

TABLE OF CONTENTS

CONTENTS	page
Table of contents	I
Acknowledgements	III
Abstract	IV
ملخص الدراسة	V
List Of Tables	VI
List Of Figures	VII
List Of Abbreviation (symbols)	VIII

Chapter 1 . Forwarding

1.1 Background	1
1.2 Importance of The Research	1
1.3 Research Objectives	2
1.4 Research Methodology	2
1.5 Report Summary	2

Chapter 2 . Literature Review

2.1 Reinforced Concrete Structures	3
2.2 Concrete Materials	3
2.3 Admixtures	4
2.4 Concrete Properties	8
2.5 Concrete Mix Design	13
2.6 Tests on Concrete	21
2.7 Deflection	23
2.7.1 Introduction	23
2.7.2 Deflection Limits	23
2.7.3 Span-to-effective depth ratio	25
2.7.4 Deflection check	27
2.8 Cracking	27
2.8.1 types of cracking	27
2.8.2 Cracking limits and control	30
2.8.3 Bar spacing controls	30
2.8.4 Calculation of crack widths	33

Chapter 3 . Identification Of The Research Problem

3.1 Forwarding	36
3.2 Samples Of The Research Beams and control specimens	36
3.3 Design Of The Research Beams	37
3.4 Variables Of The Study	41
3.5 Predicted Deflections & Cracks	41

Chapter 4 . laboratory Experiment

4.1 Mix Design	46
4.2 Testing Equipments	49
4.3 Testing Program	50
4.3.1 Cubs test	50
4.3.2 The deflection test	51

Chapter 5 . Results presentation and analysis

5.1 Forwarding	52
5.2 Results presentation and analysis	52
5.3 Discussions	69

Chapter 6 . Conclusions and recommendations

6.2 Conclusions	71
6.3 Recommendations	72
References	73
Appendix	75

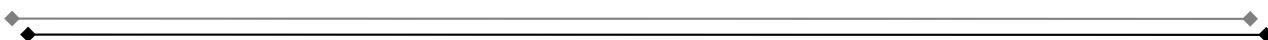
Acknowledgement

Alhamdulillah, Praise to Almighty Allah for His blessing and guidance which enabled me to complete this project.

I wish to extend my greatest gratitude and gratefulness to my supervisor ,Prof. Dr. Salih Elhadi for his valuable guidance, advice and suggestions throughout this project. His effort and concern, That abled me to complete my project.

A lot of thanks to all staff of Civil Engineering Department, Sudan University of Science and Technology and to all my friends who were provided me with a high level of information's . My thanks are extended also to all my colleagues, postgraduates of Construction Engineering Department for their support ,concrete laboratory of Khartoum university and cooperation throughout my study.

Abstract


The aim of this research is to study the effect of liquid additives on strength and behavior of R.C beam models .

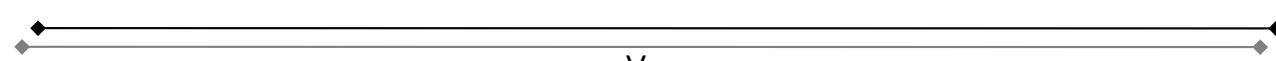
Cracking and deflection of these beam models has been studied . The liquid additives (High-range water reducing/superplasticizer) in different ratios of cement weight in the range of 0% , 0.4% , 0.8% , 1.2% , 1.6% , 2% have been used .

The compressive strength of concrete was measured at 7 and 28 days of age and modulus of elasticity of concrete , shear modulus , modulus of volume change , Poisson's ratio , deflection and cracking at 28 days . have been calculated .

It became evident from the test results of the compressive strength , modulus of elasticity of concrete , shear modulus , modulus of volume change , Poisons ratio and deflection for the different beams when the additives were used in reinforced concrete model beams in the ratio of 1.6 % of the cement weight achieved the best results .

It can also be concluded that the cracking behavior (both at first cracking stage and at ultimate load) is not affected by additives.

