

College of Graduate studies Master Programme

Radiation Protection and Minimization
According to Modified Schordinger Equation

الوقاية من الاشعاع وتقليله وفق معادلة شرودنجر المعدلة

A thesis Submitted in partial fulfillment for the requirements of master degree in nuclear physics

by
Elfatih Musa Ali Esmail
Supervisor
Dr. Ahmed Hassan AL Faki

May 2013

الاستهلال

قال تعالى:

صدق الله العظيم

DEDICATION

To my great mother.
To my great father.
To my lover.
To my sisters and brothers.
To all who helped me.

This simple effort with my love & best wishes

Elfatih algamry

ACKNOWLEDGEMENT

My great thank first & last
To Allah
Who helped me to prepare this
research

I would like to pass my great thank collected with deep full gratitude to my supervisor

Dr.Ahmed flhasan fl faki
The Dean faculty for college of
science

And prof. Mubarak Dirar who helps me at all time when I need him.

Also I thank my colleagues for their advice me to held my master degree

Contents

Chapter	Contents	P. No
	Approval	I.
	Dedication	II.
Chapter	Abstract	1
one	Radiation importance	3
	Problems	4
	Aims	5
Chapter	presentation of thesis	5
two	2-1 Radioactivity	6
	2-1-1 Alpha Decay	9
	2-1-2 Beta Decay	11
	2-1-3 Gamma Decay	13
	2-1-4 Neutrons	14
	2-2 Radiation Sources	14
	2-3 Natural Decay Series	19
Chapter	3-0 Introduction	22
three	3-1 Alpha particles interaction	23
	3-2 Beta particles interaction	24
	3-3 Gamma particles interaction	25
	3-4 Neutrons interaction	27
Chapter	4-1 Introduction	28
four	4-1-1 Direct Cell Damage	29
	4-1-2 Indirect Cell Damage	30
	4-2 Radiosensitivity of cells	31

	4-3 Effect of Radiation on Cells	32
	4-4 Long term effects	35
	4-4-1 Genetics Effects	35
	4-4-2 Somatic effect	36
	4-5 Effect of radiation on the human	36
	body	
Chapter	5-1 Radiation detection	39
five	5-1-1 Gas Field detectors	39
	5-1-2 semiconducting detectors	40
	5-1-3 Gamma spectroscopy	41
	5-1-4 portable field instrument	41
	5-1-5 personal dosimeters	41
	5-2 Radiation dosimetery	42
	5-2-1 Quantity and units	43
	5-2-2 Dose from background radiation	46
Chapter	6-0 Introduction	48
six	6-1 Shielding of Alpha – Emitting	49
	sources	
	6-2 Shielding of Beta – Emitting sources	50
	6-3 Shielding of photon sources	50
	6-4 Shielding of protons and light Ions	51
Chapter	7-1 Introduction	52
seven	7-2 Modified Schrodinger Equations	52
	7-3 Discussion	53
	7-4 Conclusion	53
	7-5 References	54

