بسم الله الرحمن الرحيم

)أَوَلَمْ يَرَ الَّذِينَ كَفَرُوا أَنَّ السَّمَاوَاتِ وَالْأَرْضَ كَانَتَا رَتْقًا فَفَتَقْنَاهُمَا وَجَعَلْنَا مِنَ الْمَاءِ كُلَّ شَيْءٍ حَيٍّ أَفَلَا يُؤْمِنُونَ (

صدق الله العظيم

Dedication

To the soul of my uncle Kaml Osman Elzuber

My Parents

My brothers

My colleagues and friends

Acknowledgments

I gratefully acknowledge my indebtedness to my supervisor Dr Mohamed Elmukhtar Abd Elaziz who has been a source of knowledge, advice and support. His friendly attitude has surrounded him with pleasant and qualified people who helped to create an excellent working atmosphere.

I would like to thank deeply Dr Omer Adam Gibla for his effort and support.

My appreciation would go to Dr Aziza Karrer.

I would like to express my sincere gratitude to my teachers Bakeir Yaguob, Abd Ehameed Faroge and Safa Abd Elbagi.

Thanks are also due to my teachers and colleges in Sudan University of Science and Technology for their support.

Abstract

The objective of this study was to detect the pollutant anions in Kamleen drinking water from underground sources. Concentration levels of chloride, sulphate, nitrate, nitrite, and particularly fluoride were determined. In addition, color, turbidity, hydrogen ion concentration, electrical conductivity, total hardness, total alkalinity, and total dissolved solids were measured. Samples of groundwater were randomly collected from twenty eight different areas around central Kamleen locality during the summer season from May to August 2011.

Ion-selective electrodes methods were used to determine fluoride, chloride and nitrate. Colorimetric methods were used to determine sulphate, turbidity and also fluoride and nitrate. In comparison, sulphate content was also determined gravimetrically. Nitrite was also determined colorimetrically but using standard addition method. Chloride was also determined by titrimetric method and also total hardness and total alkalinity.

The results obtained showed that the of fluoride contents ranged from 0.01 to 1.89 ppm, chloride, 3.82 to 770.42 ppm, nitrate 8.52 to 44.00 ppm, nitrite 0.008 to 0.828ppm and sulphate ranged from 5.99 to 881.00 ppm. It was also found that hydrogen

ion concentration and turbidity were in agreement with those of the international standard except those of total dissolved solids (2070 ppm), and electrical conductivity (3105 μ s) in Eliedaid groundwater.

Chemical composition studies showed that the total hardness, total alkalinity nitrate and nitrite in all sites of Kamleen groundwater complied with those of the international standards of drinking water. Only one sample of Eliedaid, however, showed higher values for chloride (777.24 ppm) and sulphate (881.00 ppm) than the maximum permissible limits (250 ppm) for both ions. Up to five samples of Kamleen groundwater of Fadoul (1.69ppm), Eltakala Abashar (1.63ppm), Eltorabi Elgadida (1.89ppm), Elkasabmar (1.51ppm), Eltakala Rofaa (1.55 ppm), did not conform with the maximum permissible limit of 1.50 ppm for fluoride content in drinking water. The groundwater of these areas could be considered as unsuitable for drinking.

The groundwater of the central and far eastern areas of Kamleen locality were affected by fluoride, while those of northern and western, as indicated by the results obtained, were affected by salinity.

الخلاصة

هدفت هذه الدراسة للكشف عن الانيونات الملوثه لمياه الشرب الجوفية بمحلية الكاملين. وقد تم تعيين تركيز محتوى الكلوريد والكبريتات والنترات والنتريت وحاصة الفلوريد. بالاضافة الى قياس اللون والعكارة وتركيز ايون الهايدروجين والمواد الصلبة الذائبة و العسر الكلي والقلوية الكلية والموصلية الكهربية.

وقد تم جمع العينات من المصادر الجوفية بطريقة عشوائية من ثماني وعشرين منطقة مختلفه من انحاء ووسط المحلية خلال فصل الصيف في الفـترة من مايو الى اغسطس للعام 2011 م.

وقد تم استخدام طرق الاقطاب انتقائية الأيون لتعيين محتوى الفلوريد والكلوريد بالإضافة الى النترات. وقد تم استخدام طرق المطيافية اللونية لتعيين

محتوى الكبريتات والعكارة والنترات ايضاً. وللمقارنة تم تعيين محتوى الكبريتات بالطريقة الوزنية. وقد تم ايضاً استخدام المطيافية اللونية لتعيين محتوى النتريت لكن بإستحدام طريقة الإضافة القياسية. وتم ايضا تعين الكلوريد بالاضافة الي العسر الكلي والقلوية الكلية بالتحليل الحجمي .

