زيادة معدل الانخفاض و زيادة الزمن وال عمر في كل من (WBCs)، (HGB)، (HCT)، (LYM) و (MCV). اما زيادة معدل الانخفاض و زيادة الزمن يحدث ايضا في (RBCs) ولكن قلما يتاثر بالعمر. كما وضحت هذه الدراسة، علاقة الزمن، العمر ونسبة وزن الجسم الى طوله قبل الفحص وبعده لكل مكون من مكونات الدم اعلاه على النحو التالي: انخفاض ال (WBCs) مع زيادة العمر وفق المعادلة

الاتية: $Y=0.03X+0.03$ حيث ان X تمثل العمر، Y تمثل الانخفاض. كلما زاد زمن الاشعاع في الدم كلما زاد معدل انخفاض الـ (WBCs) كما موضح في المعادلة التالية: $y=0.02x+3.5$. حيث x تمثل الزمن، y تمثل معدل الانخفاض. وأيضاً توجد علاقة تزايدية بين BMI (نسبة وزن الجسم إلى طوله) موضحة في المعادلة الآتية: $Y=14.6X+5323$ حيث X تشير إلى BMI، Y تشير إلى الـ WBCs. هناك شبه ثابتة في الـ (RBCs) عند تمثيلها مع العمر. يزيد معدل نقصان الـ (RBCs) بزيادة الزمن وفق المعادلة التالية: $Y=-0.02X+4.1$. حيث X تدل على الزمن، Y تدل على معدل الانخفاض. لaitاً ثر الـ (HMG) با لعمر من خلال المعادلة الآتية: $Y=X+12.3$ حيث X تشير إلى العمر، Y تشير إلى (HMG). توجد علاقة قوية بين الـ (HMG) و الـ (BMI)، $R^2=1$ موضحة في المعادلة التالية: $Y=0.9X+10.1$. حيث X ترمز إلى (BMI)، إلى ترمز Y (HMG). يزيد معدل انخفاض الـ (HMG) كلما زاد زمن التعرض ويكون ذلك في المعادلة التالية: $Y=-X+0.4$. حيث X تشير إلى الزمن، Y تشير إلى HMG. اما با لنسبة للـ (HCT)، اشاره هذه الدراسة انه لا يتاثر با لعمر. توجد علاقة تزايدية بين الـ (BMI) و (HCT) موضحة بالمعادلة التالية: $Y=0.24X+32.6$. حيث X تدل على Y ، BMI تشير إلى HCT. يزيد معدل الانخفاض كلما زاد الزمن كما تشير اليه المعادلة الآتية: $Y=0.03X+2.7$. حيث X تمثل الزمن، Y تمثل معدل الانخفاض. لاتتأثر الصفائح الدموية (PLT) بالعمر ولكنها، توجد علاقة عكسية قوية $R^2=0.09$ بين الـ (PLT) والـ (BMI) موضحة با لمعادلة التالية: $Y=7817X+53637$. حيث X تمثل Y ، BMI ، PLT . يزيد معدل الانخفاض بزيادة الزمن ويكون واضحًا في المعادلة الآتية: $Y=2E6X+3E8$. حيث X توضح الزمن، Y تمثل الـ PLT. هناك علاقة ايضاً بين العمر و الـ (LYM) تعرف با لمعادلة التالية: $Y=0.07X+37.4$. حيث X تمثل العمر، Y تمثل LYM. اما العلاقة تربط بين الـ LYM و الـ BMI فهي علاقة تزايدية في حالتي قبل وبعد الاشعاع يمثل بالمعادلتين: $y=0.4x+19.1$ و $y=0.4+23.6$ على التوالي حيث x تمثل LYM و Y تمثل BMI. ويزيد معدل الانخفاض مع زيادة الزمن كما توضحه المعادلة الآتية: $Y=0.4X+2.5$ حيث X تمثل الزمن، Y تمثل معدل الانخفاض. توجد علاقة تناقصية بين الـ (MCV) والعمر وفق المعادلة الآتية: $Y=86.0-X$. حيث X تمثل العمر، Y تمثل MCV. تتحفظ الـ MCV بزيادة الزمن وذلك من خلال المعادلة التالية: $Y=-0.02X+1.9$. حيث X تمثل الزمن، Y تمثل MCV.

كما اظهر هذا البحث الى ارتفاع معدل الاصابة بسرطان الثدي الى ٥٢٪ عند الاناث و سرطان البروستاتا الى ٤٪ عند الذكور وانواع اخرى من السرطانات كانت على النحو التالي: ٦.٣٪ سرطان الغدة والاورام الفم و سرطان الانف والبلعوم. سجلت منطقة امدرمان اعلى معدلات الاصابة با لسرطان في السودان بنسبة ٦.٤٥٪ تليها الخرطوم ٦.٨٪، ١٤.٦٪ في الولايات الشمالية، ٨.٣٪ في غرب السودان، ٦.٣٪ في ولاية الجزيرة، ٤٪ في الدويم و ٢٪ كان في شرق السودان.

