الآية

{ ان في ذلك لذكرى لمن كان له قلب أوألقى السمع وهو شهيد} صدق لله العظيم سوره ق آية 37

Dedication

To my parent who gives me hold forever

To my brothers and my sister who support and mind

To all my big family for their care

To my best friends for their mural support

To all being who helps me to complete this study.

Acknowledgement

All my recognition and credit to my supervisor Dr. Husain Ahmed Hassan.

And I recognition and credit to technologist Mohamed Abd alwahab. And my gratitude for Royal scan center and king Fahad cardiac center and all friendship there.

List of abbreviations

BU/BUN	Blood urea/Blood urea and nitrogen
CT	Computerize tomography
CA	Coronary angiography
CAD	Coronary artery disease
CCTA	Coronary computed tomography
	angiography
CABG	Coronary artery bypass graft

CACS	Coronary artery calcium scoring	
CTMD/MDCT	CT Computerize tomography multi-detector	
	Multi-detector computerize tomography	
DM	Diabetic mellitus	
DAS	Digital subtraction angiography	
ECG	Echocardiogram	
EKG	Electrocardiogram	
FRS	Framingham risk scoring	
RCA	Right coronary artery	
LMA	Left main descending	
LAD	Left anterior descending (distal)	
LCA	Left coronary artery	
S.C	Serum creatinine	
GE	General electric	
KV	Kilovolt	
MA	Mille ampere	
RV	Right ventricle	
LV	Left ventricle	
LDL	Low density lipoprotein	
HDL	High density lipoprotein	
MRI	Magnetic resonance image	
PET	Positron emition tomography	
PTCA	Percutaneous transluminal coronary	
	angioplasty	
LCX	Left circumflex	
CAT	Computerize axial tomography	
EBCT	Electron beam CT	
RA/LA	Right/left atrium	

List of Tables

Table No	Table Name	Page No
(2.1)	The blood supply of the anatomical region of the heart	5
(2.2)	The extent of CAD is graded according to the patient calcium score	31
(2.3)	The scanner settings for CCTA	49

(2.4)	The contrast agent injection rates	51
(3.1)	The technique use in performing CT examination for coronary artery	56-57
(4.1)	gender distribution in cardiac catheterization	59
(4.2)	gender distribution in CCTA	60
(4.3)	gender distribution for the study	61
(4.4)	age distribution in Cardiac catheterization	62
(4.5)	age distribution in CCTA	63
(4-6)	age distribution in the study	64
(4.7)	pathology distribution in cardiac catheterization (stenosis)	65
(4.8)	pathology in CCTA(stenosis)	66
(4.9)	pathology in the study(stenosis)	67
(4.10)	pathology type in CCTA	68
(4-11)	pathology distribution of the study	69
(4.12)	evaluate the appearance of main artery in CCTA	70

List of Figures

Fig No	Figures Name	Page No
(2.1)	Anatomical position of RCA, LAD and LCX in the anterior projection.	6
(2.2)	anatomical position of RCA,LAD and LCX in right anterior oblique projection	6
(2.3)	anatomical position of RCA,LAD and LCX in the lateral projection	7
(2.4)	anatomical position for Circumflex and LAD seen in lateral projection	7

(2.5)	anatomical position for RCA,LAD and LCX and main branches in	
	anterior projection	
(2.6)	pulsatile nature of left coronary artery blood flow	10
(2.7)	anomalies of coronary artery	13
(2.8)	coronary artery anomalies (internal LCA)	13
(2.9)	coronary artery anomalies (Alcapa)	14
(2.10)	coronary artery anomalies (myocardial bridging)	15
(2.11)	coronary artery anomalies (fistula)	15
(2.12)	narrowing in CA	17
(2.13)	cardiac catheterization	25
(2.14)	calcium scoring image	29
(2.15)	calcium scoring image	32
(2.16)	calcium scoring 3D image	33
(2.17)	patient position of cardiac CT	43
(2.18)	motion of patient	43
(2.19)	ECG monitors	43
(2.20)	position of ECG leads and planning of the scan	44
(2.21)	ECG graph	44
(2.22)	effect of sublingual nitroglycerin on the coronary vessel diameters	45
(2.23)	drug for premedication in patients undergoing to CCTA	45
(2.34)	ECG graph	45
(2.25)	CCTA planning exam	48
(2.26)	important of slice collimation for image quality	53
(4.1)	gender distribution in cardiac catheterization	59

(4.2)	gender distribution in CCTA	60
(4.3)	gender distribution for the study	61
(4.4)	age distribution in cardiac catheterization	62
(4.5)	age distribution in CCTA	63
(4.6)	age distribution of the study	64
(4.7)	pathology in cardiac catheterization (stenosis)	65
(4.8)	pathology in CCTA(stenosis)	66
(4.9)	pathology in CCTA(stenosis)	66
(4.10)	pathology in the study(CCTA and cardiac catheterization)	68
(4.11)	pathology distribution of the study(CCTA and cardiac	69
	catheterization)	
(4.12)	evaluation of appearance in CCTA	70

Abstract

The aim of this study ware to assess the appearance of the coronary artery (appearance, pathological change and the most coronary artery effect by pathology) by using multi-slice CT angio (CT scan 64 slice) and cardiac catheterization and to know the best way to do this exam and to know the importance, characteristic and limited from the other exam witch evaluate the risk factor in coronary artery.

