

Dedication

To .. Who loved me before I do to them, gave me without
.asking

And burned their selves to light me the way..so they
.teach me that life is tender..And love is the fountain of life

To.. Who gave me the meaning of live...And suffered a
.hardship for me

My beloved mother....God gives you health and wellness

,To....Source that gave me hope in despair's moments

...My sisters

My brothers

I have to say

My tragedies are feeling powerless to express facts in a
way make me satisfy.. and about all of you beloved, it's my
. ...weakness more than possibility

So I will keep silent

Acknowledgement

Firstly All my thanks due to **Allah** for his uncountable gifts, Then I would like to express my sincere gratitude to my supervisor, **Prof. Dr. A. Aziz Makkawi**, for his kind support, supervision , guidance, valuable recommendations and .continous encouragement through my hardest times

I am also very grateful to the staff of **Animal Production Department for** their help in providing .facilities

Special thanks and appreciation are due to **animal production department labors** for their valuable help in .preparing this research

Abstract

The effects of chromium supplementation to the ration
on the yield and milk composition of Nubian goats

This experiment was conducted in the department of
animal production of the college of agriculture shambat
. (SUST), during the period of (18-11-2012 to 4-4-2013

Twelve Nubian goat, which have more than one
production season were selected and accordingly divided in
to three equal groups (A, B, C) based on their averaged body
.weights

The animals in group A and C were fed with chromium
supplementation added as 1.25 ml g to each supplemented
group according to their averaged body weights , as
. (recommended by (Alltech company, USA

Average ambient temperature in the shed was recorded
.to study it

Effect on the experimental animal body temperature
and hence the effect of chromium supplementation on the
experimental animal body temperature , feed intake and the
.effects on milk yield and composition of the animals

-:The results of this study reflected the following
No significant difference in body temperature .
between all the experimental animals was
.rdcorded

significant difference ($p \leq 0.01$) effect of chromium supplemented on milk yield of the two experimental group (A& C) compared with the .(control group (B

Also a significant ($p \leq 0.05$) effect of the chromium supplemented on the solid not fat (SNF) in the milk of the treated group as indicated the following :table

%Lactose	%Ash	%SNF	Protein	%Fat	Treatment
%					
1.12±3.56	0.09±0.	1.37±9.0	0.58±2.	0.37±2.	Treated
	95	5	80	05	A
1.59±3.07	0.08±0.	2.37±9.6	0.74±3.	0.64±2.	Treated
	64	3	26	60	C
1.62±3.53	0.08±0.	1.99±10.	0.86±3.	0.49±3.	Control
	72	83	52	00	B

المستخلص

أثر إضافة عنصر الكروميوم للعليقه على إنتاجية ومكونات اللبن في الماعز النبوي. أجريت هذه الدراسة بحظائر قسم الإنتاج الحيواني جامعة السودان للعلوم والتكنولوجيا (شمبات) في الفترة من 18/11/2012 م - 4/4/2013 م.

تم اختيار عدد 12 ماعز منتجة من فصيلة الماعز النبوي التي لها أكثر من موسم إنتاج ' تم تقسيمها إلى ثلاثة مجموعات متساوية حسب متوسط الأوزان وموسم الإنتاج .

المجموعات المعاملة (الأولى والثالثة) تمت تغذيتها على العليقة المضاف إليها عنصر الكروم حسب متوسط وزن المجموعه المعامله بمعدل 1.25 ملجم وذلك حسب توصيات الشركة المنتجة (Alltech.USA) . تمت دراسة متوسط درجات الحراره داخل الحظيره لمعرفة أثر ذلك على درجة حرارة الجسم لحيوانات التجربه وأثر إضافة عنصر الكروم على درجة حرارة الجسم ثم معدل إستهلاك الغذاء وأثر كل ذلك على إنتاجية ومكونات اللبن المنتج ' أظهرت نتائج هذه التجربه على أنه:-