الملخص


إنّ هدف هذا البحث هو دراسة اثر الاصafات السائلة على المقاومة والسلوك في نماذج عارضات خرسانية مسلحة .

استخدمت الاصafات السائلة (اصafات تخفيف ماء خلط الخرسانة بدرجة عالية / السوبريلاستسيزر) بالنسبة 0.0% ، 0.4% ، 0.8% ، 1.2% ، 1.6% من وزن الاسمنت .

وتم قياس مقاومة الضغط في 7 أيام و 28 يوم و تم حساب معاير المرونة للخرسانة و معاير القص و معاير التمدد الحجمي ونسبة بواسون والانحرافات والتشققات.

وضج من نتائج اختبارات مقاومة الضغط و معاير المرونة للخرسانة و معاير القص و معاير التمدد الحجمي ونسبة بواسون والانحرافات للعارضات المختلفة ان افضل نتيجة تم الحصول عليها عندما استخدمت نسبة الاصafات 1.6% من وزن الاسمنت .

وأوضح من خلال الدراسة أن التصدعات الناتجة (عند حد المرونة و عند التحميل الأقصى) لم تتأثر بالإصafات .

List Of Tables

<i>Table Number</i>	<i>Description</i>	<i>Page No</i>
Table 2.1	<i>Principal performance requirements for admixtures given in (5)</i>	7
Table 2.2	<i>Concrete Grade in Construction</i>	14
Table 2.3	<i>Estimate w/c for certain target strength</i>	14
Table 2.4	<i>Workability for various applications</i>	15
Table 2.5	<i>Minimum cement content (kg/m3)</i>	16
Table 2.6	<i>Fix method - British CP110:1972</i>	17
Table 2.7	<i>JKR method</i>	18
Table 2.8	<i>Slump value for various applications</i>	20
Table 2.9	<i>Estimate water quantity</i>	20
Table 2.10	<i>W/c ratio vs. strength</i>	21
Table 2.11	<i>Aggregate volume in a unit volume of concrete</i>	21
Table 2.12	<i>First estimate of new concrete weight</i>	22
Table 2.13	<i>The quality of concrete.</i>	30
Table 2.14	<i>Basic span-to-effective depth ratios</i>	33
Table 2.15	<i>classification of cracks</i>	39
Table 3.1	<i>beam data</i>	47
Table 3.2	<i>beams dimensions and additives</i>	51
Table 4.1	<i>mix materials of B1</i>	56
Table 4.2	<i>mix materials of B2</i>	57
Table 4.3	<i>mix materials of B3</i>	57
Table 4.4	<i>mix materials of B4</i>	58
Table 4.5	<i>mix materials of B5</i>	58
Table 4.6	<i>mix materials of B6</i>	59
Table 5.1	<i>control specimens cubes for beams at 7 days</i>	61
Table 5.2	<i>control specimens cubes for beams at 28 day</i>	62
Table 5.3	<i>Load of beam B1</i>	63
Table 5.4	<i>Load of beam B2</i>	64
Table 5.5	<i>Load of beam B3</i>	65
Table 5.6	<i>Load of beam B4</i>	66

<i>Table 5.7</i>	<i>Load of beam B5</i>	67
<i>Table 5.8</i>	<i>Load of beam B6</i>	68
<i>Table 5.9</i>	<i>load – deflection for all beams</i>	69
<i>Table 5.10</i>	<i>moment – rotation (in radians) for all beams</i>	70
<i>Table 5.11</i>	<i>Cracks of beam B1</i>	71
<i>Table 5.12</i>	<i>Cracks of beam B2</i>	71
<i>Table 5.13</i>	<i>Cracks of beam B3</i>	72
<i>Table 5.14</i>	<i>Cracks of beam B4</i>	73
<i>Table 5.15</i>	<i>Table 5.15 Cracks of beam B5</i>	73
<i>Table 5.16</i>	<i>Table 5.16 Cracks of beam B6</i>	74
<i>Table 5.17</i>	<i>Table 5.17: Result summary for all beams</i>	75

