DEDICATION

To my parents, for belief

ACKNOWLEDGEMENTS

First, praise be to Allah, the most merciful for blessings of will and patience upon this work.

I take this opportunity to express my profound gratitude and deep regards to my guide, Dr. Elfatih Ahmed Hassan for his exemplary guidance, and monitoring throughout the course of this project. The blessing, help and guidance given by him time to time shall carry me a long way in the journey of life on which I am about to embark.

I would love to appreciate the constant encouragement of Dr. Amira Abdelaziz Elhassan who has enlightened my path with valuable information provided by her in her respective fields. I am grateful for her cooperation during the period of my assignment.

I am obliged to staff members of Quality Control Dept. – Tabuk Pharmaceutical Company, for the welcoming environment, logistic and technical assistance, without which this assignment would not have been possible.

ABSTRACT

Acacia senegal, Acacia seyal and Acacia nilotica gums authentic samples were collected from various areas in Sudan representing a wide range of the natural distribution of these species in the country, namely from states of Blue Nile, Khartoum, Sinnar, and Northern Kordofan. Composite samples were prepared by mixing equal weights from each sample, taken from each location. Glucuronic acid was determined using the carbazole UV method; the results have indicated that A. seyal contains 13.00% glucuronic acid among its contents, with a deviation of 0.21% from the average values cited in previous studies. A.senegal recorded 16.00% glucuronic acid content with a 0.51% deviation from the average values published results, while A. nilotica recorded 10.21% of the glucuronic acid deviating only 0.26% from the average values obtained in by other research workers.

ملخص البحث

جمعت عينات صمغ الهشاب والطلحة والسنط من عدة ولايات تشمل مناطق واسعة من أنحاء السودان كما تمثل التنوع البيئي والأنواع المختلفة لكل منطقة، وقد شملت هذه العينات ولايات النيل الأزرق، الخرطوم، سنار، النيل الأبيض، وشمال كردفان. خلطت العينات التي جمعت من كل ولاية بكميات متساوية لتمثل عينة واحدة وتم تخليصها من الشوائب.

تم تقدير حمض الجلوكورونيك في كل عينة باستخدام طريقة الكاربازول وتقنية طيف الاشعة فوق البنفسجية، أوضحت النتائج أن حمض الجلوكورونيك يمثل %13.00 من محتويات صمغ الطلحة، بنسبة حيود %0.21 من معدل نتائج الدراسات السابقة. صمغ الهشاب سجل نسبة مقدارها %16.00 من حمض الجلوكورونيك ضمن محتوياته بحيود مقداره %0.51 من حمض متوسط نتائج الدراسات السابقة، بينما سجل صمغ السنط نسبة %10.21 من حمض الجلوكورونيك مما يحيد بنسبة %0.26 فقط من معدل النتائج السابقة.

TABLE OF CONTENTS

	Dedication	
	Acknowledgements	II
	Abstract	III
	ملخص البحث	IV
	Table of Contents	V
	List of Figures	VIII
	List of Tables	VIII
1.	INTRODUCTION	1
1.1	Gum Description	1
1.1.1	Acacia seyal	1
1.1.2	Acacia senegal	2
1.1.3	Acacia nilotica	2
1.2	Composition	3
1.3	Physiochemical Properties of Gum Arabic	4
1.3.1	Moisture Content	5
1.3.2	Inorganic Materials	6
1.3.2.1	Ash Content	6
1.3.2.2	Nitrogen Content	7
1.3.3	Apparent Equivalent Weight & Uronic acid Content	9
1.3.4	Molecular Weight	11
1.3.5	рН	13
1.3.6	Specific Optical Rotation	14
1.3.7	Viscosity	16
1.3.7.1	Intrinsic Viscosity	16
1.3.8	Mineral Composition	18
1.3.9	Amino Acid Composition	19

1.3.10	Tannin Content	20
1.3.11	Sugar Composition	21
1.4	Methods of determining glucuronic acid	22
1.4.1	G.C. method for the determination of aldose & uronic acid	23
	constituents of plant cell wall polysaccharides	
1.4.2	Ion chromatography characterization of polysaccharides in	26
	ancient wall paintings	
1.4.3	Determination of monosaccharides in cider by reversed-	27
	phase liquid chromatography	
1.4.4	HPLC analysis of Glucuronic acid conjugates after	30
	derivatization with 4-bromomethyl-7-methoxycoumarin	
1.4.5	Direct determination of UDP- Glucuronic acid in cell	31
	extracts by HPLC	
1.4.6	Simultaneous determination of aldoses and uronic acids of	32
	Citrus Pectin by LC With pre-column derivatization and	
	UV detection	
1.4.7	Modified Uronic Acid Carbazole Reaction	34
1.4.8	Determination of Glucuronic acid content by Carbazole	
	UV method	
1.4.9	Determination of Glucuronic acid by the	36
	Naphthoresorcinol reaction, with the Photoelectric	
	Absorptiometer	
1.4.10	Determination of total and conjugated glucuronic acid in	37
	serum and urine employing a modified naphthoresorcinol	
	reagent	
1.4.11	The cerimetric determination of glucuronic acid, using the	38
	Conway Burette	

2.	EXPERIMENTAL	42
2.1	Reagents	42
2.2	Materials	42
2.2.1	Gum Arabic	42
2.2.2	Carbazole	42
2.2.3	Sodium tetraborate	42
2.2.4	Sulfuric Acid	42
2.2.5	Ethanol	42
2.3	Method	43
2	DECLIETE AND DISCUSSION	4.4
3.	RESULTS AND DISCUSSION	44
3.1	Uronic acid standard	44
3.2	Comparative	47
3.2.1	A. nilotica	47
3.2.2	A. seyal	48
3.2.3	A. Senegal	50
	CONCLUSION	52
	REFERENCES	53

LIST OF FIGURES

Figure 1.1	Acacia seyal sample	1
Figure 1.2	Acacia senegal sample	2
Figure 1.3	Acacia nilotica sample	2
Equation 1.1	Equivalent weight calculation	9
Figure 1.4	Preparation of derivatives for gas chromatography	31
Equation 1.2	Labeling reaction of glucose with (ABEE)	35
Figure 1.5	Conway Burette	51
Figure 3.1	Uronic acid standard UV absorbance	56
Figure 3.2	Uronic Acid comparison for A. nilotica studies	57
Figure 3.3	Uronic Acid comparison for A. seyal studies	58
Figure 3.4	Uronic Acid comparison for A. senegal studies	59
	LIST OF TABLES	
Table 1-1	Mineral composition of various Acacia gums	21
Table 3-1	Standard Curve of Abs%	56
Table 3-2	Abs vs. conc.% for A. nilotica	57
Table 3-3	Abs vs. conc.% for A. seyal	58
Table 3-4	Abs vs. conc.% for A. senegal	59