- لا يوجد تأثير معنوي في تغيير درجة حرارة الجسم في كل حيوانات التجربة.
- كما أظهرت النتائج بأن إضافة عنصر الكروم أدي إلى زيادة معنوية ($p \leq 0,01$) في أوزان الحيوانات المعاملة (المجموعه الأولى والثالثة علي التوالي 92 ± 30.16 kg و 1.94 ± 38.92 بالرغم من عدم وجود فروقات في العلف المستهلك لكل المجموعات.
- إضافة عنصر الكروم لعلية الماعز المنتجه للبن أدت إلى زيادة معنوية ($p \leq 0,01$) في إنتاج الحليب ± 1.458 litter أو 1.457 ± 403.04 litter في المجموعه الاولى والثالثة علي التوالي مقارنةً مع مجموعة السيطرة 0.968 ± 119 liter.
- كما أظهرت النتائج أن إضافة عنصر الكروم له تأثير معنوي ($p \leq 0.05$) على مكونات جوامد اللبن مما أدى إلى إنخفاض هذه النسب في المجموعات المعاملة حسب ما هو موضح أدناه:

العا ملات	نسبة الدهن	نسبة البروتين	نسبة الماء	نسبة الرماد	نسبة اللاكتوز
العا ملة A	2.05 \pm 0.37	2.80 \pm 0.58	9.05 \pm 1.37	0.59 \pm 0.09	3.56 \pm 1.12
العا ملة C	2.60 \pm 0.64	3.26 \pm 0.74	9.63 \pm 2.37	0.64 \pm 0.08	3.07 \pm 1.59
السي طرة B	3.00 \pm 0.49	3.52 \pm 0.86	10.83 \pm 1.99	0.72 \pm 0.08	3.53 \pm 1.62

LIST OF CONTENTS

	Title
	page
Dedication	I
Acknowledgement	II
Abstract (English)	III- IV
Absrtract (Arabic)	V - VI
List of Contents	VII- VIII
D	List of Tables
	X I
	List of Figures
	XII
	List of Abbreviations
	X III

CHAPTER ONE

Introduction	1
1	
The Objective of this	1.1
Study	
1-3	

	The Parameters	1.2
4		
	CHAPTER TWO	
5	Literature Review	2
	5	
	Production Systems	2.1
	of Dairy Goats	
	6	
	Goat's ecotypes and	2.2
	population in Sudan	
	6	
	Contribution of goats	2.3
	in the national	
	7	
	The Value of goat	2.4
	Milk	
	7	
	Milk Production Traits	2.5
	8	
	Milk Yield	2.5.1
	8	
	Daily Milk Yield	2.5.2
	8	
	Lactation Length	2.5.3
	8	
	Factors affecting milk	2.6
	production	

8

Genetic Differences 2.6.1

8

Seasonal Influence 2.6.2

9

Parity Number 2.6.3

9

Multiple births 2.6.4

9

Pregnancy 2.6.5

10

Milking Frequency 2.6.6

and Milking Intervals

10

Nutrition and feeding 2.6.7

Systems

10

Heat Stress 2.7

10

Definition of Heat 2.7.1

Stress

10

Effects of Heat Stress 2.7.2

on Animal

Performance

11

Effect of Heat Stress on 2.7.3

Milk Production, and

11

feed intake	11- 13
Reduction of Heat	2.8
Stress in Dairy Cattle	
14	
Physical Modification	2.8.1
Management	
14	
Nutritional	2.8.2
Management	
15	
Role of Chromium in	2.9
Metabolism	
16 - 17	
Effect of Chromium	2.9.1
Supplementation on	
Stressed Cattle	18
Effect of Chromium	2.9.2
Supplementation on	
Lactation	18 -
20	

