

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

قال الله تعالى

وَاللَّهُ أَخْرَجَكُمْ مِنْ بُطُونِ أُمَّهَاتِكُمْ لَا
تَعْلَمُونَ شَيْئًا وَجَعَلَ لَكُمُ السَّمْعَ
وَالْأَبْصَارَ وَالْأَفْئَدَةَ لَعَلَّكُمْ تَشْكُرُونَ

صدق الله العظيم

سورة النحل الآية 78

Dedication

I dedicate this research to:

My Kind Mother and to the Soul of My Father

My Dear Wife

My brothers and sisters

My friends and my colleagues

All who has ever taught me any thing

All Sudanese TB Patients

Acknowledgements

Most of all my thanks and praise to Allah who blessed me, and gave me the health, patience, and the will to achieve this project.

A special appreciation and gratitude to my supervisor Dr. Mogahid M El hassan for his follow up and invaluable advisements that extended from the proposal of this work, through its practical and up to the final touches of the thesis.

I need to thank my co-supervisor Dr. Mohammed E. Hamid (College of Medicine, King Khalid University, Abha KSA) for his valuable directions and un-limited support through all the stages of this project.

My thanks and gratitude are also extended to the staff members of Kassala Teaching Hospital, Kuwaiti Paediatric Hospital, Khashm El Girba Hospital, Aroma Hospital, and Wagar Hospital. Phatou Primary Health Care Center and Western Elgash Primary Health Care Center.

My thanks and gratitude are also extended to the staff members of the Faculty of Medicine and Health Sciences specially Dr. Fatma Abbas Khalid, director of TB.R.C. University of Kassala.

In this respect I would like to express my appreciation and gratitude to all of the staff members of Tuberculosis Reference Laboratory specially Miss. Eman Osman, Dr. Nuha Yousif Ibrahim and Mr. Majdi Yahia for their integration and help.

I am particularly grateful to all of the staff members of Research Laboratory, College of Medical Laboratory Science, Sudan University of Science and Technology, specially Miss Suhaer Ramadan Rehan for her help and respect.

Also, I would like to express my gratitude to Mr. Ahmed Lauy and Mrs. Maimona A El Emam for their great help. Great thanks to the Dean and colleagues at the College of Medical Laboratory Science, Sudan University of Science and Technology for their support and un-lasting encouragement.

At last but not least, I would like to convey special thanks and appreciations to my dear wife Salma Ahmed for her unlimited patience, support and encouragement.

Abstract

Tuberculosis is still one of the major health problems worldwide, with high mortality and morbidity. While third of the world population is infected with TB bacilli, the situation is getting worse by the rising emergence of drug resistant strains of *Mycobacterium tuberculosis*. Conventional method for drug susceptibility testing requires months before results can be reported. However, rapid methods such as phage assay have been developed and recorded as useful tool for quick diagnosis.

This study is descriptive cross-sectional laboratory based study which aimed to evaluate the usefulness of phage assay compared to proportional method and PCR in the diagnosis of MDR TB, to estimate the prevalence of MDR TB among tuberculosis patients and to detect the presence of *rpoB* gene among multidrug resistant isolates.

This study was conducted in Kassala State during the period from August 2009 to January 2012. Sputum specimens were collected from ninety acid fast bacilli consented patients (54 males and 36 females). Sputum specimens were processed for direct D29 and culture. All successful cultured isolates were subjected to biochemical tests for phenotypic characterization and further genotypic confirmation was made by amplification of IS 6110. For drug susceptibility testing, proportional method was adopted followed by both indirect D29 and amplification of *rpoB* gene.

The results showed that both males and females in different age groups were infected with TB and those between 21-50 are of the highest infection rate. 21 (23.3%) of the specimens were categorized as rifampicin resistant by direct D29 method, 75/90 (83.3%) of the specimens showed growth on LJ medium similar to MTB complex

colonies while 5/90 (3.3%) were identified as rapid growers. 60 out of the 75 slow growers (80%) were confirmed as MTB complex members depending on their biochemical characters (PNB, catalase and nitrate reduction). DST result for the 60 MTB isolates showed that 31/60 were drug resistant and that isoniazid compose for the highest percentage of resistance (20/31), followed by rifampicin (19/31) while MDR was detected in 18/60 of the isolates. All the 60 slow growers were confirmed as MTB by their positive IS 6110 results and 15/60 were rpoB positive. In conclusion, the study highlighted the high prevalence of MDR TB in Kassala State. Moreover D29 phage method in its first trial of application in Sudan revealed high sensitivity and specificity, which when combined to its major character of time saving (3 days compared to 70 days in DST) makes it a promising method for rapid uncostly diagnosis of MDR TB.

