

Acknowledgment

I would like to express my sincere appreciation to my supervisor Dr. Moutamn Mirghani. I am thankful for his guidance, encouragement, motivation and support.

I would also like to express my grateful thanks to Telecommunication Research Center (TRC) and its staff for the great support and cooperation.

Not forget, great appreciation go to the electronics department staff in Sudan University as well as Karary University for the great help and cooperation.

My sincere appreciation extends to my classmates of the MS.c program and to my friends for their great help, encouragement and valuable hints.

I express my deep gratitude to my Mother, my Father and my family who helped and support me during my Study.

خلاصة البحث

إن المقدرة على تطبيق عدد من بروتوكولات الإتصال هي احدى المزايا الأساسية للراديو المعرف برمجيا ، هذه الميزة تجعل الراديو المعرف برمجيا قادراً على الاتصال بمختلف أنواع الراديو التقليدية بدون الحاجة إلى التغيير في الأجزاء الصلبة من الجهاز. إن الغرض من هذا البحث هو تصميم لراديو معرف برمجيا في النطاق القاعدي لتحقيق عدة أنواع من التعديل. تتكون اللوحة المصممة للنظام من: معالج للإشارة الرقمية و محول للإشارة التماضية إلى رقمية ومحول للإشارة الرقمية إلى تماضية لتحقيق أنواع التعديل السابقة، إضافة إلى متحكمة دقيقة كواجهة للمستخدم لأغراض التحكم في اللوحة.

في هذا البحث، تمت مناقشة الإختلاف بين مختلف هياكل الراديو المعرف برمجيا، إضافة إلى أن مختلف الأجزاء الصلبة في لوحة النطاق الأدنى تم توضيحها من حيث الخصائص ومن ثم تم اختيار الأجزاء المناسبة للتصميم. إضافة إلى ذلك، تمت مناقشة عدة أنواع من التعديل بشقيه التماضي والرقمي ومن ثم محاكاتها باستخدام برنامج الماتلاب بإضافة إلى برنامج CCS المتخصص في تطوير برامج معالجة الإشارة الرقمية بلغة C. أخيراً تم تعديل برنامج معالج الإشارة الرقمية وانزاله في اللوحة المصممة ومن ثم اختباره باستخدام بيانات واسارات حقيقية.

تم تحليل أداء التصميم وذلك بمقارنة النتائج المأخوذة من برامج المحاكاة مع النتائج الحقيقية ووُجِد انها متشابهة.

Abstract

The ability to support multiple communication protocol is a fundamental feature of Software Defined Radio (SDR). This feature allows SDR to communicate with different radios without need for hardware change.

The aim of this thesis is to design and implement a SDR in baseband to realize multiple modulation techniques (waveforms). The designed SDR baseband board consists of a Digital Signal Processor (DSP) and digital to analog and analog to digital convertors (ADC, DAC) to realize multiple waveforms, furthermore, a microcontroller is used as user interface to control the SDR baseband board.

In this thesis, different Software Defined Radio architectures are discussed. The different baseband board hardware specifications are explained and the appropriate parts are selected for design, also multiple modulation techniques (analog and digital) are discussed and simulated using Matlab as well as C using Code Composer Studio. Finally, the DSP C program is modified and downloaded into SDR baseband board and tested using real time signal.

The performance of the design is investigated by comparing the simulation with those results and results obtained from real time implementation. It is concluded that the simulation results and implementation results are nearly similar.

ABBREVIATIONS

ADC	Analog to Digital Convertor
ALU	Arithmetic Logic Unit
AM	Amplitude Modulation
AR	Auto Regressive
ARAU	Auxiliary Register Arithmetic Units
ASIC	Application Specific Integrated Circuit
ASK	Amplitude Shift Keying
AWGN	Additive White Gaussian Noise
BFSK	Binary Frequency Shift Keying
BPSK	Binary Phase Shift Keying
BSP	Buffered Serial Port
CCS	Code Composer Studio
CFIR	Compensation FIR Filter
CIC	Cascaded Integrator-Comb
CMOS	Complementary Metal Oxide Semiconductor
CODEC	CODER / DECODR
CSSU	Compare, Select, and Store Unit
DAC	Digital to Analog Convertor
DC	Direct Current
DDC	Digital Down Converter
DDS	Direct Digital Synthesizer
DSB	Double Sideband
DSP	Digital Signal Processor
DUC	Digital Up Converter

EEPROM	Electrically Erasable Programmable Read-Only Memory
ENOB	Effective Number Of Bits
FFT	Fast Fourier Transform
FM	Frequency Modulation
FPGA	Field Programmable Gate Array
FSK	Frequency Shift Keying
GUI	Graphical User Interface
HDL	Hardware Description Language
HPI	Host Port Interface
IDE	Integrated Development Environment
IF	Intermediate Frequency
JTAG	<u>Joint Test Action Group</u>
LSB	Lower Sideband
McBSP	Multichannel Buffer Serial Interface
MCU	Main Control Unit
MIPS	Million Instructions Per Second
NCO	Numerical Controlled Oscillator
PFIR	Pulse Shaping FIR Filter
PLL	Phase Locked Loop
PM	Phase Modulation
PRD	Timer Period Register
PSC	Pre-Scalar Counter
PSK	Phase Shift Keying
QAM	Quadrature Amplitude Modulation
QPSK	Quaternary Phase Shift Keying

