Dedication

To my father and mother,

And to Those

Whom I love.....

Acknowledgement

- * My praise and thanks to Allah, who gave me the strength to conduct such work.
- * I am greatly indebted to my supervisor Dr. Abd Elsalam Abdalla * Thanks are also due to all those who helped and encouraged me to do this

work.

Abstract

One hydroxamic acid (N-Phenylbenzohydroxamic acid) was prepared and used as a ligand with four different metal ions, Chromium (III), Iron (III), Cobalt (II) and Copper (II). The hydroxamic acid was characterized by its molecular weight and melting point.

The free ligand and complexes were studied spectroscopically using IR, UV/VIS techniques. In order to obtain the metal-ligand ratio, the Jobs continuous variation method was applied and it was found to be (1:3) for Chromium (III) and Iron (III), (1:2) for Cobalt (II) and Copper (II);using the Job method, the stability constants of these complexes were determined and were found to be as follows: $\text{Cr (III) - N-Phenyl benzohydroxamic acid} = 8.858 \times 10^{10} > \text{Fe}$ (III) - N-Phenyl benzohydroxamic acid = $7.24 \times 10^{10} > \text{Cu (II)} - \text{N-Phenyl benzohydroxamic acid} = 6.4668 \times 10^7 > \text{Co (II)} - \text{N-Phenyl benzohydroxamic acid} = 5.5177 \times 10^7.$

الخلاصة

تم تحضير أحد الأحماض الهيدروكسيمية (ن-فينيل بنزوهيدروكسامك أسيد) كلا قط مع عدد من الأيونات الفلزية وهى الكروم(III), الحديد (III), الكوبالت (II) والنحاس (II).

تم التعرف على الحمض عن طريق تحديد الوزن الجزيئي ودرجة الانصهار كما تمت دراسة أطياف المع قدات الفلزية باستخدام طيف الأشعة تحت الحمراء والأشعة فوق البنفسجية . كما تم تحديد النسبة المولية بين الفلز و اللا قط باستخدام طري قة جوب للتغيير المستمر و قد وجد أن النسبة بين الفلز واللا قط (3:1) في حالة الكروم(III), والحديد (III) و (2:1) في حالة الكروم(III). كذلك تم حساب ثابت الاست قرار لهذه المع قدات من النتائج المتحصل عليها وف قا لطري قة جوب وكانت النتائج كالمأتي:

Cr (III) - N-Phenyl benzohydroxamic acid = $8.858 \times 10^{10} > \text{Fe}$ (III) - N-Phenyl benzohydroxamic acid = $7.24 \times 10^{10} > \text{Cu}$ (II) - N-Phenyl benzohydroxamic acid = 6.4668×10^{7} >Co (II) - N-Phenyl benzohydroxamic acid = 5.5177×10^{7} .

Contents

DedicationI
AcknowledgementII
Abstract (English)III
Abstract (Arabic) IV
ContentsV
List of tablesVIII
List of figuresIX
Chapter One
1. Introduction and literature review1
1.1 Introduction1
1.1.1The chemistry of the coordination compound1
1.1.2 Complex formation2
1.1.3 Complexing agent
1.1.3.1The ability of the ligand to form complexes4
1.1.3.2 The ability of the metals to form complexes5
1.1.4 Chelating agent
1.1.5 Stability of complexes8
1.1.5.1Factors influencing stability of complexes11
1.1.5.1.1Factors related to the acidity of the metal ion11
1.1.5.1.2 Factors related to the basicity of the metal ion 12
1.1.5.1.3 Factors related to the chelate complex15
1.1.6 Nomenclature of complex compounds16
1.2 Hydroxamic acids17

1.2.1Structure of hydroxamic acids	18
1.2.2 Properties of hydroxamic acids	20
1.2.3 Preparation of hydroxamic acids	22
1.2.4 Nomenclature of hydroxamic acids	24
1.2.5 Detection of hydroxamic acids	24
1.2.5.1 Color test reaction	24
1.2.5.2 Infrared spectra	25
1.2.6 Hydroxamic acid metal complexes	25
1.2.7 Biological activities of hydroxamic acids	27
1.2.8 Analytical application of hydroxamic acids	29
1.2.8.1 Gravimetric determination of metals	29
1.2.8.2 Solvent extraction and colorimetric determination of	
metals	30
1.2.8.3 Poly hydroxamic acids	31
1.3 The objective of the work	31
Chapter two	
2. Experimental and results	33
2.1 Preparation of N-phenyl benzohydroxamic acid	33
2.2 Coupling between N-phenyl benzohydroxamic acid and	
benzoyl chloride	34
2.3 Characteristic of hydroxamic acid	34
2.3.1 Color test reaction	34
2.4 Determination of molecular weight of N-	
phenylbenzohydroxamic acid	35
2.5 Preparation of hydroxamic acid-metal complexes	36