مرض السل لا يزال واحداً من المشاكل الصحية الكبرى في جميع أنحاء العالم، مع ارتفاع في معدل الوفيات بينما يصاب ثلث سكان العالم بعصيات السل، يزداد الوضع سوءاً بسبب ظهور سلالات المتفطرة السلية المقاومة للأدوية. الطريقة التقليدية لاختبار الحساسية للأدوية يتطلب شهوراً قبل أن يتم التوصل للنتائج. وبالرغم من ذلك، فقد تم تطوير الطرق السريعة مثل فحص الفيروس اللاذع للبكتيريا وسجلت بوصفها أداة مفيدة للتشخيص السريع.

هذه الدراسة الوصفية المقطوعية على الأساس المخبري هدفت إلى تقييم مدى جدوى الفحص بالفيروس اللاذع للبكتيريا مقابل الطريقة النسبية التقليدية، وطريقة PCR في تشخيص مرض السل متعدد المقاومة للأدوية، لتقييم مدى انتشار السل المقاوم للأدوية بين مرضى السل، والكشف عن وجود جينة *rpoB* بين العزلات متعددة المقاومة للأدوية وقد أجريت هذه الدراسة في ولاية كولا في الفترة من أغسطس 2009 إلى يناير 2012. جمعت عينات من البلغم موجبة لوجود عصيات السل العصبية على الحمض لعدد 90 مريض بعد اخذ موافقتهم (54 من الذكور والإإناث 36). تم تجهيز عينات البلغم للإجراء فحص D29 المباشر والتزريغ. وتم إخضاع جميع العزلات الناجحة لاختبارات كيميائية حيوية لتحديد الشكل المظاهري وتم التأكيد وراثياً بتفاعلات البلمرة الجزيئية *IS 6110* واعتمدت الطريقة النسبية لإجراء اختبارات الحساسية للأدواء، تليها كل من D29 غير المباشرة وتفاعل البلمرة التسلسلي للجين المقاوم *rpoB*.

أظهرت النتائج كل من الذكور والإإناث في الفئات العمرية المختلفة قد أصيبوا بمرض السل والذين تتراوح أعمارهم بين 21-50 هي من أعلى معدلات الإصابة. وبينت الدراسة أن 21 (23.3%) من العينات كان من نوع السل المقاوم لعقار الريفامبيسين بواسطة طريقة D29 المباشر. 75/90 (83.3%) من العينات صنفت على حسب النمو في وسط LJ كماثلة لمجمع مستعمرات MTB في حين تم تحديد 5/90 (5.3%) كسريعة النمو (المتفطرة غير السلية). وتأكد من وجود 60 من 75 عينة بطيئة النمو (المتفطرة السلية) (80%) تنتمي لمجمع MTB اعتماداً على الصفات البيوكيميائية (PNB، الكتاليز، احتزال النترات). وأظهرت نتائج اختبار الحساسية لـ MTB 60 من العزلات أن 31/60 كانت مقاومة للأدوية وشكل الإيزونيازيد أعلى نسبة للمقاومة (20/31)، بليمة الريفامبيسين (19/31) في حين تم الكشف عن السل متعدد المقاومة للأدوية لـ 18/60 من العزلات. كما تم التأكيد من أن كل 60 عينة من العزلات بطيئة

النمو MTB بواسطة نتائج إيجابية لفحص IS 6110 و 15/60 كانت إيجابية. لفحص rpoB .

في الختام، هذه الدراسة سلطت الضوء على ارتفاع معدلات انتشار السل المقاوم للأدوية في ولاية كشلا. وعلاوة على ذلك كشفت أن طريقة الفيروس اللاغم للبكتيريا D29 في المرة الأولى من تطبيقه في السودان ذو حساسية عالية ونوعية ، بالإضافة للميزة الرئيسية وهي توفير الوقت (3 أيام مقابل 70 يوماً لـ DST) مما يجعل منها وسيلة تشخيصية سريعة غير مكلفة لمرض السل متعدد المقاومة للأدوية.

