

⊗ **Najah** ⊗

Acknowledgement

I wish to express my sincere gratitude to my supervisor **Professor Zuhair El Fadil El Abjar** for his helpful, guidance, encouragement and supervision for this work.

My deepest thanks also to **Dr. Awad Khalf Afalla**, the head of Plant Protection Department. Thanks are also due to **Mrs. Ragaa Mohammed El Basheir** and to **Mr. Mirghani A. Gasmelsid** for their assistance. I am also grateful to all my

friends in the College of Agricultural Studies, Sudan University of Science and Technology for their help. Thanks are also extended to my sincer friend **Azza** for her encouragement. Many thanks to those who help in any way.

The help of the staff of Plant Protection Department is highly appreciated. Sincere gratitude to the staff of the Agricultural Research Corporation (Shambat) for their assistance.

Finally all my thanks to my family which provided me with the best environment to complete this work. Many thanks are extended to **Mr. Mohamed Hassan Elaagip** who print this work, with patient and interest.

Abstract

This study shows the life table of the predator *Hippodamia variegate* during the period January – March 2004. The predator was collected from Alfa alfa forage field at Shambat Demonstration Farm. The predators were confined with a number of aphids in cylindrical cages 9 cm in diameter covered with a piece of cloth held in position by a mean of rubber band. Eggs of the predator were collected at frequent times for the study purposes.

A cohort of predator eggs (200 eggs) were placed on leaves of okra, eggplant and potato crops to follow-up and record the life table data until the adult stage. From the emerged adults, ten males and ten females were selected and confirmed each pair separately to follow the rest of the life table's data.

The average net rate of reproduction (R_o) was (182.245), time generation (T) was (17.61), the innate capacity for numerical increase (r_m) was (0.296) and the doubling generation time (DT) was (2.331) in potato crop. In okra crop the (R_o) was (145.29), (T) was (16.593), (r_m) was (0.3) and (DT) was (2.3). In eggplant the (R_o) was (122.631), (T) was (18.698), (r_m) was (0.257), and (DT) was (2.68).

The highest (m_x) was recorded in okra leaves and the lowest in eggplant. The female longevity (L_x) was high in okra crop (0.5) compared to value obtained from the potato crop (0.140).

Following the development of the immature stages, the mortality rates were found to be 40 %, 24 %, 15 % and 12 % among the eggs, larvae, pupae, and adult stages respectively. From these results, the highest death rate was mainly recorded among the immature stages. Highest rate of egg laying was recorded in Datura leaves (31.66 eggs) followed by Ushar leaves (30.1 eggs) and lastly pumpkin leaves (20 eggs).

The field surveys of population, *A. gossypii* and the predator *H. variegata* was carried out in three vegetable crops. The result indicated that the highest population of the Aphid was recorded in okra crop (116.13 adults) and the lowest was on eggplant (0.6 adults). Similar data about the population of *H. variegata* showed that okra plant has the highest density (0.86 adults) compared to potato.

الخلاصة

H. توضح الدراسة جداول الحياة لأبو العيد المفترس *variegate* في الفترة من يناير – مارس 2004م.

تم جمع هذا المفترس من حقل البرسيم بالمزرعة التعليمية بكلية الدراسات الزراعية – شمبات، ثم وضعت في إناء زجاجي يحتوي على حتى يتم وضع البيض *Aphis gossypii* اوراق بامية بها حشرة المن.

بدأت التجربة بعد 200 بيضة، وضعت على أوراق ثلاث محاصيل مختلفة هي : البامية ، البانجان والبطاطس . وتمت متابعتها منذ الفقس وحتى طور الحشرة الكاملة، في هذه الفترة كان يتم تسجيل عدد الأفراد من طور إلى آخر ومنها تم حساب كل من : و القدرة التقريبية (T) وزمن الجيل (RO) معدل التوالد الصافي وكانت ، (DT) وفترة تضاعف الأجيال (rm) للزيادة العددية الموروثة : النتائج المتحصل عليها كالتالي

ـ 17.61 (T) والـ 182.245 (RO) في محصول البطاطس كانت الـ ، أما في محصول البامية كانت . 2.331 (DT) والـ 0.296 (rm) والـ . 2.3 (DT) والـ 145.29 (RO) والـ 16.593 (rm) والـ 0.3 (T) والـ ، 122.631 (RO) وكانت في محصول البانجان الـ على التوالي 2.68 (DT) والـ 0.296 (rm) والـ 5

وقد كان أعلى معدل (mx) أيضاً تم حساب معدل وضع البيض لوضع البيض على أوراق الباذنجان، وأدنى معدل له على أوراق لأنثى في (LX) Longevity البانجيان، كذلك تم تقدير فترة الحياة المحاصيل الثلاثة السابقة، فكانت أعلى قيمة لها في محصول الباذنجان 0.5. ، وأقل قيمة لها في محصول البطاطس 0.140.

القسم الثاني من التجربة بدأ بوضع 300 بيضة ومتابعتها من الفقس وحتى طور الحشرة الكاملة، وحساب عدد الأفراد في كل طور لمعرفة نسبة الأعداد الميتة خلال كل طور وكانت النتائج المتحصل عليها كالآتي:

نسبة البيض الغير فاقس 40 %. عدد اليرقات التي أكملت تطورها حتى طور العذراء 137 يرقة بنسبة موت 24 %. نسبة الموت في العذاري 15 %. العذاري التي تحولت إلى حشرات كاملة 103 بنسبة موت 12 % في الحشرة الكاملة، وهذا يوضح أن أعلى نسبة موت في الأطوار الغير كاملة (بيض - يرقة - عذراء).

خلال هذه الدراسة أبىضاً تم دراسة تأثير نوعين من المفترسات على خصوبة الإناث (*Aphis nerii* و *Aphis gossypii*) وقد أوضحت النتائج أن أعلى معدل وضع *H. variegata* للمفترس بيض كان على نبات السيكaran (31.66 بيضة) يليه نبات العشر (30.1 بيضة) وأقل معدل وضع بيض كان على أوراق نبات القرع (20.20 بيضة).

والمفترس *A. gossypii* تم إجراء مسح حقلی لكل من حشرة المن في ثلاثة محاصيل حقلية مختلفة وهي : البامية، *H. variegate*، في نبات *Aphid* البانجوان والبطاطس، وقد تم تسجيل أعلى تعداد للبامية (13.116 حشرة بالغة) وأقل تعداد على نبات البانجوان (0.6 حشرة بالغة).

أما المفترس فقد كان أعلى تعداد له أيضاً على نبات البامية (0.86 حشرة بالغة) وأقل تعداد له على نبات البطاطس حيث لم يكن هناك أي وجود للمفترس في الإسبوع الرابع من المسح.