قال الله تعالى

وَقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ ﴿ وَسَثُرَدُّونَ لَا عَمْلُونَ اللَّهُ عَمَلُونَ وَالشَّهَادَةِ فَيُنَبِّئُكُمْ بِمَا كُنْتُمْ تَعْمَلُونَ وَالشَّهَادَةِ فَيُنَبِّئُكُمْ بِمَا كُنْتُمْ تَعْمَلُونَ

صدق الله العظيم سورة التوبة الآية ١٠٥

DEDICATION

To the memory of my brother Ali
May his love, devotion to family, and
his zest for life remain
a constant source of inspiration and
his memory always be for a blessing..

To

My father & mother...
Who provide me hopes, happiness, and
successfulness..

To

My brothers & sisters...

For their support & kindness

To

All persons whom I loved

ACKNOWLEDGEMENTS

First of all, thanks for Allah who gave me the power for preparation and completion of this study.

I would like to express the deepest appreciation to my supervisor Dr. Mogahid Mohammed El Hassan Head of Microbiology Department College of Medical Laboratory Science, Sudan University of Science and Technology for his advice, enthusiasm, help and endless guide,

Also I would like to thank the staff of Sudan University of Science and Technology, especially research laboratory staff; Miss.Suheir Ramdan who helped me to find equipments in the lab to complete my practical.

Deep thanks for Miss Eman Osman and Mrs. Ahmed Hassan for their help.

Finally thanks for my colleagues.

Abstract

Simple, rapid, and sensitive methods that enhance the detection of *Mycobacterium tuberculosis* (*M. tuberculosis*) from sputum specimens are needed. This study compared the sensitivity of ZN stain and polymerase chain reaction (PCR) in the detection of *M. tuberculosis* from sputum specimens to achieve early and proper diagnosis in order to start accurate regimen.

this is a cross-sectional laboratory-based study in which 'V' sputum specimens were collected from patients suspected of having pulmonary tuberculosis attending Abu-Anga Teaching Hospital, El Sha'ab Teaching Hospital and the Tuberculosis Reference Laboratory at the national Health Laboratory in Khartoum, Sudan, during the period from January to March 2010.

Sputum specimens were examined using Ziehl-Neelsen stain; all sputum specimens extracted by Isopropanol method to obtain DNA and subjected to PCR amplified IS6110 insertion sequence in terms of sensitivity. At same time all sputum specimens were inoculated in Lowenstein Jensen (LJ) media and incubated at 37°C.

Only 37(22%) were acid fast bacilli positive, whereas 145(85%) were PCR positive with bands typical to the target sequence of IS6110 as showed by the standard DNA marker, Ziehl-Neelsen technique sensitivity was found to be 77% compared to PCR assay.

Concerning cultivation of all sputum specimens on LJ media there were only 23.4% showed MTC-like colonies in LJ media (dry, rough and pale yellow), whereas 5.8% were considered rapidly growing *Mycobacterium*, and 70.8%

samples revealed contamination or no growth. Further biochemical tests were used beside colonial morphology in order to confirm the existence of *Mycobacterium tuberculosis* complex.

The study concluded that though the sensitivity of ZN stain was quietly decreased, PCR assay provides a significant improvement in diagnosis of pulmonary tuberculosis.

ملخص الاطروحه

للحوجه الماسه لأكتشاف طرق بسيطه ،سريعه، وحساسه تساعد على تشخيص المتفطره السليه المسببه للسل الرئوي هدفت هذه الدراسه لتقارن حساسية صبغة زيل – نلسون وتفاعل البلمره التسلسلي في التعرف على المتفطره السليه من عينات البلغم.

تم جمع ١٧١ عينه بلغم لمرضى اشتبهوا في اصابتهم بالسل الرئوي و أحضروا من مستشفى أبو عنجة التعليمي، مستشفى الشعب التعليمي، والمعمل المرجعي للدرن بالخرطوم، السودان، في الفترة من يناير إلى مارس ٢٠١٠.