THE LIST OF ABBREVIATION

Prefix	Meaning
MDP	Methalene Di-Phosphonate.
CBC	Complete Blood Counts.
RICK	Radiation Isotope Centre of Khartoum.
WBCs	White Blood Cells
RBCs	Red Blood Cells.
PLT	Platelets
HGB	Heamoglobin.
HCT	Heamatocreat.
MCV	Mean Cell Volume.
MBI	Mass Body Index.
LYM	Lymphocyte.
TrHBMECs	Irradiated human bone marrow endothelial cells.
SICAM	Soluble Intercellular Adhesion Molecule.
PECAM	Platelet Endothelial Adhesion Molecule.
ECs	Endothelial Cells
CSF	Colony stimulating Factor.
BMEC	Bone Marrow Endothelial Cells.
EDTA	Ethyle Di-amin Tetra Acetate.

LIST OF FIGURES

Figure NO	Figure Title	Page No.
Fig 2.1	Effect of g radiation on endothelial cell number.	6
Fig 3.1	The evacuated tube for blood sample	11
Fig 3.2	Syringes with different volume from right to left respectively:1cc,3cc,5cc and 10cc.	12
Fig 3.3	Cotton	12
Fig 3.4	Detol.	12
Fig 3.5	The gloves	13
Fig 3.6	Butterfly	13
Fig3.7	The empty rack of tubes in the right side and racks with tubes in the left side.	14
Fig3.8	The generator of Tc99 ^m .	14
Fig3.9	The water saline	15
Fig 3.10	The container (shield) of radioactive syringes.	15
Fig 3.11	The scalar of weight and length	16
Fig 3.12	Shield of Tc99m vial, shield of generator and shield of the radiopharmaceutical from right to left respectively	16
Fig 3.13	The vial of the medronate (MDP).	17
Fig 3.15	Pin of the radioactive waste	18
Fig 3.16	Calculator	18
Fig 3.17	Watch	19
Fig 3.18	The dose calibrator	19
Fig 3.19	The Sysmex system	20
Fig 3.20	The gamma camera	20
Fig 3.21	Laptop	21
Figure 4.1	The Frequency % of patients referred to Bone scintigraphy	26
Figure 4.2	The frequency % of cancer in Sudanese state	27
Figure 4.3	The common cancer types in Sudan based on the selected sample.	28
Figure 4.4	The correlation between WBC and the age before/after bone scintigraphy.	29
Figure 4.5	The correlation between Ln WBC and the BMI before/after bone scintigraphy	30
Figure 4.6	The correlation between reduction in WBC and the interval time of bone scintigraphy	31
Figure 4.7	The correlation between the reduction in WBC and the age after interval time of bone scintigraphy	32
Figure 4.8	The correlation between RBCs and the age before/after interval time of bone scintigraphy	33
Figure 4.9	The correlation between RBCs and the BMI before/after bone scintigraphy.	34
Figure 4.10	The correlation between the reduction in RBCs and the interval time of	35

	bone scintigraphy	
Figure 4.11	The correlation between reduction in RBCs and the age after interval time of bone scintigraphy	36
Figure 4.12	The correlation between HGB and the age before/after interval time of bone scintigraphy	37
Figure 4.13	The correlation between HGB and the MBI before/after interval time of bone scintigraphy	38
Figure 4.14	The correlation between reduction in HGB and the age after interval time of bone scintigraphy	39
Figure 4.15	The correlation between the reduction in HGB and the interval time of bone scintigraphy	40
Figure 4.16	The correlation between BMI and the HCT % before and after interval time of bone scintigraphy	41
Figure 4.17	The correlation between Patient age and HCT % before/after interval time of bone scan	42
Figure 4.18	The correlation between interval time of bone scan and reduction in HCT %.	43
Figure 4.19	The correlation between age in years and reduction in HCT % after interval time of bone scan	44
Figure 4.20	The correlation between Age in years and PLT count before and after the interval time of bone scan.	45
Figure 4.21	The correlation between BMI and the PLT % before and after interval time of bone scan	46
Figure 4.22	The correlation between interval time of bone scan and reduction in PLT.	47
Figure 4.23	The correlation between age in years and Lymphocytes % before and after interval time of bone scan	48
Figure 4.24	The correlation between BMI versus Lymphocytes % before and after interval time of bone scan	49
Figure 4.25	The correlation between interval time of bone scan and reduction in Lymphocytes%	50
Figure 4.26	The correlation between age in years and MCV fl before and after interval time of bone scan	51
Figure 4.27	The correlation between BMI and the MCVfl % before and after the interval time of bone scan.	52
Figure 4.28	The correlation between the reduction in MCV fl% and age in years after the interval time of bone scan	53
Figure 4.29	The correlation between interval time of bone scan and the count of MCV%.	54

TABLE OF CONTENTS

Dedication	(i)
Acknowledgment	(ii)
Abstract	(iii)
الخلاصة	(viii)
List of Abbreviation	(x)
List of Figures	(xi)
Table of Contents	(xiii)
Chapter One:	
The introduction	(1)
The problem of the study	(2)
The objective of the study	(3)
The significance of the study	(3)
The outline of this study	(4)
Chapter Two:	
Literature Review	(5)..
Chapter Three:	
Methodology	
Materials	(11)
Methods	(22)
Chapter Four:	
Results and Discussion	(26)
Chapter Five:	
Conclusion	(55)
Recommendation	(56)
References	(57).
Appendices	(58)