الآيــــــة

قال تعالى:

لَّ وَسَخَّر لَكُمُ الشَّمْسَ وَالْ قَمَرَ دَآئِبَينَ وَسَخَرَ لَكُمُ اللَّيْلَ وَالنَّهَارَ {33 }وَانَ تَعُدُواْ وَالنَّهَارَ {33 }وَآتَاكُم مِن كُلِّ مَا سَأَلْتُمُوهُ وَإِن تَعُدُواْ نِعْمَتَ اللَّلِاَ تُحْصُوهَا إِنَّ الإِنسَانَ لَظَلُومٌ كَفَّارٌ {34}

صدق الله العظيم سورة إبراهيم الآيات (33-34)

Dedication

To my parents

Acknowledgement

I would like to thank Allah the most Gracious, the merciful, and also I would like to express my deepest

thanks and appreciation to my supervisor Dr:

Mohammed Adam Abbo for his patience, encouragement and scholarly oriented insights.

My sincere thanks are due to my co. supervisor Dr. Omer Gibla.

My thanks are also extended to my friends and every one who helped me to accomplish this work.

Special thanks are due to Abdullah Salih for his help. My thanks are extended to my wife for her patience through out these years.

Abstract

The study was carried out to three heavy metals Cadmium, Chromium and Lead of 30 samples of paint (emulsion and enamel), the colors of paint were: cream, white, yellow and red. The samples were taken from 6 different factories in Sudan: Shirouq, Ayoub, National, Elmohandis,

Nile and Celledur. A pretreatment was carried out to these samples with concentrated hydrochloric acid, and then diluted so as to be analyzed by atomic absorption spectroscopy. Cd , Cr and Pb were found to be present in all tested samples in varying concentration . Results showed that the maximum concentration of lead was 3430 ppm in the yellow enamel paint and the minimum concentration of lead was 0.1 ppm in white emulsion, red enamel. The maximum concentration of cadmium was 0.8 ppm in the white emulsion and the minimum concentration of cadmium was 0.1 ppm in white and yellow enamel. The maximum concentration of chromium was 500 ppm in yellow enamel and the minimum concentration was 0.1 ppm in red enamel.

The study showed that most Sudanese paint factories were far behind international standards in lead .Cadmium and chromium did not exceed the international standards in the absence of Sudanese standard in paints.

أجريت الدراسة لثلاث عناصر ثقيلة وهي الكادميوم والكروميوم والرصاص من 30 عينة بوهية (مائية وزيتية) وباختيار أربعة ألوان مختلفة وهي الكريمي والأبيض والأصفر والأحمر من ستة مصانع بوهية في السودان وهي: الشروق، أيوب، المهندس، ناشونال، النيل وسيليدور.

أجريت معالجة أولية للعينات بحمض الهيدروكلوريك المركز وخُفِفت بغرض تحليلها بجهاز الامتصاص الذري . النتائج أظهرت وجود العناصر الثلاثة (الكادميوم والكروميوم والرصاص) في العينات التي تم تحللها بتراكيز مختلفة . النتائج أظهرت أعلى تركيز للرصاص هو 3430 جزء من المليون في البوهيه الزيتيه الصفراء وأدنى تركيز له هي 0.1 جزء من المليون في البوهيه المائية البيضاء والبوهيه الزيتية الحمراء .

أعلى تركيز للكادميوم هي 0.8 جزء من المليون في البوهية البيضاء وأدنى تركيز لله هي 0.1 جزء من المليون في البوهية المائية البيضاء والبوهية الزيتية الصفراء.

أعلى تركيز للكروميوم هي 500 جزء من المليون في البوهية الزيتية الصفراء وأدنى تركيز له هو 0.1 جزء من المليون في البوهية الزيتية الحمراء . الدراسة أظهرت أن كل المصانع السودانية للبوهيات بعيدة عن المواصفات العالمية بالنسبة لعنصر الرصاص أما الكروميوم والكادميوم فلم يتجاوز المواصفات السودانية في البوهيات .

Contents

Subject	Page
	i
Dedication	ii
Acknowledgement	iii
(Abstract (English	iv

(Abstract (Arabic	V
Content	vi
List of figures	vii
List of tables	viii
CHAPTER ONE: INTRODUCTION	
Historical perspective 1.1	1
Classification and materials structure of coatings 1.2	2
Objectives 1.3	6
CHAPTER TWO: LITERATURE REVIEW	
Raw materials for coatings .2	7
Film formers 2.1	7
Natural resins 2.1.1	7
Bitumen, asphalt, pitch 2.1.1.2	9
Modified natural resins 2.1.2	10
Synthetic film formers 2.1.3	13
Alkyd resins 2.1.3.1	13
Acrylic resins 2.1.3.2	15
Epoxy system 2.1.3.4	17
Other film former 2.1.3.5	21
Solvents .2.2	21
Classification and definitions 2.2.1	21
Characterization of solvents 2.2.2	23
Hydrogen bridge linkage parameters 2.2.2.3	23
Solvents with week hydrogen bridge linkage 2.2.2.2	24
Solvent with moderate strong by hydrogen bridge 2.2.2.3	27
linkage	
Properties 2.2.3	29
Polarity 2.2.3.1	29