TABLE OF CONTENTS

	I
Dedication	II
Acknowledgment	III
Abstract (English)	IV
Abstract (Arabic)	VI
Table of Contents	VIII
List of Figures	XIII
List of Tables	XIV
1. Chapter One: Introduction and Objectives	1
1.1 Introduction	
1.2 Objectives	2
2. Chapter Two: Literature Review	3
2.1 Tuberculosis	
2.1.1 Background	3
2.1.2 Classification of Tuberculosis	3
2.1.3 Epidemiology	4
2.1.4 Pathogenesis of Tuberculosis	5
2.1.5 Clinical Manifestations	6
2.1.6 Diagnosis	7
2.1.6.1 Conventional Diagnostic Methods	7
2.1.6.1.1 Tuberculin tests	7
2.1.6.1.2 Sputum Smear Microscopy	7
2.1.6.1.3 Culture	7
2.1.6.1.4 Drug-susceptibility testing (DST)	8
2.1.6.1.5 Biochemical Tests	8
2.1.6.2 New Diagnostic Methods	9
2.1.6.2.1 Bactec Mycobacteria Growth Index Tube (MGIT)	9
2.1.6.2.2 Genotyping	9
2.1.6.2.3 Nucleic Acid Amplification Tests (NAAs)	10
2.1.6.2.4 Phage Amplification Technique (PAT)	10

2.1.7 Treatment	11
2.1.7.1 New Cases	11
2.1.7.2 Re-Treatment Cases	11
2.1.8 TB Prevention and Control	11
2.2 <i>Mycobacterium tuberculosis</i>	12
2.2.1 Definition and Taxonomy	12
2.2.1.1 Definition	
2.2.1.2 Taxonomy	12
2.2.3 Cell Wall Structure	13
2.2.4 Microscopic morphology	13
2.2.5 Growth	14
2.2.6. Response to Physical and Chemical Agents	14
2.3 Multidrug-Resistant TB	15
2.3.1 Definition	
2.3.2 MDR world wide	16
2.3.3 MDR TB Classification	16
2.3.4 MDR Diagnosis	17
2.3.5 MDR Treatment	17
2.4 Bacteriophages	18
2.4.1 Definition	
2.4.2 Composition of Phage	18
2.4.3 Phage Classification	19
2.4.4 Phage Structure	19
2.4.5 Life Cycle of Bacteriophage	21
2.4.5.1 Lysogony	21
2.4.5.2 Productive or Lytic Cycle	21
2.4.5.3. Pseudolysogeny	22
2.4.6 Phage Applications	22
2.4.6.1 Phage Therapy	
2.4.6.2 Food Decontamination	22
2.4.6.3 Phage Typing	23
2.4.6.4 Other Applications of Phages	23
2.4.7 Mycobacteriophage D29	23
2.4.7.1 Definition	
2.4.7.2 Taxonomy of D29 Phage	24
2.4.7.3 Uses of D29 Phage	24
Chapter Three Materials and Methods	25
3.1 Study Design	
3.2 Method of Sample Collection	25
3.3 Ziehl Neelsen stain	26
3.4 Decontamination of Sputum	26

3.5 Preparation of Lowenstein Jensen (LJ) medium	26
3.6 Culture Method and Preservation Techniques	27
3.7 Identification of Isolates	28
3.7.1 Growth Rate	
3.7.2 Catalase Test	28
3.7.3 Nitrate Reduction Test	29
3.7.4 Para Nitro-benzoic Acid (PNB) 500mg/l Susceptibility Test	29
3.8 Drug Susceptibility Test (DST)	29
3.8.1 Preparation of Stock Solution for Drugs	29
3.8.2 Preparation of Drug Containing Media	30
3.8.3 Preparation of Bacillary Suspension	30
3.8.4 Preparation of McFarland Solution	30
3.8.5 Procedure of Drug Susceptibility Test (proportion method)	31
3.9 Identification of <i>Mycobacterium tuberculosis</i> using Polymerase Chain Reaction (PCR)	31
3.9.1 DNA Extraction by Boiling	31
3.9.2 Primers of Insertion Sequence <i>IS6110</i>	31
3.9.3 Preparation of PCR Mixture (<i>IS6110</i>)	32
3.9.4 PCR Amplification (<i>IS6110</i>)	32
3.10 Identification of rifampicin resistant for <i>Mycobacterium tuberculosis</i> using <i>rpoB</i> gene	32
3.10.1 Primers of Insertion Sequence <i>rpoB273</i> and <i>rpoB105</i>	32
3.10.2 Preparation of PCR (<i>rpoB</i> gene) Mixture	33
3.10.3 PCR (<i>rpoB</i> gene) Amplification	33
3.11 Agarose Gel	
3.11.1 Preparation of agarose gel	33
3.11.2 Visualization of PCR Product	33
3.12 <i>Fast plaque-Response</i>TM test (D29)	34
3.12.1 Product Contents	34
3.12.2 Reconstitution of Kit Components (Appendix X)	34