وقد اظهرت النتائج ان محتوى الفلوريد يقع في المدى من (0.01 الى 1.89 الميون) والكلوريد في المدى من (3.82 الى 777.24 جزء المليون) والنترات من (8.52 الى 44.00 جزء من المليون). ولقد وجد ايضاً ان تركز ايون الهايدروجين والعكارة وكمية الاملاح الذائبة والعسر والقلوية والموصلية الكهربية مطابقة للمواصفات العالمية ما عد كمية الاملاح الذائبة لقرية العديد 2070 جزء من المليون الموصلية الكهربية لنفس القرية 3105 مايكرو سمنس. وقد اوضجت الدراسة ايضاً ان محتوى النترات والنتريت مطابق للمواصفات العالميه لمياه الشرب. وقد اظهرت عينة واحدة فقط من قرية العديد قيم عالية بالنسبة للكلوريد (777.24 جزء من المليون) والكبريتات (881.00 جزء من المليون) والتي تجاوزت الحد المسموح به عالمياً (250 جزء من المليون)

وقد وجد ايضاً ان هنالك خمس عينات في المحلية وهي فضل (1.66 جزء من المليون), التكلة أبَشْر (1.63 جزء من لمليون), الترابي القديمة (1.89 جزء من المليون), الكسمبر (1.51 جزء من المليون) بالإضافه الى التكلة رفاعة (1.55 جزء من المليون) قد تجاوزت الحد المسموح به عالمياً (1.50 جزء من المليون). ويمكن اعتبار ان المياه الجوفية لهذه المناطق غير صالحة للشرب.

وقد اوضحت النتائج ان المياه الجوفية لمنتصف و اقصى شرق المحلية هـي الاكـثر تأثراً تاثراً بالفلوريد في حين ان تلك التي فـي شـمال شـرق المحليـة هـي الاكـثر تـأثراً بالملوحة.

List of contents	Pa
	ge
الآيه	I
Dedication	П
Acknowledgements	Ш

English abstract	IV
Arabic abstract	VI
List of contents	VIII
List of tables	XIV
List of figures	XVI
Chapter one	
1.1 Introduction	1
1.1.1 Structure and form of water	1
1.1.2 Water percent on Earth	2
1.1.3 Water pollution	4
1.1.4 Sources of water	4
1.1.4.1 Surface water	4
1.1.4.2 Sources of surface water are	4
1.1.5 Subsurface water	5
1.1.5.1 Groundwater	5
1.1.5.2 Groundwater quality	5
1.1.5.3 Salinity	7
1.1.5.4 Groundwater contaminants	7
1.1.5.5 Groups of contaminants	8
1.1.6 Possible health effects	9
1.2 literature review	10
1.2.1 Physical properties	10
1.2.1.1 Electrical conductivity	10
1.1.1.2 Color	10
1.2.1.3 Taste and odor	10

1.2.1.4 Turbidity	11
1.2.1.5 Potential of hydrogen	11
1.2.1.6 Total dissolved solids (T.D.S)	12
1.2.2 Chemical substances	12
1.2.2.1 Alkalinity	12
1.2.2.2 Total hardness	13
1.2.2.3 Fluoride	13
1.2.2.3.1Fluoride health effects	15
1.2.2.4 Chloride	16
1.2.2.4.1 Chloride health effects	17
1.2.2.5 Sulphate	18
1.2.2.5.1 Sulphate health effects	19
1.2.2.6 Nitrate and nitrite	20
1.2.2.6.1 Nitrate and nitrite health effect	22
1.2.2.6.1.1 Effects of non-cancer	22
1.2.2.6.1.2 Effects of cancer	22
1.3 Hydrological formation of Kamleen locality	24
1.3.1Geological column of Kamleen locality	24
1.3.1.1The modern formations reservoir	25
1.3.1.2 Jazeera reservoir	25
1.3.1.3 Nobian sand stone underground reservoir	25
1.3.2 Salinity problems	25
1.4 Objectives	26

Chapter two	
2 Materials and methods	27
2.1 Sampling	27
2.2 Experimental work	27
2.3 Materials	27
2.4 Instruments	28
2.5 Physical techniques	29
2.5.1 Determination of pH	29
2.5.2 Determination of turbidity	29
2.5.3 Determination of electrical conductivity	29
2.5.3.1 Procedure	30
2.5.4 Determination of total dissolved solids (T.D.S)	30
2.5.4.1Procedure	30
2.6 Chemical techniques	31
2.6.1 Determination of alkalinity	31
2.6.1.1 Procedure	31
2.6.2 Determination of total hardness	32
2.6.2.1 Procedure	32
2.6.3 Colorimetric determination of nitrite	32
2.6.3.1Preparation of sulphanilamide solution	32
2.6.3.2 Preparation of standard nitrite	33
2.6.3.3 Preparation of standard solutions for standard	33
addition method	رر

