

Acknowledgement

This study could not have been completed without the help and support of many individual for whom words are inadequate appropriately: they know that they have my heartfelt thanks.

I would like to express my thanks to Dr. Muoiwa Hussein Elobeid for his supervision, guidance and valuable advice

I am really indebted to Mr. Majid Mohammed Ali, senior technician of clinical chemistry in Khartoum State, of Ministry of health, administration of laboratory and his technical staff.

My sincere thanks to technical staff of units of research and laboratory in Khartoum Teaching Hospital

My utmost thanks and appreciation go to Mr. Mohammed Altom Edriss and Mr. Mahla Abed Allah for financial support.

A word of thanks to Mr. Mohammed Abu Elgasm for his effort in statistical analysis.

Contents	pages
Abstract in English	ii
Abstract in Arabic	iii
Abbreviations	iv
lists of figures	vi
Lists of Tables	vii

Chapter one

1.1 Introduction and literature review and objectives	1
1.2 Glucose	4
1.2.1 Glucose metabolism	4
1.2.2 Fate of glucose	4
a\ Embden-Meyerhof pathway	5
b\ Hexose's monophosphate shunts (HMP-shunt)	5
c\ Glycogenesis pathway	6
1.2.3 Hyperglycaemia	6
1.2.4 Hypoglycaemia	11
1.2.5 Investigation of disorders of Carbohydrate Metabolism	14
1.3 Potassium "K ⁺ "	15
1.3.1 Regulation of potassium:	16
1.3.2 Hypokalemia	16
1.3.3 Hyperkalemia	17
1.4 Urea	18
1.4.1 Biochemistry	18
1.4.2 Disease correlations	18
1.5 Creatinine / Creatine	19
1.5.1 Biochemistry	19

1.6 Objectives	20
1.6.1 General objectives	21
1.6.2 Specific objectives	21
Chapter two	
2. Materials and Methods	21
2.1 Study design	21
2.2 Study area	21
2.3 Study Period	21
2.4 Study Populations (Subject)	21
2.5 Samples	21
2.6 Materials	21
2.7 Instrument	21
2.8 Analytical Methods	22
2.8.1 GOD-PAP method for measuring Glucose	22
2.8.2 Glucose by Reflotron: Hexokinase method	22
2.8.3 Measurement of potassium by Ion selective electrode (ISE)	23
2.8.4 Reflotron system plus: Flame photometry method for measuring K ⁺	24
2.8.5 Measurement of Urea by Hitachi 902 Analyzer: Urease /GLDH	24
2.8.6 Urea by Reflotron: Kinetic UV test method	25
2.8.7 Measurement of creatinine by Hitachi 902	25
Modified Jaffes method	25
2.8.8 Creatinine by Reflotron	26
2.9 Quality control	26
2.10 Statistical analysis	27

Chapter Three

Results	28
3-1-Accuracy of glucose tests by the Reflotron	28
3-2-Accuracy of K ⁺ tests by the Reflotron	31
3-3-Accuracy of plasma urea tests by the Reflotron	34
3-4-Accuracy of plasma creatinine tests by the Reflotron	37

Chapter Four

4.Discussion	41
--------------	----

Chapter Five

5. Conclusion and recommendations-	46
5.1. Conclusion	46
5.2. Recommendations	46

Chapter Six

References	47
------------	----

Abstract

This study was aimed to evaluate the accuracy, sensitivity, specificity and time consumed per test of dry chemistry methods compared to wet methods. The study population was 45 patients presented to the central laboratory of Khartoum Teaching Hospital for routine investigation. The biochemical parameters measured were glucose, urea, creatinine and K^+ . They were measured by both wet chemistry methods and dry chemistry methods.

The result showed similar accuracy of dry chemistry methods and wet chemistry method as far as K^+ and creatinine are concerned. The accuracy of dry chemistry methods for urea and glucose were less than the accuracy of the wet chemistry methods.

The sensitivity and specificity of the dry chemistry methods were less than the sensitivity and specificity of wet chemistry methods. However the time consumed per test of dry chemistry is less than that of the wet chemistry. Although the cost per test in the dry chemistry methods is higher than that of the wet chemistry methods. The instrument use in the dry chemistry (Reflotron) is cheaper than that used in the wet chemistry (Hitachi).

We came to conclusion that the dry chemistry can be used as a bed site test or emergency test which can be confirmed further by wet chemistry methods.

النتائج

هدفت هذه الدراسة لتقديم دقة، حساسية، خصوصية والזמן اللازم لإجراء فحص واحد لطرق الكيمياء الجافة.