تم فحص العينات باستخدام صبغة زيل - نلسون و تم أيضا استخراج الحمض النووي الريبي منقوص الأكسجين من جميع عينات التفاف بطريقة الأيسوبر وبانول وتم إختبارها بواسطة تفاعل البلمرة التسلسلي للتحديد حساسيه صبغة زيل - نلسون. وفي نفس الوقت قد تم تزريع كل العينات بوسط ليونيستين جنسن وتحضينها تحت درجة حراره. 37° C.

اظهرت النتائج 77 (77%) عينه موجبة لصبغة العصويات المقاومة للأحماض بينما 145 (60%) عينه كانت موجبه لتفاعل البلمره التسلسلي ذلك أنها أظهرت حزمة مطابقة في القياس للمستهدف 156100 كما هو مشار إليه بواسطة المؤشر القياسي للحامض النووي الرايبوزي منزوع الأوكسجين، وجد ان حساسية صبغة زيل — نلسون 77% مقارنة بتفاعل البلمرة التسلسلي .

وفيما يتعلق بزراعة عينات البلغم في بوسط ليونيستين جنسن فقط 3.7% اظهرت مستعمر ات تشبه عضيات الباكتيريا المتفطرة الدرنية بوسط ليونيستين جنسن، بينما 0.0% اعتبرت متفطرة سريعة النمو و 0.0% من العينات اظهرت تلوث أو لم تتمو . تم استعمال اختبار ات بايوكيميائيه اضافيه بجانب شكل المستعمرة للتأكد من وجود المتفطره السليه .

وبهذا اكدت الدراسه أن حساسيه صبغة زيل – ناسون ضعيفه ، وأن إستخدام تفاعل البلمرة التسلسلي يوفر تحسين ذو محتوى ملحوظ في تشخيص فحص السل الرئوي

Table of Contents

الآية	I	
Dedication		
Acknowledgment		
Abstract (English)		
Abstract (Arabic)	VI	
Table of Contents	VII	
List of Figures		
List of Table	XII	
1. CHAPTER ONE: INTRODUCTION AND OBJECTIVES		
1.1 Introduction	1	
1.2 Rationale	٣	
1.3 Objectives	3	
2. CHAPTER TWO: LITERATURE REVIEW		
2.1 Mycobacterium	4	
2.1.1 Definition and Taxonomy	4	
2.1.2 Cell Wall Structure	5	
2.1.3 Epidemiology	6	
2.1.3.1 Epidemiology of TB among HIV patients		
2.1.3.2 Epidemiology of Multidrug-resistant TB	7	
2.1.4 Physiology	7	
2.7.5 Immunity	8	
2.1.6 Pathogenicity	10	
2.1.6.1 Virulence Mechanism		
2.1.6.2 Pathology	10	
. 2.1.6.3 Clinical Features	11	
. 2.1.6.4 Miliary Tuberculosis		
2.1.7 Diagnosis	13	
2.1.7.1Tuberculin Skin Testing		
2.1.7.2 Conventional Diagnostic Methods	14	

2.1.7.2.1 Microscopic Techniques		
2.1.7.2.2 Traditional Culture Techniques		
2.1.7.2.3 Biochemical Tests and Morphological Features		
2.1.7.3 New Diagnostic Methods		
2.1.8 Treatment		
2.1.9 Prevention and Control	17	
3. CHAPTER THREE: MATERIALS AND METHOD		
3.1 Study Design	19	
3.1.1 Type of the Study	19	
3.1.2 Study Area	19	
3.1.3 Study Population	19	
3.2 Data Collection	19	
3.3 Conventional Method of Identtification		
3.3.1 Ziehl Neelsen stain		
3.3.2 Culture		
3.3.2.1 Decontamination of Sputum	20	
3.3.2.2 Preparation of Lowenstein Jensen medium	20	
3.3.2.2 .1Preparation of Lowenstein Jensen Medium with Glycerol	20	
3.3.2.2.1.1.3 Preparation of Homogenized Whole Eggs	21	
3.3.2.2.1.1.4 Preparation of Complete Medium	21	
3.3.2.3 Culture Method	21	
3.3.3 Identification of Isolate	22	
3.3.3.1 Colonial Morphology		
3.3.3.2Biochemical tests	22	
3.3.3.2.1 Pigment Production	22	
3.3.3.2.2 Catalase Test	22	

