Dedication

To the soul of my father who taught me the meaning of life.

To my mother the origin of my success.

To my brothers and sisters, may God bless them.

To my whole (Abdoon) family.

Acknowledgements

Praise be to Allah who gave me health, strength and patience to conduct this work. I would like to express my gratitude and appreciation to my supervisor Dr. **Mysara Ahmed Mohamed** for his consistent supervision and patience, invaluable advise, and guidance throughout the course of study.

Finally, I would like to express my deep thanks and appreciation to my family members, special thanks to my grand-brother **Saied Nuri Salih**, who helped me in every possible way and for their encouragement and patience.

TABLE OF CONTENTS

	page
Dedication	I
Acknowledgement	II
Table of contents	III
List of tables	VII
List of figures	VIII
English abstract	IX
Arabic abstract	X
CHAPTER ONE: INTRODUCTION	
1.1 Background	1
1.2 Problem definition	3
1.1.2 Study objectives	4

CHAPTER TWO: LITRITURE REVEIW

		Page	
2.1	Machinery Management	5	

2.2	Machine Performance	5
2.3	Field Capacity	7
2.3.1	Field Capacity and Efficiency	7
2.3.1	Field Efficiency	8
2.4	Machinery Costs	9
2.4.1	Machinery Costs Types	11
2.5	Computer application in agriculture	27
2.6	Linear programming	30
2.6.1	General overview	30
2.6.2	Assumptions of linear programming	30
2.6.3	Linear programming methods	37
2.7	Critical Path Method and PERT (CPM - PERT)	38
2.7.1	Program Evaluation and Review Technique (PERT)	38

CHAPTER THREE: MATERIALS AND METHODS

		Page
3.1	Study area	39
3.2	Study site	39
3.3	Data collection	40

3.4	Model development	41
3.4.1	The optimization model	41
3.5	Integer linear programming model structure	42
3.6	The program limitations	47
3.7	Input data requirement	49
3.8	Agricultural operations costs	49
	CHAPTER FOUR: RESULTS AND DISCUSSION	,
4.1	Model Verification	52
4.2	Model validation	53
4.3	Satisfaction of purpose of model building	53
4.3.1	Minimization of total number of tractors	54
4.3.2	Minimization of total costs of operations (fixed and variable cost	s5)4
4.3.3	Saving of direct costs (operating costs)	54

4.4	Evaluation and implementation of machinery scheduling program	57
4.5	Model Sensitivity analysis	59
4.5.1	Model response to changes of single inputs	59

4.5.2	Effect of changing cultivated areas	59
4.5.3	Effect of changing operations total costs by 20%	60
4.5.4	Response of changing multiple input on model outputs	60
СНАР	TERFIVE: SUMMARY, CONCLUSSION AND RECOMMENDATION	NS
5.1	Summary	61
5.2	Conclusions	62
5.3	Recommendations	63
	References	64
	Appendices	68

LIST OF TABLES

Table		Page
2.1	Annual fixed costs in percent of list price by machine category and age	12
2.2	An example of average unit accumulated costs	22
2.3	Remaining value groups, wear-out life, and total repairs to wear-out life	24

2.4	List of field efficiency, suggested forward speed and timeliness constants	26
3.1	Agricultural operations and operations period for Binna agricultural scheme	40
3.2	Program technical specifications	48
3.3	Model matrix format for Binna scheme	51
4.1	number of tractors before and after optimization	55
4.2	Operation cost before and after optimization	55
4.3	Direct cost before and after optimization	56
4.4	Probability analysis and number of critical paths for crop rotation	58
4.5	Completion time of operations before and after optimization	58
4.6	Effect of changing input data parameters on number of tractors and fuel cost	59

LIST OF FIGURES

No.		Page
2.1	Remaining value for three methods of depreciation compared with	14
	actual trade- in values	

ABSTRACT

The developed optimization model aimed to aid decision-maker and farm manager in determining the number of tractors, scheduling agricultural operations efficiently and minimizing machinery total costs.

Model verification was made by comparing the numbers of tractors of Rahad irrigated scheme for season 2008/2009 with those estimated by the model. The applied model in Binna agricultural scheme was succeeded in reducing number of tractors and operations total costs by 29.4%.

Sensitivity analysis in terms of model response to changes in model input for a single parameter for each of cultivated area and operation total cost showing that:

- Increasing the cultivated area by 20%, increased the total number of tractor after optimization from 12 to 16 tractors and total fuel cost was also increased from 66857.6 SDG to 79760 SDG.
- Increasing the operation total cost by 20%, increased the total number of tractor after optimization by 29.4%, and total fuel cost was also increased by 16.7%.
- Changing both area cultivated and operation total cost increased the fuel total cost by 16.2%.

الخلاصة

تم تطوير النموذج الأمثل بغرض مساعدة صانع القرار و مدير المزرعة في تحديد عدد الجرارات ، جدولة العمليات الزراعية بكفاءة وتقليل تكاليف العمليات الزراعية. تم تحقيق صحة النموذج بتطبيقه علي حالة مشروع الرهد الزراعي لموسم 2008م / 2009م. أدى تطبيق النموذج علي مشروع بنا الزراعي إلي تقليل عدد الجرارات وتقليل . 2009م . في تطبيق النموذج على مشروع بنا الزراعي إلى تشغيل الآلات الزراعية بنسبة 29.4

تم تحليل الحساسية لاستجابة النموذج بتغيير مدخلات النموذج:المساحات المزروعة والتكاليف الكلية للعمليات الزراعية: زيادة المساحات بنسبة 20% أدت لزيادة عدد الجرارات من 12الي 16 جرار وأيضا زيادة تكلفة الو قود من 66857.6 إلي 79760 جنيه سوداني. زيادة تكاليف العمليات الزراعية بنسبة 20% أدت إلي زيادة عدد الجرارات بنسبة 29.4% و

أيضا زيادة تكلفة الو قود بنسبة 16.7%. زيادة المساحات و تكاليف العمليات الزراعية معا .%أدت إلي زيادة تكلفة الو قود بنسبة 16.2.