أجريت هذه الدراسة في 45 مريض قدموا إلى المعمل المركزي بمستشفى الخرطوم التعليمي لإجراء الفحوصات الروتينية، و الفحوصات التي تم قياسها بطريقة الكيمياء الجافة (الريفلوترون) وطريقة الكيمياء الرطبة (الهيتاشي) هي الجلوكوز، البولينا، البوتاسيوم و الكرياتينين .

وأظهرت هذه الدراسة نتائج ذات دقة متشابهة بين طريقة الكيمياء الجافة وطريقة الكيمياء الرطبة فيما يلي البوتاسيوم و الكرياتينين. أما الدقة بواسطة الكيمياء الجافة كانت أقل من الدقة بواسطة الكيمياء الرطبة فيما يلي الجلوكوز و البولينا. أما بالنسبة للحساسية وخصوصية الكيمياء الرطبة، فإن طريقة الكيمياء الرطبة كانت حساسية وخصوصية الكيمياء الرطبة أقل من حساسية وخصوصية الكيمياء الرطبة،

الزمن اللازم لإجراء الاختبار بطرق الكيمياء الجافة أقل من الزمن اللازم لإجراءها بطرق الكيمياء الرطبة، وبالرغم من أن تكلفة الاختبار بواسطة طريقة الكيمياء الجافة أعلى من تكلفته بطرق الكيمياء الرطبة. إلا أن الجهاز المستخدم في الكيمياء الجافة فهو أقل تكلفة من الجهاز المستخدم في الكيمياء الرطبة .

وبالتالي نستنتج أن طريقة الكيمياء الجافة تستخدم بالقرب من المريض في العناية المكثفة أو في حالة الطوارئ والتى نؤكد فيما بعد بطريقة الكيمياء الرطبة.

Abbreviations

ACEP	American Cholesterol Education Programme ¹ .
ADA	American diabetes association
ADP	Adenosine diphosphate
ALT	Alanine aminotransferase
ARF	Acute renal failure
AST	Aspartate aminotransferase
ATP	Adenosine triphosphate.
CRF	Chronic renal failure
D.M	Diabetes Mellitus
DKA	Diabetic ketoacidosis
ECF	Extracellular fluid
F.N	False negative
F.P	False positive
GDM	Gestational diabetes mellitus
GIT	Gastrointestinal tract
GLDH	Glutamate dehydrogenase
GOD	Glucose Oxidase
H₂O₂	Hydrogen peroxide
HDL	High-density lipoprotein
HMP-shunt	Hexose's monophosphate shunts
HNS	Hyperosmolal non- ketotic coma
ICF	Intracellular fluid
IDDM	Insulin-dependent D.M
ISE	Ion selective electrode
K.T.H	Khartoum Teaching Hospital

K⁺	Potassium
LED	Light emitting diode
NADP	Nicotinamide adenine dinucleotide phosphate
NADPH	Nicotinamide adenine dinucleotide phosphate hyderogenase
NIDDM	Non-insulin-dependent D.M
NPN	Non protein nitrogen
OGTT	Oral glucose tolerance test
POD	Peroxidase
PVC	Polyvinyl chloride
r	Correlation coefficient
RMP	Resting membrane potential
RTA	Renal tubular acidosis
T.N	True negative
T.P	True positive
TCA cycle	Tricarboxylic cycle
UV	Ultra violet

	Lists of figures	page
Figure (1)	correlation plot between Reflotron glucose and Hitachi 902 Analyzer glucose	28
Figure (2)	correlation plot between Reflotron and ISE K ⁺	31
Figure (3)	correlation plot between Reflotron urea and Hitachi 902 Analyzer urea	33
Figure (4)	correlation plot between Reflotron creatinine and Hitachi 902 Analyzer	35

Lists of Tables

Table	page
Table (1) Mean, Std. Deviation and Range for glucose	29
Table. (2-a) sensitivity & specificities of Reflotron for glucose	29
Table.(2-b) sensitivity & specificities of Reflotron for glucose	30
Table. (3) sensitivity & specificities of by dry method for glucose	30
Table(4) Mean, Std. Deviation and Range of K+ test	31
Table.(5-a) sensitivity & specificities of Reflotron for K+	
32	
Table. (5-b) sensitivity & specificities of Reflotron for K+	32
Table. (6) sensitivity & specificities of dry method for K+	32
Table (7) Mean, Std. Deviation and Range for urea	33
Table (8-a) sensitivity & specificities of Reflotron for urea	34
Table (8-b) sensitivity & specificities of Reflotron for urea	34
Table . (9) sensitivity & specificities of dry method for urea	34
Table.(10) Mean, Std. Deviation and Range	36
Table. (11-a) sensitivity & specificities of Reflotron for urea	36
Table. (11-b) sensitivity & specificities of Reflotron for urea	37
Table . (12) sensitivity & specificities of dry method for creatinine	37