الآيــة

قال تعالي :

[طه : 114]

Dedication

To my family.

To my friends.

Aknowlegement

All thanks to Almighty allah the sustainer of the universes.

Iwould like to express my gratitude to my supervisor Dr. Adil Elhag Ahmed for standing next to me during this study to carry out this work.

My gratuities are also to college of foresty and range for their helping.

Iwould like to thanks my family who have supported and encourage me.

Abstract

This work reports a method to utilize corncobs waste for the preparation of sodium carboxymethylcellulose (CMC) and its characteristic. The corncobs waste was cleaned, dried and ground to pass 80 mesh screen. The cellulose was extracted using 8% NaOH at 100 °C for 3.5 h and then bleached using 5% NaOCl at 30 °C for 3h. The cellulose was alkalized using NaOH 50% at 25 °C for one hour. Amounts of monochloroacetic acid (NaMCA) (3, 5, 7 g) were added per 5g cellulose and the temperature was adjusted at particular temperature (45 °C, 55 °C or 65 °C). CMC of the highest degree of substitution (DS) was obtained using 5g monochloroacetic acid at 55°C. The as-synthesized CMC was characterized using FT-IR spectroscopy and XRD powder diffractometer and it was found isomophous to the commercial CMC. Its aqueous solutions, however, exhibited lower viscosities than the respective solutions of commercial CMC.

الملخص

هذا البحث يوضح طريقة استحدام مخلفات سنابل الذرة الشامية في تحضير مادة كربوكسي ميثيل السليلوز باستخدام هيدروكسيد الصوديوم ذو التركيز 8% لمدة ساعة عند درجة حرارة 100 درجة مئوية لمدة ثلاث ساعات ونصف واضيف محلول هيبوكلوريد الصوديوم ذو التركيز 5% لمدة ثلاث ساعات عند درجة حرارة 30 درجة مئوية, تمت ألكلة السليلوز باستخدام محلول هيدروكسيد الصوديوم ذو التركيز 50% لمدة ساعة في درجة حرارة الغرفة, اضيفت كميات مختلفة من حمض الخليك احادى الكلور وضبطت درجة الحرارة في (45 و 65) درجة مئوية لمدة ثلاث ساعات حتى تم الحصول على أعلى استبدال عند استخدام 5 جرام من حمض الخليك أحادي الكلور في درجة حرارة 55 درجة مئوية, شخصت مادة كربوكسي ميثيل السليلوز المحضرة بمطيافية الأشعة تحت الحمراء وجهاز حيود الأشعة السينية حيث وجدت أنها تشبه لحد كبير مادة كربوكسي ميثيل السليلوز المخلقة أعطى لزوجة أقل من لزوجة المحلول المائي لمادة كاربوكسي ميثيل السليلوز المخلقة أعطى لزوجة أقل من لزوجة المحلول المائي لمادة ميثيل السليلوز التجارية التي إستخدمت للمقارنة.

Table of contents

	Title	Page
	الآية	I
	Dedication	II
	Acknowledgement	III
	Abstract (English)	IV
	Abstract (Arabic)	V
	Table of contents	VI
	List of schemes	VII
	List of tables	VIII
	List of figures	IX
	Chapter one	
1-1	Cellulose	1
1-1-1	Sources of cellulose	1
1-1-2	Types of cellulose	2
1-1-2-1	Cellulose fibers	2
1-1-2-2	Cellulose nano fibers	2
1-1-2-3	Cellulose based composites	3
1-1-2-4	Cellulose nano composites	3
1-1-2-5	Individual cellulose macromolecules	4
1-1-3	Isolation of cellulose	4
1-1-3-1	Delignification and alkali extraction	4
1-1-3-2	Steam explosion	5
1-1-3-3	Alkaline peroxide extraction	6
1-1-3-4	Organic solvent extraction	7
1-1-3-5	Other isolation method	7
1-1-4	Structure and reactivity of cellulose	8
1-1-4-1	Cellulose molecule at the molecular level	8
1-1-4-2	Supramolecular structure of cellulose	9
1-1-4-3	Morphological structure of cellulose	9
1-1-5	Cellulose derivatives	10
1-2	The corn	11
1-2-1	The corn cob	11
1-2-2	Uses of corn cobs	11
1-2-3	Corn Growing Information	12
1-3	Carboxymethylcellulose	14

1-3-1	Synthesis of carboxymethylcellulose	15	
1-3-2	Application of carboxymethylcellulose	16	
1-4	Previous studies	20	
1-5	Objectives	21	
Chapter 2			
2-1	Materials &Equipments	22	
2-2	Experimental procedures	22	
2-2-1	Isolation of cellulose from corn cobs waste	22	
2-2-2	Synthesis of Na carboxymethylcellulose (Na-CMC) from isolated cellulose	23	
2-2-3	Characterization of isolated cellulose & as-synthesized CMC with FT-IR spectroscopy	23	
2-2-4	Characterization of as-synthesized CMC with XRD powder equipment	23	
2-2-5	Determination of the degree of substitution (DS)	23	
2-2-6	Determination of viscosity	24	
Chapter Three			
3-1	The percentages of cellulose & CMC yeild	25	
3-2	The effect of reaction temperature on the DS values	25	
3-3	The effect of the amount of CMA on the DS values	26	
3-4	The FT-IR spectra of isolated cellulose	26	
3-5	The FT-IR spectra of as-synthesized CMC of highest DS	28	
3-6	The XRD pattern of as-synthesized CMC of highest DS	29	
3-7	The viscosity of solution of as- synthesized CMC	32	
Chapter four			
4-1	Conclusion	33	
4-2	Recommendation	34	
4-3	References	35	
4-4	Appendixes	37	

List of Schemes

Scheme No	Title	page
Scheme 1:1	Readtion of synthesis CMC	16

List of Tables

Table No	Title	page
Table 1:1	Cellulose derivatives and their applications	10
Table 1:2	Growing co information	13
Table 1:3	Application of CMC in Cosmetics and Industries	17
Table 1:4	Application of CMC in Food industries	18
Table 1:5	Application of CMC in Pharmaceutical industries	18
Table 1:6	Application of CMC in adhesive industries	19
Table 1:7	Application of CMC in ceramic industries	19
Table 1:8	Application of CMC in textile industries	19
Table 1:9	Application of CMC	19

List of figures

Figure No	Title	page
Figure 1.1	Structure of cellulose	1
Figure 1.2	The corn cobs	12
Figure 1.3	Parts of corn	14
Figure 3.1	The effect of reaction temperature on DS values	25
Figure 3.2	The effect of varies amount of MCA on DS values	26
Figure 3.3	The FT-IR spectra isolated cellulose	27
Figure 3.4	The FT-IR spectra of as-synthesized CMC of highest DS	29
Figure 3.5	The XRD pattern of as-synthesized CMC of highest DS	30
Figure 3.6	The XRD pattern of as-synthesized CMC and commercial CMC	31