Sudan University of Science & Technology College of Post Graduate Studies

System Construction for Recording Holographic Fringes

A thesis Submitted as a partial fulfillment of the requirement for the degree of M.Sc. in physics

BY:

Saida Abdullah Mohammed Ajeeb

Supervised by:

Prof.Dr.Khaleal Ibrahim Hajim

February 2004

<u>Acknowledgments</u>

At first, I thank the Almighty Allah for making me able to complete this thesis.

I would like to express my sincere appreciation to my supervisor Prof.Kh. I. Hajim and to Dr. Hussain A. Jawad, Dr. K.A. Al -Naimee, Dr. Nafie Add Al- Lattief, Mrs. Sheelan and the Iraq Laser Optics group members for their encouragement and assistance through producing this thesis.

Thanks to College of post graduate studies and Institute of laser Sudan University of science & Technology, and Sudan institute for natural sciences.

Special thanks to Dr. Abbaker Ali, Kassim Elhity, Miss Waffa and Amna Hassan, and Sharaf E.Hassan for their continuous help to accomplish this work.

Also my thanks are extended to Dr. Ahmed sabah Elkhair, Dr. Abd El-Moniem Awad Eljeed, Gafar Adb Elhameed, Sohad Saad and Nemat Yousif.

Finally I am very grateful to Sinnar University for offering me scholarship.

Dedication	
To	
	My Mother
	M y S isters
	Pry Sisters
	M y B rothers
	M y F riends

Father's soul....

My

Abstract

In this thesis the holographic system was constructed by using He-Ne laser (power 1mW), optical system and holographic film plates.

The system was designed in order to produce holographic interference fringes; this holographic fringe was captured by using a photographic camera.

The Avometer and photocell detector was conducted in series and the maximum laser intensity (I_{max}) and the minimum laser intensity (I_{min}) intensity value were registered in the center of the interfere situations (zone plate), Then the MTF was calculated to illustrate the ability of this system to produce interference fringes (i.e. the visibility of fringes).

ملخص ١٥٥٥٥:-

في هذا البحث تم بناء منظومة هولوغراف وذلك باستخدام هيليوم-نيون ليزر به قدرة واحد ملى واط واستخدام النظام البصري وشرائح الفيلم الزجاجية.

صممت هذه المنظومة بهدف إنتاج أهداب تداخل هولوغرافية وتم تصوير أهداب التداخل باستخدام كاميرا فوتوغرافية(Analog Camera). وصل جهاز (Avometer) على التوالي وصل جهاز (Photocell detector) مع جهاز (Imin) على التوالي وتم تسجيل أعلى شدة لليزر المستخدم (Imin) وا قل شدة (Imin) وذلك في منتصف منط قة التداخل (Zone plates) ومن ثم تم حساب دالة التعديل MTF) والتي توضح م قدرة النظام على إنتاج أهداب تداخل واضحة ويمكن تمييزها بسهولة.

CONTENTS

Chapter one	Introduction and basic concepts	1
1.1	Introduction	1
1.2	Historical background	2
1.3	Theoretical basic of holography	5
1.4	Classification of holograms	11
1.4.1	Transmission hologram	12
1.4.2	Plane and volume hologram	12
1.4.3	Thick and thin hologram	14
1.4.4	Embossed hologram	16
1.4.5	Rainbow hologram	16
1.4.6	Reflection hologram	17
1.5	Formation of hologram	18
1.6	Properties of light source	20
1.7	Recording media	23
1.7.1	Characteristic of photographic films	23
1.7.2	Silver halide materials	26
1.7.2.1	The emulsion	27
1.8	Applications of holography	28
1.8.1	Medical applications	29
1.8.1.1	Holography in ophthalmology	29
1.8.1.2	Holography in orthopedics	30
1.8.1.3	Endoscopic holography	30
1.8.1.4	Holography in otology	31
1.8.1.5	Holography in dentistry	31
1.8.2	Industrial applications	32
1.8.2.1	Microscopy	32
1.8.2.2	Holographic optical elements	32
1.8.2.3	Data storage	33
1.8.2.4	Holographic interferometry	33
Chapter two	The experimental Part	35
2.1	Introduction	35
2.2	The experimental setup	35
2.3	The silver halide Photographic process	37
2.4	Latent image formation	37
2.5	AgFa- Gevaert developer preparation	37
2.5.1	Preparations of developer	39
2.6	The developing and bleaching procedure	39

Chapter three	Results and discussion	41
3.1	Introduction	41
3.2	Exposure time effect	41
3.3	Interference production	41
3.4	Modulation transfer function computation	44
3.5	Conclusions	46
3.6	Suggested future work	46
References		47