2.6.4.1Determination of chloride "potentiometric method (I	34
S E)	34
2.6.4.1.1Introduction	33
2.6.4.1.2 Preparation of standard solution	34
2.6.4.1.3 Procedure	34
2.6.4.2 Determination of chloride (titermtric method)	35
2.6.4.2.1 Procedure	35
2.6.5.1 Potantiometric determination of nitrate	35
2.6.5.1.1Introduction	35
2.6.5.1.2 Preparation of standard solution	36
2.6.5.1.3 Procedure	36
2.6.5.2 Colorimetric determination of nitrate	37
2.6.5.2.1 Introduction	37
2.6.5.2.2 Preparation of standard solution	37
2.6.5.2.3 Procedure	37
2.6.6.1 Colorimetric determination of sulphate	38
2.6.6.1.1 Introduction	38
2.6.6.1.2 Preparation of standard solution	38
2.6. 3.1.3 Procedure	38
2.6.6.2 Gravimetric determination of sulphate	39
2.6.6.2.1Procedure	39
2.6.6.2.2 Filtration and ignition	39
2.6.7.1 Determination of fluoride	40
2.6. 7.1.1 Preparation of standard of fluoride	40
2.6.7.1.2 Procedure	40

2.6.7.2 Potentiometric determination of fluoride	41
2.6.7.2 .1Introduction	41
2.6.7.2.2 Preparation of standard solution of fluoride	41
2.6.7.2. 3 Procedure	42
Chapter three	
3 Results and discussion	43
3.1 Physical properties	43
3.1.1 Determination of (pH) and electrical conductivity (E C)	43
using potentiometric and colorimetric methods	43
3.1.2 Determination of total dissolved solids (T.D.S) and	45
turbidity	43
3.2 Chemical composition	49
3.2.1 Titrimetric determination of total hardness	49
3.2.2 Alkalinity	50
3.2.2.1 Titrimetric determination of bicarbonate content	50
3.2.2.2 Titrimetric determination of carbonate content	51
3.2.2.3 Total alkalinity	52
3.2.3 Fluoride content	56
2.2.3.1 Potentiometeric determination of fluoride content	56
3.2.3.2 Colorimetric determination of fluoride content	59
3.2.4 Chloride content	61
3.2.4.1 Potentiometeric determination of chloride content	61

3.2.4.2 Titrimetric determination of chloride content	65
3.2.5 Nitrate content	66
3.2.5.1 Colorimetric determination of nitrate	66
3.1.2.5.2 Potentiometeric determination of nitrate content	69
3.2.6 Sulphate content	72
3.2.6.1 Colorimetric determination of sulphate	72
3.2.6.2 Gravimetric determination of sulphate content	74
3.2.7 Colorimetric determination of nitrite content using	80
standard addition method	00
Chapter four	
Conclusion	84
Recommendations	85
Chapter five	
References	86
Chapter six	
Appendixes	95

List of tables	Page
	no
(1.1) International standard of drinking water	23
(2.1) Calculation of alkalinity	3
	1
(2.2) Preparation of nitrite standard solutions for standard addition method	33
(3.1) Electrical conductivity (E C) and (pH) values for Kamleen water samples	43
(3.2) Total dissolved solids (T.D.S) and turbidity of Kamleen water samples	45
(3.3) Descriptive statistic of physical contents	48
(3.4) One-sample t-test statistics of physical contents	48
(3.5) Total hardness of Kamleen water samples	49

(3.6) Alkalinity as bicarbonate of Kamleen water samples	50
(3.7) Alkalinity as carbonate of Kamleen water samples	51
(3.8) Alkalinity as bicarbonate, carbonate and hydroxide	52
concentration of Kamleen water samples	
(3.9) Descriptive statistics of the flowing parameter	55
(3.10) One-sample t-test of the flowing parameters	55
(3.11) Fluoride electrode calibration data	56
(3.12) Fluoride concentration in Kamleen water samples by	57
direct potentialmetric measurement	
(3.13) Fluoride absorptiometric calibration data	59
(3.14) Fluoride content of Kamleen water samples by	60
colorimetric method	
(3.15) Chloride electrode calibration data	61
(3.16) Chloride content of Kamleen water samples by	62
potentiametric	
method	
(3.17) Chloride content in Kamleen water samples by	65
titrimetric method	
(3.18) Nitrate absoroptiometric calibration data	66
(3.19) Determination of nitrate content in Kamleen water	67
samples by colorimetric method	
(3.20) Nitrate electrode calibration data	69
(3.21) Nitrate content in Kamleen water samples by direct	70
potentiometric measurement	