2.5.1Chromium (III) N-phenylbenzohydroxamic acid complex36
2.5.2 Iron (III) N-phenylbenzohydroxamic acid complex36
2.5.3 Cobalt (II) N-phenylbenzohydroxamic acid complex36
2.5.4 Copper (II) N-phenylbenzohydroxamic acid complex37
2.6 Stoichimetry and stability constant of hydroxamic acid-metal
ion complexes38
2.7 Determination of stability constant of hydroxamic acid-metal
ion complexes43
2.7.1 Determination of stability constant of Chromium (III) N-
phenylbenzohydroxamic acid complex43
2.7.2 Determination of stability constant of Iron (III) N-
phenylbenzohydroxamic acid complex43
2.7.3 Determination of stability constant of Copper (II) N-
phenylbenzohydroxamic acid complex43
Chapter three
3. Discussion50
3.1 General approach50
3.2 Characterization of the acid50
3.4 Metal complexes51
4 References 53

List of tables

Тa	ble Page
1.	Bond length and stereo chemical configuration of some
	complexes12
2.	Volume of Sodium hydroxide needed to neutralized the
	hydroxamic acid35
3.	Infrared absorption of metal- N-phenyl benzohydroxamic acid
	complexes37
4.	Continuous variation method of Chromium (III) N-phenyl
	benzohydroxamic acid complex39
5.	Continuous variation method of Iron (III) N-phenyl
	benzohydroxamic acid complex40
6.	Continuous variation method of Cobalt (II) N-phenyl
	benzohydroxamic acid complex41
7.	Continuous variation method of Copper (II) N-phenyl
	benzohydroxamic acid complex42

List of figures

Figur	re P	age
1.1	Ethylene diamine tetra acitic acid	2
1.2	Example of cataionic, anaionic and neutral coplexes	2
1.3	Five membered chelate ring	5
1.4	Absorbance of complex against the mole ratio	9
1.5	Three, Four, Five and Six membered chelate rings	14
1.6	8-quinoline substituted in two positions	15
1.7	Primary, Secondary and Cyclic structure of hydroxan	nic
	acids	17
1.8	Thio hydroxamic acids	18
1.9	Z and E isomer of hydroxamic acids	19
1.10	Mono alkyl derivatives of hydroxamic acids	19
1.11	Formation of hydroxamic acids transition metal	
	complexes	20
1.12	Hydrogen bonding in hydroxamic acids	20
1.13	Inter and Intra Hydrogen bonding in hydroxamic acid	ls21
1.14	Preparation of hydroxamic acids	22
1.15	Types of hydroxamic acids in which the hydroxyl hyd	drogen
	chelated with the metal ion	25
1.16	Structure of hydroxamic acid compounds which gave	a
	color reaction with ferric ions	26
2.1	Continuous variation method results of Chromium (II	II) N-
	phenyl benzohydroxamic acid complex	39

2.2	Continuous variation method results of Iron (III) N-phenyl
	benzohydroxamic acid complex40
2.3	Continuous variation method results of Cobalt (II) N-phenyl
	benzohydroxamic acid complex41
2.4	Continuous variation method results of Copper (II) N-
	phenyl benzohydroxamic acid complex42
2.5	Infrared spectra of N-phenyl benzohydroxamic acid
	complex44
2.6	Infrared spectra of Chromium (III) N-phenyl
	benzohydroxamic acid complex44
2.7	Infrared spectra of Iron (III) N-phenyl benzohydroxamic
	acid complex45
2.8	Infrared spectra of Cobalt (II) N-phenyl benzohydroxamic
	acid complex45
2.9	Infrared spectra of Copper (II) N-phenyl benzohydroxamic
	acid complex46
2.10	UV/VIS absorption of N-phenyl benzohydroxamic acid
	complex47
2.11	UV/VIS absorption of Chromium (III) N-phenyl
	benzohydroxamic acid complex47
2.12	UV/VIS absorption of Iron (III) N-phenyl
	benzohydroxamic acid complex48
2.13	UV/VIS absorption of Cobalt (II) N-phenyl
	benzohydroxamic acid complex48

2.14	UV/VIS absorption of Copper (II) N-phenyl	
	benzohydroxamic acid complex	49