DEDICATION

10
My parents
My sisters
My brothers
And
My all family
To my friends who supported me in this work .
To every body suffer from Alzheimer disease .

Acknowledgement

First and foremost, I would like to thank my supervisor, Prof. Saad Daoud for the valuable guidance and advice. He inspired me greatly to work in this project. His willingness to motivate me contributed tremendously to my project.

Besides, I would like to thank Dr Magdi Baker the head of department of biomedical engineering at Albyan college for providing me with a good environment and facilities to complete this project.

Also I would like to thank Dr .Eltaher Mohamed Hussein for effort in giuding me through this project.

Finally, an honorable mention goes to my families and friends for their understandings and supports me in completing this project.

Abstract

This research a interduced new protein data base (AD/AMYDB) which concern with Alzheimer amyloid proteins, ,this data base contains information about 10 amyloid proteins which related to Alzheimer disease, data used taken from NCBI data base ,search with in data base done by using CLC protein work bench.

This program designed for detecting protein-disease (Alzheimer disease) associations based on the human protein sequence and can be used at Alzheimer disease research center .

Misfolding and aggregation of proteins into ordered fibrillar structures is associated with a number of severe pathologies, including Alzheimer's disease, prion diseases, and type II diabetes. The rapid accumulation of knowledge about the sequences and structures of these proteins allows using of *in silico* methods to investigate the molecular mechanisms of their abnormal conformational changes and assembly. However, such an approach requires the collection of accurate data, which are inconveniently dispersed among several generalist databases.

One of the most important tasks of modern bioinformatics is the development of computational tools that can be used to understand and treat human disease. To date, a variety of methods have been explored and algorithms for predicting whether a protein is involved in disease are gaining in their utility.

TABLE OF CONTENTS

DEDICATION	i
Acknowledgement	ii
ABSTRACT in English	iii
ABSTRACT in Arabic	V
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
ABBREVIATIONS	X
CHAPTER One: INTRODUCTION	
1.1 <i>General</i> View	1
1.2 Statement of the problem	2
1.3 Objectives	2
1.4 Methodology	
1.5 Thesis layout	3
CHAPTER TWO: LITREATUREREVIEW	
2.1 Theoretical Background	4
2.1.1 Bioinformatics	4
2.1.2 Molecules of life	4
2.1.3 Proteins	5

2.2.	5
Alzheimer's disease	
2.2.1 Causes of Alzheimer Disease	6
2.2.2 Neuropathology of Alzheimer Disease	8
2.2.3 Biochemistry of Alzheimer Disease	8
2.2.4 Disease mechanism	9
2.2.5 Genetics of Alzheimer Disease	9
2.2.6 Diagnosis of Alzheimer Disease	10
2.2.7 Social costs of Alzheimer Disease	10
2.3 Amyloid	11
2.3.1 Amyloid biophysics	11
2.3.2 Amyloid pathology	12
2.3.5 Amylodosis	12
2.4 LITREATURE REVIEW	13
2.4.1 Conclusion	15
CHAPTER Three: METHDOLOGY	
3.1 data collection .	16
3.2 Protein work bench .	16
3.3 Protein data base	17
3.3.1 Sequence data base	17
3.4 lab view	17
3.5 lab view data base program	18
3.5.1 user interface	18
3.5.2 Block Diagram	20

CHAPTER Four : Results	
4.1 Results	21
CHAPTER FIVE : Conclusions and Recommendations	
5.1 Conclusions	26
5.2 Recommendations	26
REFERENCES	27
APPENDIXE A	I
APPENDIX B	II
APPENDIXE C	IV

LIST OF FIGURES

Fig.3.1 Research methodology Flow chart

19 Fig.3.2 Graphical User Interface for detection of protein sequence

19

Fig.3.3 Block digram of program 20

Fig.4.1 Fig user enter protein sequence 22

Fig.4.3 Show the content of Page2.