CHAPTER THREE

Material and

Method

21

The site of the study	3.1
-----------------------	-----

21

Housing System	3.2
----------------	-----

21

Experimental Animal and Feeding System 21	3.3
Milking System	3.4
22	
Milk Collection	3.5
22	
Analysis of milk Samples	3.6
22	
Determination of milk Chemical	3.6.1
22	
Lacto Scan	3.6.1.1
determination of milk Composition	22
Manual determination of milk Composition	3.6.1.1.1
23	
determination of fat (The Gerber Method)	3.6.1.1.1.1
23	
determination of Protein Content	3.6.1.1.1.2
24	
Milk Solid not Fat(SNF)	3.6.1.1.1.3

25		
	Ash Content	3.6.1.1.4
26		
	Statistical Analysis	3.7
26		
CHAPTER FOUR		
	Results and	4
	Discussion	
27		
	Meteorological Data	4.1
27		
	Body Temperature	4.2
28		
	The degree of significance between amount of chromium supplemented to the treated groups	4.3
29		
	Body Weight(kg)	4.4
30		
	Milk yield	4.5
31		
	Milk composition	4.6
32		
	Conventional	.4.6.1
32		

Fat Percentage	4.6.1.1
32 - 33	
Protein Percentage	4.6.1.2
34	
Ash Percentage	4.6.1.3
35 - 36	
Total Solid Percentage	4.6.1.4
36 - 37	
Lactose Percentage	4.6.1.5
37 - 38	
Scaning Analysis	4.6.2
38	
Fat Percentage	4.6.2.1
38 - 39	
Protein Percentage	4.6.2.2
39 - 40	
Lactose Percentage	4.6.2.3
40 - 41	
CHAPTER FIVE	
Conclusions and Recommendations	5
42	
Conclusions	5.1
42	
Recommendations	5.2
42	
References	

43-58
Appendixes
59 - 62

LIST OF TABLE

Page	Title	Table No
22	Ingredient of the basal diet	Table(1 (
27	The effect average ambient temperature under shade on body temperature to the experimental animals	Table(2 (
28	Effect of adding chromium on average body temperature of the experimental animals	Table(3 (
30	Effect adding chromium on average body weight (Kg)for experimental animals	Table(4 (
31	Effect of adding chromium on average milk yield for experimental animals	Table(5 (
33	Effect of adding chromium on average fat percentage (%) for milk composition	Table(6 (
34	Effect of adding chromium on average protein percentage(%) for milk composition	Table(7 (
35	Effect of adding chromium on average Ash percentage(%)for milk composition	Table(8 (
36	Effect of adding chromium on average total solid percentage(%)for milk composition	Table(9 (

37	Effect of adding chromium on average lactose percentage(%) for milk composition	Table(1 (0
38	Effect of chromium adding average fat percentage(scan method)for milk composition	Table(1 (1
39	Effect of adding chromium on average protein percentage(scan method)for milk composition	Table(1 (2
40	Effect of adding chromium on average lactose percentage(scan method) for milk composition	Table(1 (3

LIST OF FIGURE

27	Means of ambient temperature under shade on body temperature of the experimental animals	(Fig (1
29	Means of body temperature of the experimental animals	(Fig(2
30	Means of body weight of the experimental animals	(Fig(4
32	Means of milk yield of the experimental animals	(Fig(5
33	Means of Fat percentage of the experimental animals	(Fig(6
34	Means of Protein Percentage of the experimental animals	(Fig(7
36	Means of Ash percentage of the experimental animals	(Fig(8
37	Means of Total solid percentage of the experimental animals	(Fig(9
38	Means of Lactose percentage of the experimental animals	(Fig(10
39	Means of Fat percentage of the (experimental animals (Scaning	(Fig(11
40	Means of Protein percentage of the (experimental animals (Scaning	(Fig(12
41	Means of Lactose percentage of the (experimental animals (Scaning	(Fig(13

LIST OF ABBREVIATION

Acid Detergent Fiber	ADF
Body Weight	BW
Chromium	Cr
Dry Matter	DM
Dry Matter Intake	DMI
Glucose Tolerance Factor	GTF
Non-Esterified Fatty Acids	NEFA
Part Per Billion	Ppb
Temperature Humidity Index	THI
Total Mixed Ration	TMR