Study was done in Royal scan center in Khartoum and retrospective data from King Fahad cardiac center in Kingdom of Saudi Arabia "Riyadh". The study sample was 50 patients, 30 of them underwent to CCTA and 20 of them underwent to cardiac catheterization by vein.

In the study the positive patient who diagnosed by CCTA were 17(56.6%) from CCTA group 11(64.7%) of them have Ca deposits, 4(23.5%)have coronary artery stenosis and 2(11.7%) have congenital anomalies. the rest of the CCTA group are normal in configuration.

The positive patient who diagnosed by cardiac catheterization 6(30%) from this

group have Ca stenosis, the rest of the group are normal.

Also the capable to diagnose many type of pathology by use CCTA like calculate Ca scoring in any coronary artery witch that difficult to detect by cardiac catheterization and other exams specifically and that cannot complete the CCTA if it's in high level because there are more risk factor and guaranty the image quality. The study showed that the most affected branches were as follows LAD have the most risk factor by any why that risk in percentage 43.50%, RCA 30.40%, LCX 21.7%, LMA 4.4% the lasted one is PDA in percentage near to zero.

Both technique (CCTA and cardiac catheterization) perform good visualized of larger coronary arteries branches, but cardiac catheterization visualized smaller branches better than CCTA.

مستخلص البحث

يهدف البحث لتقييم ظهور الشرايين التاجيه (المظهر,المرض والاكثر تأثرا بالمرض) بواسطه جهاز الأشعه متعدد الشرائح وبالتحديد جهاز الأشعه المقطعيه ذي ال 64 كاشف وميضي ومعرفه الطريقه المثلي لعمل هذا الفحص بالاضافه لمعرفه أهميته ,مميزاته ومحدوديته بالنسبه للفحوصات الأخرى التى تقيم عامل الاخطار في الشرايين التاجيه.

تمت الدراسه في مركز رويال سكان بالخرطوم وقد استعين ببعض من فحوصات الأشعه المقطعيه والقسطره القلبيه من مركز الملك فهد للقلب بالمملكة العربية السعودية"الرياض". أجريت الدراسه على 50 مريضا ,30 منهم خضعوا لفحص الأشعه المقطعيه و 20 مريض من العينه خضع لفحص القسطره القلبيه بالوريد.

في هذه الدراسه كان عدد الحالات الموجبه 17حاله بنسبه (56.6%) تم تشخيصهم بالاشعه المقطعية للشرايين التاجيه 11 منهم بنسبه (64.7%)يعانون زياده في ترسيب الكالسيوم , 4 منهم بنسبه (23.5%)يعانون من ضيق الشرايين التاجيه ,2 (11.7%) منهم يعانون من عيوب خلقيه . . الحالات الموجبه التي تم تشخيصها بقسطره القلب كان عددها 6حالات (

30%)من الذين خضعوا للفحص بالقسطره القلبية وكانوا جميعا يعانون من ضيق في الشرايين التاجية. التاجية الما بقيه العينه فكانت لاتعاني من مشاكل في الشرايين التاجية. خلص البحث الى أن الأشعه المقطعيه وسيله جيده للكشف عن أمراض الشرايين التاجيه بطريقه آمنه حيث كشفت عن وجود مشاكل في اكثر من 46%من مجمل العينه المأخوذه والذين يشك في

وجود مشاكل في الشرايين التاجيه لديهم حيث وجد انه 26.7%يعانون من ضيق في الشرايين و 73.3%يعانون من زياده في نسبه يرسب الكالسيوم و 6.7%لديهم مشاكل خلقيه,بينما كشفت القسطره القلبيه عن مشاكل 30%من العينه لكننا قمنا بمعالجه المشكله أثناء الفحص . كما اننا أستطعنا تشخيص عده أمراض بواسطه جهاز الاشعه المقطعيه متعدد الشرائح مثل حساب نسبه الكالسيوم في كل شريان على حده والذي يصعب قياسه بواسطه القسطره القلبيه او الفحوصات الأخرى بدقه

والتى لايمكن في حاله ارتفاع نسبته اتمام فحص الشرايين التاجيه بواسطه الاشعه المقطعيه لزياده عامل الاخطار وعدم ضمان جودةالصوره.