3.3.3.2.3 Nitrate Reduction Test				
3.3.3.2.4 Sensitivity to Para – Nitrobenzoic Acid (PNB) 500 mg/L				
3.3.3.2.5 Sensitivity to Thiophene - 2 -Carboxylic Acid Hydrozide (TCH) 5 mg/L				
3.4 Molecular Identification (PCR)				
3.4.1 DNA Extraction from sputum				
3.4.2 Primers of Insertion Sequence <i>IS6110</i>				
3.4.3 Preparation of PCR Mixture				
3.4.4 PCR amplification				
3.4.5 Preparation of agarose gel				
3.4.6 Visualization of PCR Product				
4. CHAPTER FOUR: RESULT				
4.2 Bacteriological Findings	26			
4.2.1 Ziehl-Neelsen staining	26			
4.1.2 Culture				
4.1.3 Biochemical tests	29			
4.2 Polymerase chain reaction				
5. CHAPTER FIVE: DISCUSSION, CONCLUSION and				
RECOMMENDATIONS 5 1 Discussion	2.1			
5.1 Discussion	31			
5.2 Conclusion	33			
5.3 Recommendation	34			
REFERENCES	35			
APPENDIX I Z.N. staining	39			
APPENDIX II Decontamination Of Sputum	40			
APPENDIX III Mineral salt solution	40			
APPENDIX IV Malachite green solution 2%				
APPENDIX V Catalase Test				

APPENDIX VI Freshly prepared tween – pyroxide mixture	41
APPENDIX VII Nitrate Reduction Test	42
APPENDIX VIII LAMP reagent	42
APPENDIX IX Results of ZN stain, culture, and PCR	43

List of Figures

Fig 1: percentage of direct smear by using ZN stain	26
fig (2): Acid fast bacilli using ZN stain	27
figure (3): Characteristic growth of <i>M. tuberculosis</i> on LJ medium	28
figure (4): Results of nitrate reduction	28
Figure (5). Results of Catalase test	29
Figure (6): percentage of positive specimens by using PCR	30
figure (7): Agarose gel electrophoresis of IS6110 based Polymerase chain reaction	30

LIST OF TABLES

Table 1: Results of ZN stain, culture, and PCR	43
Table 2:LIST of Abbreviation	XII

LIST OF Abbreviation

AFB	Acid Fast Bacilli
AIDS	Acquired Immuno Deficiency Syndrome
BCG	Bacillus Calmette-Guerin
bp	Base pair
CD	Culster Differention
CO2	Carbon doxide
CMI	Cell Mediated Imunity
CSF	Cerebro Spinal Fluid
CR	Complement Receptor
DNA	Deoxyribo Nuclic Acid
dntp	deoxynucleotide triphosphates
DTH	Delayed Type Hypersensitivity
DW	Distell Water
HIV	Human Immunodiffiency Virus
IFN g	Interferon gamma
IL	Interlukin

INH	Isoniazid
IUATLD	International Union Against TB and Lung Disease
LAM	Lipoarabinomannan
LJ	Lowenstein-Jensen
MDR	Multy Drug Resistant
Mgc12	Magnesium Chlorite
MTB	Mycobacterium Tuberculosis
MTC	Mycobacterium Tuberculosis Complex
NaOH	Sodium Hydroxide
NTB	Non Mycobacterium Tuberculosis
OT	Old Tuberculin
PCR	Polymerase Chain Reaction
PNB	Para – NitroBenzoic acid
PPD	Purified Protein Derivative
RIF	Refampin
rRNA	Ribosomal Ribo Nuclic Acid
TBE	Tris Bolic Acid
ТСН	Thiophene-2-Carboxy Acid Hydrozide
UV	Ultra Violet
WHO	World Health Organization