

Dedication

This thesis dedicated with all my heart to my beloved family as a whole, my husband Abdallah, my mother and the soul of my father in particular.

Acknowledgment

1

Primarily my praise and thanks should be to Allah, the almighty, most gracious and most merciful who grant me the means, strength and patience to conduct this article.

I wish to express my grateful thanks to my supervisor, Dr. Isameldin Elnazeer Eltahir (Head department of livestock fattening and meat production research, Kuku, Khartoum North), for all his guidance and directions over the study period. I have had the opportunity to learn and grow from the experience I have been through with him. Also I wish to acknowledge the Dr. Abdelrahman Magzoub Mohammed (Director of the Animal Production Research Center-Kuku) whose help has made this study a success.

My appreciation is extended to all the staff of the livestock fattening and meat production research department, Kuku.

My special thanks are due to the staff members of meat science laboratory with special appreciation for the efforts of senior technician Mohammed Elhassan.

LIST OF CONTENTS

Subject	Page
Dedication.....	I
Acknowledgement	II
List of Contents.....	III
List of Tables.....	V
List of Figures.....	VI
List of plates	VII
List of appendices	VII
Abstract.....	VIII
Arabic Abstract	X
1. Chapter one: Introduction.....	1
2. Chapter two: Literature review.....	3
2.1. Cattle types in the Sudan.....	3
2.1.1. Northern or Arab type of cattle.....	3
2.1.2 Baggara (Western) type	3
2.2. Muscles.....	3
2.3. Meat chemical composition	4
2.4. Water holding capacity (W.H.C.) and cooking loss ...	6
2.5. Meat color	8
2.6. Tenderness	11
2.7. Juiciness	14
2.8. Flavour	15
3. Chapter three: Materials and methods.....	16
3.1. Experimental animals.....	16

3.2. Carcass components	16
3.3. Dissection procedure	16
3.4. Colour determination	17
3.5. pH determinations	17
3.6. Water holding capacity	17
3.7. Cooking loss determination	18
3.8. Preparation of samples for chemical analysis ...	19
3.9. Chemical analysis and protein fractionation	19
3.10. Sensory evaluation	20
3.11. Statistical analysis	21
4. Chapter four: Results.....	22
5. Chapter five: Discussion.....	32
Conclusion and Recommendation	37
References.....	39

LIST OF TABLES

Table	Title	Page
1.	The effect of slaughter weight on chemical composition of <i>M.Psoas major</i> in Baggara bulls	23

2. The effect of slaughter weight on colour of <i>M.Psoas major</i> in Baggara bulls	24
3. The effect of slaughter weight on WHC, pH and cooking loss values of <i>M.Psoas major</i> in Baggara bulls	25
4. Subjective evaluation of <i>M.Psoas major</i> from Baggara bulls slaughtered at 200, 300 and 400 kg live weight	27-28

LIST OF FIGURES

Figure	Title	Page
1.	Effect of slaughter weight on color of. <i>Psoas major</i> muscle	29
.2	Effect of slaughter weight on tenderness of <i>Psoas major</i>	29

muscle	
.3 Effect of slaughter weight on flavor of <i>Psoas major</i> muscle	30
.4 Effect of slaughter weight on juiciness of <i>Psoas major</i> muscle	30
.5 Effect of slaughter weight on overall acceptability of <i>Psoas major</i> muscle	31

LIST OF PLATES

Plate	Page
.1 Plate (1) <i>Psoas major</i> muscle	17

LIST OF APPENDICES

Appendix		Page
.1	Estimates of Animal and Off- Take (000) head 2009	50
.2	Panel test form	51

ABSTRACT

In this study *Psoas major* muscle from thirty Baggara bulls (Nyala/wai type, about 2.5 years old) grouped into experimental group of 200, 300 and 400 kg live weight were, used to study the physical properties, chemical composition and sensory evaluation of *M. Psoas major*. According to the program of Animal Production Research Center the bulls were fed *ad libitum* on a concentrate molasses diet and sorghum straw at the rate of 80 and 20% for the two diet fractions, respectively.

Chemical compositions, some physical and sensory evaluation of muscle were investigated. Analysis of variance and chi-square (X^2) were

conducted to examine meat physical, chemical composition and muscle sensory evaluation.

Moisture content, in muscle, declined significantly ($P<0.001$) with increasing slaughter weight, while fat increased significantly ($P<0.001$). The percentage of crude protein in the *M. Psoas major* did not change with increasing slaughter weight. Ash percentage in *M. Psoas major* was approximately constant at all slaughter weights.

The values of extractable sarcoplasmic and myofibrillar proteins increased with increasing slaughter weight. Soluble non-protein nitrogen percentages increased slightly with slaughter weight but the increase was not significant between the slaughtered groups.