(3.22) Sulphate absorptiometric calibration data	72
(3.23) Sulphate content in Kamleen water samples by	73
colorimetric method	
(3.24) Sulphate content in Kamleen area water samples by	74
gravimetric method	
(3.25) Descriptive statistics of flowing anions (group one)	76
(3.26) One-sample t-test of the flowing anions (group one)	76
(3.27) Descriptive statistics of flowing anions (group two)	77
(3.28) One-sample t-test of flowing anions (group two)	78
(3.29) Independent samples t-test of flowing anions	79
(3.30) Nitrite content absorptiometric standard addition	80
data	
(3.31) Spectrophotometric determination of nitrite content	82
of Kamleen water samples by standard addition method	
(3.32) Descriptive statistics of nitrite content	83
(3.33) One-sample t-test of nitrite content	83
(6.1) International standard of drinking water	124

List of figures	Pag
	е
	no
(1.1) Structural and form of water	2
(1.2) Distribution of water on earth	3
(1.3) Distribution of water useable by human respectively	3

(3.1) Mean concentration of hardness and total alkalinity	55
(3.2) Fluoride electrode calibration curve	56
(3.3) Fluoride absorptiometric calibration curve	59
(3.4) Chloride electrode calibration curve	62
(3.5) Nitrate absoroptiometric calibration curve	67
(3.6) Nitrate electrode calibration curve	69
(3.7) Sulphate absorptiometric calibration curve	72
(3.8) Mean concentration of fluoride, chloride, nitrate and	77
sulphate (group one)	
(3.9) Mean concentration of fluoride, chloride, nitrate and	78
sulphate (group two)	
(6.1) Spectrophotometric determination of nitrite content in	95
Fadoul water sample using standard addition method	
(6.2) Spectrophotometric determination of nitrite content in	96
Eltikaina Abood water sample using standard addition	
method	
(6.3) Spectrophotometric determination of nitrite content in	97
Elmasoodia water sample using standard addition method	
(6.4) Spectrophotometric determination of nitrite content in	98
Elsidaira water sample using standard addition method	
(6.5) Spectrophotometric determination of nitrite content in	99
Eltakala Abashar water sample using standard addition	
method	
(6.6) Spectrophotometric determination of nitrite content in	100
Abdelmalik Falata water sample using standard addition	

method

(6.7) Spectrophotometric determination of nitrite content in	101
Elrayhana Elsigaira water sample using standard addition	
method	
(6.8) Spectrophotometric determination of nitrite content in	102
Elkamleen water sample using standard addition method	
(6.9) Spectrophotometric determination of nitrite content in	103
Elmeailig Elshargia water sample using standard addition	
method	
(6.10) Spectrophotometric determination of nitrite content	104
in Eldibaiba Abdallah water sample using standard addition	
method	
(6.11) Spectrophotometric determination of nitrite content	105
in Ellaota water sample using standard addition method	
(6.12) Spectrophotometric determination of nitrite content	106
in Kalkol water sample using standard addition method	
(6.13) Spectrophotometric determination of nitrite content	107
in Elhilaila water sample using standard addition method	
(6.14) Spectrophotometric determination of nitrite content	108
in Elgadeed Elsoug water sample using standard addition	
method	
(6.15) Spectrophotometric determination of nitrite content	109
in Elgadeed 1 water sample using standard addition method	
(6.16) Spectrophotometric determination of nitrite content	110
in Eldibab water sample using standard addition method	
(6.17) Spectrophotometric determination of nitrite content	111

in Elyaban water sample using standard addition method	
(6.18) Spectrophotometric determination of nitrite content	112
in Elbagair 2 water sample using standard addition method	
(6.19) Spectrophotometric determination of nitrite content	113
in Elbagair 1 water sample using standard addition method	
(6.20) Spectrophotometric determination of nitrite content	114
in Elrayhana Elkabira water sample using standard addition	
method	
(6.21) Spectrophotometric determination of nitrite content	115
Elmeailig Elganobia water sample using standard addition	
method	
(6.22) Spectrophotometric determination of nitrite content	116
in Elkasabmar water sample using standard addition	
method	
(6.23) Spectrophotometric determination of nitrite content	117
in Elgaba water sample using standard addition method	
(6.24) Spectrophotometric determination of nitrite content	118
in Eltorabi Elgadima water sample using standard addition	
method	
(6.25) Spectrophotometric determination of nitrite content	119
in Eltakala Rofaa water sample using standard addition	
method	
6.26) Spectrophotometric determination of nitrite content in	120
Eliedaid water sample using standard addition method	
(6.27) Spectrophotometric determination of nitrite content	121
in Flooba Samah water sample using standard addition	

m	et	h	റ	d
	\sim \sim		v	ч

(6.28) Spectrophotometric determination of nitrite content	122
in Eltorabi Elgadida water sample using standard addition	
method	
(6.29) Elgazira state map	123