3.12.3 Rapid Bacteriophage Assay (D29)	35
3.12.3.1 Sample Preparation for D29 (Fastplaque-Response™ test)	
3.12.4 Procedure	36
3.12.4.1 Incubation of Test Suspension	
3.12.4.2 Process Control	36
3.12.4.3 Assay Procedure	37
3.12.4.4 Interpretation	38
3.13 Statistical Analysis	39
Chapter Four Results	41
4.1 Epidemiology Finding	
4.2 Bacteriological findings	43
4.2.1 Direct Ziel-Neelsen Staining	
4.2.2 Isolation and Growth Rate	44
4.2.3 Indirect Ziehl-Neelsen Staining	44
4.2.4 Cultural Characteristics	45
4.2.5 Biochemical Tests	46
4.2.6 Mycobacteriophage Testing (D29)	
4.2.6.1 Direct D29 Test (Sputum)	47
4.2.7 Drug Susceptibility Test	48
4.3 Polymerase Chain Reaction	50
4.3.1 Amplification of the IS6110 Target gene	
4.3.2 Detection of rpoB Gene	51
4.4 Sensitivity & specificity of d29	51
4.5 Correlation Between DST, D29 and rpoB Gene	52
Chapter Five Discussion	53
Chapter Six Conclusion and Recommendations	57
6.1 Conclusions	57
6.2 Recommendations	58
7. References	59

Appendices	71
APPENDIX I Ziehl – Nielsen (ZN) staining	71
APPENDIX II Decontamination of Sputum	71
APPENDIX III Lowenstein Jensen medium (LJ)	72
APPENDIX IV Catalase Test Reagent	72

APPENDIX V Freshly prepared tween – pyroxide mixture	73
APPENDIX VI Nitrate Reduction Test Reagent	73
APPENDIX VII PCR Reagents and Equipments	73
APPENDIX VIII Agarose Gel Equipments and Reagents	74
APPENDIX IX <i>Fastplaque-Response</i>TM Test (D29)	75
APPENDIX X N-Acetyl-L-Cysteine-Sodium Hydroxide (NALC-NaOH) Reagent	75

List of Figures

Figure 1. Structure of T4 bacteriophage.	20
Figure 2. Distribution of enrolled patients according to gender.	42
Figure3. showed positive distribution of acid fast bacilli among age groups.	42
Figure 4. New cases versus old cases among enrolled Patients.	43
Figure 5. Direct smear of acid fast bacilli.	43
Figure 6. The results of culture of smear positive sputum specimens.	44
Figure 7 Indirect ZN staining.	45
Figure 8. Growth of <i>M. tuberculosis</i> on LJ medium.	45
Figure 9. Results of catalase test for <i>M. tuberculosis</i> strains.	46
Figure 10 Results of nitrate reduction test for <i>M. tuberculosis</i>.	47
Figure 11. Direct D29 test of rifampicin resistant.	48
Figure 12. Indirect D29 test of rifampicin susceptible.	48
Figure 13. The results of drug susceptibility test among Isolated MTC.	49
Figure 14. Drug susceptibility test of MDR <i>M. tuberculosis</i> Strains.	49
Figure 15. PCR amplicon of IS6110 gene(123bp)of MTC.	50
Figure 16. PCR amplicon of IS 6110 gene (123bp) of MTC.	50
Figure 17. The amplicon of rpoB gene (193 bp) on agrose gel stained with ethidium bromide.	51
	XIII

List of Tables

Table1. Distribution of Patients According to the Study Areas	41
Table 2. Results of different Biochemical reaction used in diagnosis of MTC isolates	46
Table 3. Number of rifampicin resistant of MTB strains by PM, phage and rpoB.	52