RAM	Random Access Memory
RF	Radio Frequency
ROM	Read Only Memory
RTC	Real Time Counter
RTDX	Real Time Data Exchange
SDR	Software Defined Radio
SFDR	Spurious Free Dynamic Range
SINAD	Signal to Noise and Distortion ratio
SNR	Signal to Noise Ratio
SSB	Single Side Band Modulation
SWI	Software Interrupt
TDDR	Timer Divide Down Ratio
TI	Texas Instrument
USB	Upper Sideband
USART	Universal Synchronous Asynchronous Receiver and Transmitter
VCO	Voltage Controlled Oscillator
VHF	Very High Frequency
XIO	External-Input/Output

		page
	List of figures	
2.1	Heterodyne radio	5
2.2	architecture	
	Homodyne radio	6
2.3	architecture	
2.4	Ideal Software Radio	7
	practical SDR with a	8
2.5	wideband RF front end	
	Software Defined Radio	9
3.1	modules	
	Uniform quantizer	13
3.2	transfer characteristic	
	Non-Uniform quantizer	15
3.3	transfer characteristic	
	DUC Structure Block	17
3.4	Diagram	
	DDC Structure Block	18
3.5	Diagram	
	Spectrum of a continuous	19
3.6	analogue signal	
	Spectrum of digitized	19
	signal Sample frequency	
3.7	F_s	
	Spectrum of digitized	20
	signal after mixing sample	
3.8	frequency F_s	
	Spectrum of digitized	20
	signal after filtering	
	sample frequency F_s	

3.9	The Harvard architecture	24
3.10	The Von Neumann	24
3.11	architecture TMS320VC5416	28
4.1	DSB Modulation	33
4.2	DSB frequency domain	34
4.3	DSB Demodulation	35
4.4	Coherent demodulation of	37
4.5	AM A simple envelope	37
4.6	detector Single-sided spectral plots	38
4.7	Filter method of single	39
4.8	sideband generation phasing method for SSB	40
4.9	Demodulation of SSB	41
4.10	(coherent) Demodulation of SSB	42
4.11	(non-coherent) Frequency Modulation	45
4.12	signals (<i>time domain</i>) FM frequency domains	47
4.13	Ideal FM discriminator	49
4.14	quadricorrelator for FM	50
4.15	demodulation ASK modulator block	52
4.16	diagram FSK modulation	54
4.17	FSK Coherent	55
4.18	demodulator block diagram FSK Non-Coherent	56
	demodulator block	

	diagram	
4.19	I and Q principle	57
4.20	BPSK message and	59
	modulated signals	
4.21	balance modulator	59
4.22	BPSK demodulation	60
4.23	QPSK modulator block	61
	diagram	
4.24	QPSK Constellation	63
4.25	QPSK message and	63
	modulated signals	
4.26	QPSK demodulator block	64
	diagram	
4.27	8PSK modulator block	66
	diagram	
4.28	8PSK message and	68
	modulated signals	
4.29	8PSK demodulator block	69
	diagram	
4.30	16QAM Modulator block	71
	diagram	
4.31	16QAM constellation	72
	diagram	
4.32	16QAM demodulator	72
	block diagram	
4.33	16QAM message and	73
	modulated signals	
5.1	Transmit path flow	75
	diagram	
5.2	Receive path flow	75
	diagram	
5.3	matlab program Graphic	76
	User Interface	

5.4	Matlab Program flow chart	77
5.5	Quadricorrelator	81
5.6	demodulator AM modulation and demodulation using matlab	81
5.7	FM modulation and demodulation using matlab	82
5.8	BFSK modulation and demodulation using matlab	82
5.9	4FSK modulation and demodulation using matlab	83
5.10	BPSK modulation and demodulation using matlab	83
5.11	QPSK modulation and demodulation using matlab	84
5.12	8PSK modulation and demodulation using matlab	84
5.13	16QAM modulation and demodulation using matlab	85
5.14	SDR TX path flow diagram	86

5.15	SDR RX path flow	87
	diagram	
5.16	ping pong concept flow	87
	diagram	
5.17	Timer 0 Flow Chart	88
5.18	AM modulation and	89
	demodulation using CCS	
5.19	FM modulation and	90
	demodulation using CCS	
5.20	BFSK modulation and	90
	demodulation using CCS	
5.21	4FSK modulation and	91
	demodulation using CCS	
5.22	BPSK modulation and	91
	demodulation using CCS	
5.23	QPSK modulation and	92
	demodulation using CCS	
5.24	8PSK modulation and	92
	demodulation using CCS	
5.25	16QAM modulation and	93
	demodulation using CCS	
5.26	SDR board program user	97
	Interface	
5.27	Real time AM Modulation	98
	signal	
5.28	Real time FM Modulation	99
	signal	
5.29	Real time BFSK	99
	Modulation signal	
5.30	Real time 4FSK	100
	Modulation signal	
5.31	Real time BPSK	100

5.32	Modulation signal Real time QPSK	101
5.33	Modulation signal Real time 8PSK	101
5.34	Modulation signal Real time 16QAM	102
	Modulation signal	