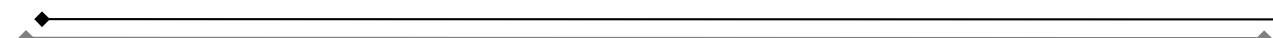

List Of Figures

Figure Number	Description	Page No
<i>Fig 2.1</i>	<i>Concrete Materials(11)</i>	4
<i>Fig 2. 2</i>	<i>Segregation and bleed in freshly placed concrete(4).</i>	9
<i>Fig. 2.3</i>	<i>Characteristic Strength (N/mm²)</i>	19
<i>Fig 2.4</i>	<i>Slump test cone</i>	23
<i>Fig 2.5</i>	<i>Compacting factor devise</i>	24
<i>Fig 2.6</i>	<i>Cores device</i>	25
<i>Fig 2.7</i>	<i>Schmidt hammer</i>	27
<i>Fig 2.8</i>	<i>Ultrasonic pulse velocity</i>	28
<i>Fig. 2.9</i>	<i>Beam load & Section</i>	31
<i>Fig. 2.10</i>	<i>(a) Cracking in a beam; (b) crack locations.</i>	33
<i>Fig. 3.1</i>	<i>Geometric for the reinforced concrete beam</i>	36
<i>Fig 3.2</i>	<i>Geometric properties for the reinforced concrete beam</i>	37
<i>Fig 3.3</i>	<i>Section - stress block</i>	38
<i>Fig 3.4</i>	<i>Section - shear</i>	40
<i>Fig 3.5</i>	<i>Expected section - cracks</i>	43
<i>Fig 4.1</i>	<i>Steel Cubes Cast</i>	50
<i>Fig 4.2</i>	<i>Compression test Machine</i>	51
<i>Fig 5.1</i>	<i>Cracks of beam B1</i>	61
<i>Fig 5.2</i>	<i>Cracks of beam B2</i>	62
<i>Fig 5.3</i>	<i>Cracks of beam B3</i>	62
<i>Fig 5.4</i>	<i>Cracks of beam B4</i>	63
<i>Fig 5.5</i>	<i>Cracks of beam B5</i>	64
<i>Fig 5.6</i>	<i>Cracks of beam B6</i>	64
<i>Fig 6.1</i>	<i>effectives of additives on compressive strength</i>	66
<i>Fig 6.2</i>	<i>load – deflection curve</i>	67
<i>Fig 6.3</i>	<i>moment – Rotation curve</i>	68

List Of Abbreviations (symbols)

Symbol	Abbreviations
h	overall depth of the section
d	effective depth (depth to the centreline of the steel)
d'	inset of the compression steel
b	breadth of the section
L	effective length span of beam
x	depth to the neutral axis
Z	lever arm
v	shear stress
v_c	Ultimate shear stress in concrete
e	Eccentricity
S_{\max}	maximum likely crack spacing
f_{cu}	is the characteristic strength of concrete
f_y	is the characteristic strength of steel
P	ultimate load
m	is the design moment
m_u	is the maximum moment capacity of section
A_s	area of tension reinforcement
$A_{s'}$	area of steel in compression
Φ	diameter of main steel
Φ_{link}	diameter of links
K	bulk modulus
G	shear modulus
E_c	modulus of elasticity of the concrete
E_s	modulus of elasticity of the steel
αe	modular ratio, E_s/E_c
ν	Poisson's ratio
C	cover of steel
a	deflection
a_{cr}	distance from surface crack position of zero strain
ε_c	strain in the concrete (0.0035)

ϵ_s	strain in the steel
C_c	force in the concrete in compression
C_s	force in the steel in compression
T_c	force in the concrete in tension
T_s	force in the steel in tension
f_{cc}	stress in the concrete in compression
f_{sc}	stress in the compression steel
f_{st}	stress in the tension steel
f_{ct}	stress in the concrete in tension at the level of the tension steel 1 N/mm ² for short-term loads; (0.55 N/mm ² for long-term loads)