M. Psoas major (L^*) and (a^*) numerical values increased significantly ($P< 0.05$) with the increase of slaughter weights. Water holding capacity improved significantly ($P< 0.001$) from lightest slaughter weight (200kg) to the heaviest slaughter weight (400kg). The cooking loss decreased significantly ($P< 0.001$) with the increase in slaughter weight. Muscle pH increased insignificantly ($P> 0.05$) with slaughter weight increase; it increased from low (5.66) to moderate or high (5.68 and 5.69 respectively).

The slaughter groups (200, 300 and 400kg live weight) failed to show any significant difference for the cooked *M. Psoas major* sample of the Baggara bulls. Panelist in this study assigned high color and tenderness scores for meat from the heavier weight groups. Flavor intensity (slightly intense) (44.44%) of meat from medium weight bulls (300kg) was higher than heavier weight group in this study. Juiciness was rated as very juicy (66.67%) for slaughter weight 400kg.

It has been concluded that the Western Sudan Baggara bulls can reach finishing weights above 400 kg with reasonable eating quality that meets the consumer preference. However, more research studies are required on this type of cattle at higher live weights (> 400 kg) to elucidate possible effects of meat quality.

الملخص

الخواص الفيزيائية والكيميائية والحسية لعضلة الفليتو لعجول البقارة

فى هذة الدراسة اخذت عضلة الفليتو من ثلاثون عجلاً مسمناً من عجول البقارة (نوع نيلواى 'عمر 2.5 سنة تقريباً) قسمت الى مجموعات 200، 300 و 400 كجم وزن حى 'استخدمت لدراسة الخواص الفيزيائية والتركيب الكيميائى والتقييم الحسي لعضلة الفليتو (M. Psoas major). تمت تغذية الحيوانات طبقاً للبرنامج المُتبع بمركز أبحاث الإنتاج الحيواني على علف المولاس المركز والقصب الجاف بتغذية حرة مباشرة بمعدل 80% و 20% لنوعي العلف على التوالى.

تم دراسة التحليل الكيميائى ، بعض الخواص الفيزيائية و الخواص الحسية للعضلة. تم استخدام تحليل التباين ومربع كاي (χ^2) لدراسة المدلولات مثل بيانات: التركيب الكيميائى للعضلات ، خواصها الفيزيائية و الخواص الحسية للعضلة.

أظهر التحليل الكيمايي لعينات عضلة الفليتو (M.*Psoas major*) أن الزيادة في وزن العجل (الذبيح) تؤدي إلى انخفاض في النسبة المئوية للرطوبة بفارق معنوي ($P<0.001$), بينما زادت نسبة الدهون ولم تتغير النسبة المئوية لكل من البروتين أو الرماد مع الزيادة في أوزان الذبيح.

نسبة البروتين الساركوبلازمي والبروتين الليفي زادت بزيادة وزن الذبيح.

أفادت الدراسة بأن موجات اللون الفاتح (L^*) والأحمر(a^*) لعضلة الفليتو (*Psoas major*) زادت معنويًا ($P<0.05$) مع زيادة وزن الذبيح. تحسنت قدرة عضلة الفليتو معنويًا ($P<0.001$) على حبس الماء بداخلها مع زيادة وزن الذبيح . قل فا قد الطبخ معنويًا ($P<0.001$) من وزن الذبيح 200 كجم إلى 400 كجم. لم تدرك قراءة جهاز قياس تركيز الهيدروجين (pH) الفرق المعنوي للعضلات في أوزان الذبيح المختلفة.

مجموعات الذبيح (200 ، 300 و 400kg الوزن الحي) لم تظهر أي فروق ذات دلالة إحصائية للطهي لعضلة الفليتو (M. *Psoas major*) لعينة من عجل البقرة. المتذوقيون في هذه الدراسة المخصصة رصدوا معدلات عالية للون والطراوة للعضلة من المجموعات الأثقل وزنا. كثافة النكهة (44.44%) من لحوم العجل من الوزن المتوسط (300kg) أعلى من المجموعة الأثقل وزنا في هذه الدراسة. كما تم تقييم العصيرية طرية جداً (66.67%) لمجموعة الوزن 400kg وزن حي.

استنتج من هذه الدراسة بأن عجل البقرة السودانية يمكن تسمينها إلى وزن أعلى من 400 كجم بحسب التصافي المعقول و التركيب الكافي الجيد من أنسجة الجسم اللذان يناسبان إرضاء رغبات المستهلك. توصي الدراسة بالمزيد من البحوث والدراسات لهذا النوع من الأبقار في الأوزان الحية الأعلى من 400 كيلوجرام.