

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

قال الله تعالى

يَرْفَعُ اللَّهُ الَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ

صدق الله العظيم

سورة المحادلة الآية 11

Dedication

*This work is dedicated to those
who are suffering of Beta-
thalassemia in Sudan and all
over the world.*

Acknowledgment

First off all I would like to deep thank Allah for guide me
to make this research.

I would like to express my thanks and gratitude to my
supervisor

Dr. Abd El Salam Ibrahim Basheer, Assistant professor,
Department of pathology, University of Khartoum for his
never fading support.

I gratefully acknowledge the support of the staff and
colleagues at the faculty of medical laboratory sciences,
University of Sudan. My appreciation is also offered to *Dr.*
Sana Eltahir, Research Centre, University of Aleelain for
support and patience. Sincere thanks are extended to *Dr.*
Mojahid M. Alhassan and *Dr. Miska Alyman*, Research lab,
University of Sudan for their advices and valued
assistance. Deep thanks to my colleague *Mr. Ahmed Fath*

Elrahman Edris, Institute of Endemic Diseases, University of Khartoum for his help and support. My thanks extend to members of the Thalassemia Research Group. Above all my special thanks to my family.

Abstract

This a cross sectional study was undertaken at Mabroka village in the Gazeera state between November 2008-Fabruary 2009. The study aimed at assessing of the complete blood count and the fetal haemoglobin level in the parents and siblings of beta thalassemia patients. Fetal haemoglobin level was measured by an alkali denaturation procedure. A total number of 50 relatives of beta thlassemia patients were consecutively recruited. The age of the study group were found to be ranged from 10 to 98 year old. The mean of the total haemoglobin level within males was 12.6 ± 1.6 g/dl and within females was 11.7 ± 1.4 g/dl. The mean of the MCV for all population was 79.6 ± 8.7 fl, the mean of the MCH was 23.8 ± 3.8 pg, the mean of the MCHC was 30 ± 1.4 g/dl and the mean of the fetal haemoglobin was 3 ± 1.4 %. The study revealed that, there was no correlation between the age and fetal haemoglobin level among the study population. The results strongly suggested that these participants might be carriers to B-Thalassemia gene.

The study recommended for comprehensive programs in the future to know the actual prevalence of thalassemia in the study population also health education is needed to increase the awareness among that population.

هذه الدراسة الم قطعية تم اجرائها في منط قة مبروكة بولاية الجزيرة في الفترة مابين نوفمبر 2008 إلى فبراير 2009. تهدف الدراسة **الهيموغلوبين الجنيني** ومستوى خضاب الدم الجنيني في عينات دم الأشخاص المشاركين فيها. وقد أستخدمت طرقة التمسخ القلوي لقياس خضاب الدم الجنيني. ويبلغ عدد المشاركين 50 شخص من أسر الأطفال المصابين بأنيميا البحر الأبيض المتوسط البائية. تراوحت أعمار المشاركين في الدراسة ما بين 10 – 98 سنة. بلغ متوسط مستوى خضاب الدم الكلي ومتسط الهيموغلوبين الجنيني عند الذكور 12.6 ± 1.6 جرام/دسي لتر وعند الاناث 11.7 ± 1.4 جرام/دسي لتر. بلغ متوسط حجم كريات الدم الحمراء 79.6 ± 8.7 فمتو لتر ومتسط خضاب الدم بالخلية الحمراء 3.8 ± 3.8 بيكوغرام ومتسط تركيز خضاب الدم بالخلية الحمراء 30 ± 1.4 جرام/دسي لتر ومتسط مستوى خضاب الدم الجنيني 3 ± 1.4 %.

وكشفت الدراسة عن أنه لا توجد علاقه بين مستوى الهيموغلوبين الجنيني واختلاف العمر. تو قع الدراسة بأن الأشخاص المشاركين قد يكونوا حاملين لجين مرض الثلاسيميا البائية، ولذا توصي الدراسة بإجراء برنامج مسح مكثف في المست قبل لمعرفة الانتشار الفعلي للمرض في عينة الدراسة بالمنط قة وأيضا التثقيف الصحي مطلوب لزيادة الوعي بين أولئك الأشخاص.