كما خلصت الدراسه الي أن الشريان الاكليلي الايسرالامامي النازل هو الأكثر تعرضا لعامل الاخطار أيا كان بنسبه 43.50%يليه الشريان الاكليلي الايمن نسبه 30.40% ثم الفرع المنعطف الايسر 21.7 %ثم الشريان القلبي المتوسط 4.4 % وان الاقل تأثرا هوالشريان القطري الخلفي حيث كانت نسبه تأثره قريبه من الصفر. تقنيه الاشعه المقطعيه والقسطره القلبيه توضح بدرجه جيده جميع الفروع الرئيسيه للشرايين التاجيه وتقل نسبه توضيح الفروع الرئيسيه بتقنيه الاشعه المقطعيه للشرايين التاجيه.

List of contents

الآية		
Dedication		
Acknowledgment		
List of abbreviation		
List of table		
List of figures		
Abstract		
الخلاصة		
Chapter One		
1.1 Introduction	1	
1.2 Statement of problem	1	
1.3 The objective	2	
1.3.1 General objective	2	
1.3.2 Specific objective	2	
1.4 Overview of chapter	2	
Chapter Two		
2.1 Anatomy and physiology	3	

2.1.1 Introduction	3
2.1.2 Anatomy and physiology	3
2.1.2.1 Blood supply of the conducting system	8
2.1.2.2 Coronary flow	8
2.1.2.3 Important feature of coronary blood flow	9
2.1.2.4 Anastomoses	10
2.1.2.5 Venous derange of the heart	11
2.1.2.5.1 The coronary veins	11
2.1.2.5.2 Coronary sinus and it's tributaries	12
2.1.2.5.3 Anterior right ventricular veins	12
2.1.2.5.4 The besian veins	12
2.1.2.6 The coronary anomalies	13
2.1.2.6.1 Interarterial LCA	14
2.1.2.6.2 Alcapa	14
2.1.2.6.3 Myocardial bridging	15
2.1.2.6.4 Fistula	16
2.2 Pathology of coronary artery	17
2.2.1 definition	17
2.2.2 Etiology	17
2.2.3 Major risk factors	18
2.2.4 Signs and symptoms of CAD	19
2.2.5 Diagnosis of CAD	19
2.2.5.1 Diagnostic test and procedure	20
2.2.5.1.1 Electrocardiogram	20

2.2.5.1.2 Stress testing	21
2.2.5.1.3 Echocardiography	21
2.2.5.1.4 Chest x-ray	22
2.2.5.1.5 Blood test	22
2.2.5.1.6 Electron-beam computed tomography	22
2.2.5.1.7 Nuclear medicine	22
2.2.5.1.8 Coronary angiogram and cardiac catheterization	22
2.2.6 Coronary artery disease treatment	23
2.3 Coronary angiography	24
2.3.1Cardiac catheterization	24
2.3.2 Purpose	24
2.3.3 Left and right side catheterization	25
2.3.4 Coronary angiography	25
2.3.5 Catheterization procedure	25
2.3.5.1 Patient preparation for coronary angiography	25
2.3.5.2 Catheterization procedure	26
2.3.5.3 After care	27
2.3.6 Risks	28
2.3.7 Radiation hazards	28
2.3.8 Morbidity and mortality rates	28
2.3.9 Normal result	29
2.4 Calcium scoring test	30
2.4.1 Patient preparation	31
2.4.2 The procedure and technique	32

2.4.3 Calcium scoring results	33
2.4.4 The downside to calcium scoring	34
2.4.5 The benefits and risks	35
2.4.6 Limitation of cardiac CT for calcium scoring	36
2.5 Contrast media	36
2.5.1 Ionic organic iodides	36
2.5.2 Nonionic organic iodides	37
2.5.3 Common side effects	37
2.5.3.1 Blood chemistry and Glucophage	38
2.5.3.2 Selection and preparation of contrast media	39
2.5.3.3 Reaction to contrast media	39
2.5.3.3.1 Preparation for possible reaction	39
2.5.3.4 Type of reaction	39
2.6 CCTA	42
2.6.1Patient preparation	42
2.6.1.1 Patient information sheets	42
2.6.2 Contra indication	43
2.6.2.1 Contra indication to iodinated contrast media	44
2.6.2.2 Contra indication to nitroglycerin	44
2.6.2.3 Contra indication to beta blockers	44
2.6.3 Examination	45
2.6.3.1 Position and ECG	45
2.6.3.2 Beta blockade and channel blockade	49
2.6.3.3 Breath-hold training	51

2.6.3.4 Scanning parameters	52
2.6.3.5 Contrast agent	53
2.6.3.6 After the scan	55
2.6.3.7 Reconstruction	55
2.7 Previous studies	57
Chapter Three	
3.1 Patient	59
3.2 Machine used	59
3.3 CT technique	60
3.4 Interpretation	60
Chapter Four	
Results	61
Chapter Five	
5.1 Discussion	72
5.2 Conclusion	73
5.3 Recommendation	74
References	