Density 2.2.3.2	30
Viscosity 2.2.3.3	30
Other physical properties 2.2.3.4	30
Physiological properties 2.2.3.5	31
Pigment and fillers 2.3	32
Definition and classifications of pigments 2.3.1	32
White pigment 2.3.3	34

Titanium dioxide pigments 2.3.2.1	35
Other white pigments 2.3.2.2	36
Black pigments 2.3.3	37
Pigment Blacks 2.3.3.1	37
Inorganic colored pigments 2.3.3.4	39
General properties 2.3.4.1	39
Oxide and oxide hydroxide pigments 2.3.4.2	40
Cadmium pigments 2.3.4.3	44
Chromium pigments 2.3.4.4	46
Iron blue pigments 2.3.4.5	48
Ultramarine pigments 2.3.4.6	48
Organic colored pigments 2.3.5	49
General properties 2.3.5.1	49
Classification of organic pigments 2.3.5.2	51
Fillers 2.3.6	52
Classification of fillers 2.3.6.1	52
Some commonly used fillers 2.3.6.2	54
Additives 2.4	57
Classification and definition 2.4.1	57
Light stabilizer 2.4.3	60
Biocides 2.4.4	62
Catalysts and driers 2.4.5	64
Flatting agents 2.4.6	65
Heavy metal contamination 2.5	67
Cadmium 2.5.1	68

Chromium 2.5.2	74	
Lead 2.5.3	81	
Previous studies .2	95	
CHPTERTHREE: MATEIAL AND METHOD		
Materials 3.1	114	
Equipments 3.2	114	
Instruments 3.2.1	114	

Apparatus 3.2.2	114
Methods 3.3	115
Pretreatment of paints 3.3.1	115
Analysis of samples by A.A.S 3.3.2	115
CHAPTER FOUR: RESULTS AND DISCUSSION	
Results	116
Conclusion	132
Recommendations	
References	134

List of table

(Table (2.1	Physical properties of some hydrocarbons	25
(Table (2.2	Physical properties of some ketones and	28
	esters	
(Table (2.3	Refractive indices for various white pigments	34

	and fillers	
(Table (2.4	Key physical properties of TiO ₂	35
(Table (2.5	Mixed phase oxide pigments	44
(Table (2.6	Properties of cadmium pigments	46
(Table (2.7	Name and properties of lead chromate	47
	pigments	
(Table (2.8	Comparison of inorganic and organic	50
	pigments	
(Table (4.1	Concentration of Cd , Cr and Pb in shirouq	117
	paint samples	
(Table (4.2	Concentration of Cd, Cr and Pb in shirouq	118
	paints by spss program	
(Table (4.3	Concentration of Cd , Cr and Pb in	119
	Elmohandis paint samples	
(Table (4.4	Concentration of Cd , Cr and Pb in	119
	Elmohandis paints by spss program	
(Table (4.5	Concentration of Cd , Cr and Pb in National	120
	paint samples	
(Table (4.6	Concentration of Cd, Cr and Pb in National	121
	paints by spss program	
(Table (4.7	Concentration of Cd ,Cr and Pb in Nile paints	122
(TI 11 () 2	samples	455
(Table (4.8	Concentration of Cd, Cr and Pb in Nile paints	123
	by spss program	

	Concentration of Cd , Cr and Pb in	124
(Table (4.9	Celledur paint samples	
(Table (4.10	Concentration of Cd, Cr and Pb in Celledur	125
	paints by spss program	
(Table (4.11	Concentration of Cd , Cr and Pb in Ayoub	126
	paint samples	
(Table (4.12	Concentration of Cd , Cr and pb in Ayoub	126

	paints by spss program	
(Table (4.13	Concentration of 3 heavy metals in white,	127
	cream , yellow and red color in 30 samples	
	from 6factories by spss program	
(Table (4.14	Comparison between Cd, Cr and Pb in 30	128
	samples from 6 factories by spss program	
(Table (4.15	Comparison between six factories paint in	130
	Cd , Cr and Pb concentrations	

List of figures

Fig .2.1	The main epoxy raw materials	20
Fig .4.1	Mean results of enamel and emulsion paint	118
	in shiroug factory	

Fig .4.2	Mean results of enamel and emulsion paint	120
	in Elmohandis factory	
Fig . 4.3	Mean results of enamel and emulsion paint	121
	in National factory	
Fig . 4.4	Mean results of enamel and emulsion paint	123
	in Nile paints	
Fig . 4.5	Mean results of enamel and emulsion paint	125
	in Celledur paints	
Fig . 4.6	Mean results of enamel and emulsion paint	127
	in Ayoub paints	
Fig . 4.7	Mean results between 3 heavy metals in all	129
	samples	
Fig . 4.8	Comparison of 3 heavy metals in four colors	129
Fig . 4.9	Mean results between 3 heavy metals in six	130
	factories	