List of Consents

اية قرانية	I
Dedication	II
Acknowledgment	III
Abstract (English)	IV
Abstract (Arabic)	V
List of contents	VI-VII
List of abbreviation	VIII
List of tables	IX
List of figures	X

Chapter One Introduction and literature review

1.0 Introduction	1
1.1 Haemoglobin	1
1.1.1 Types of normal Haemoglobin	2
1.2 Causes of anaemia	3
1.3 Classification of anaemia	4
1.4 Thalassemias	6
1.4.1 Clinical feature of β- thalassaemia	8
1.4.2 Complications of Thalassemias	8
1.4.3 Pathophysiology of α –Thalassemia	9
1.4.4 Epidemiology of α –Thalassemia	10
1.4.5 Pathophysiology of β –Thalassemia	11
1.4.6 Epidemiology of β –Thalassemia	12
1.4.7 Differential diagnosis of α - & β- Thalassemia	12
1.4.7.1 Haemoglobin A2 as diagnostic for β-Thalassaemia trait	13
1.4.8 Prenatal Diagnosis of α - & β- Thalassemia	14
1.4.9 Treatment of Thalassemia	15
1.4.10 Thalassemia Variants and Related Conditions	16
1.5 Published about thalassemia in Sudan	17
1.6 Hereditary Persistence of Fetal Hemoglobin	17

Chapter Two Objectives and Rationale

2.0 Rationale	18
2.1 Objectives	19

Chapter Three Material and Methods

3.0 Materials and methodology	20
3.1 Study design	20
3.2 Study area	20
3.3 Study population	20
3.4 Sample size	20
3.5 Inclusion criteria	20
3.6 Exclusion criteria	20
3.7 Plan of data collection	20
3.7.1 Data analysis	20
3.8 Ethical consideration	VIII
3.9 Laboratory procedures	21
3.9.1 Materials	21
3.9.1.1 Equipments	21
3.9.1.2 Reagents	22

List of abbreviation

g/l	Gram per liter
g/dL	Gram per deci liter
CBC	Complete blood count
PCV	Packed cell volume
MCV	Mean cell volume
MCH	Mean cell haemoglobin
MCHC	Mean cell haemoglobin concentration
D.W	Distilled Water
OD	Optical density
WHO	World health organization
SD	Standard deviation
Hb	Haemoglobin
Hb F	Fetal Haemoglobin
Min	Minute
Sec	Second
nm	Nanometer
RBCs	Red blood cells
WBCs	White blood cells
Plts	Platelets
2-3 DPG	2,3-diphosphoglycerate
ELISA	Enzyme-linked immunosorbent assay
-ve	Negative
ζ	Zeta
ε	Epsilon
α	Alpha
γ	Gamma
β	Beta
δ	Delta

List of tables:

Page	Table	Name of table
No	No	
30	Table 4.1	The distribution of male and female in the study population
31	Table 4.2	The distribution of age groups in the study population
32	Table 4.3	The correlation between the fetal Hb and the age in the population
33	Table 4.4	The haemoglobin and PCV levels according to gender
34	Table 4.5	The MCV, MCH, MCHC and Hb F in the study population
36	Table 4.7	The normal and abnormal total Hb & PCV according to gender
37	Table 4.8	The normal and abnormal MCV within males and females
38	Table 4.9	The normal and abnormal MCH within males and females
39	Table 4.10	The normal and abnormal MCHC within males and females
40	Table 4.11	The means, standard deviation and P. value for fetal haemoglobin according to gender

List of figures:

Page No	Figure No	Name of figure
3	Figure 1.1	Embryonic, Fetal and Adult haemoglobin structure.
3	Figure 1.2	Chromosome 11 & 16 structure.
7	Figure 1.3	Global distribution of haemoglobin disorders.
14	Figure 1.4	The belt of B-Thalassemia.
17	Figure 1.5	Differential diagnosis of Thalassemias.
30	Figure 4.1	The distribution of male and female in the study population.
31	Figure 4.2	The distribution of age groups in the study population.
32	Figure 4.3	The correlation between the fetal Hb and the age in the population
33	Figure 4.4	The haemoglobin and PCV levels according to gender.
34	Figure 4.5	The MCV, MCH, MCHC and Hb F in the study population.
35	Figure 4.6	The degrees of RBCs size in peripheral blood smear of the population.
36	Figure 4.7	The normal and abnormal of total Hb & PCV according to gender.
37	Figure 4.8	The normal and abnormal MCV within males and females.
38	Figure 4.9	The normal and abnormal MCH within males and females.
39	Figure 4.10	The normal and abnormal MCHC within males and females.
40	Figure 4.11	The means, standard deviation and P. value for fetal haemoglobin according to gender.