بسم الله الرحمن الرحيم

قال تعالى :

صدق الله العظيم سورة النازعات الآيات) 40 و 41)

Dedication

This work is dedicated to my wife RafiAA, Daughters

Omnia and Aseel, who have been very dear to me

throughout both the good and rough times

ACKNOWLEDGMENT

I truly express my deep thanks and gratitude to *Allah* for giving me the ability to conduct and complete this study.

Also I would like to express my gratitude to all those who acquired the unlimited ability to help. Top of those is my Supervisor *Dr. Bassam Younis Ibrahim*, for his close supervision, creative and valuable guidance and comments, and tireless efforts without which this study could have not seen the light.

My thanks are also extended to *Prof. Basia Zaba* from London School of Hygiene and Tropical Medicine (LSHTM) who has kindly offered me many constructive comments and advice, especially regarding HIV Data. I also extend my thanks to *Ust. Osman Tagelsir* for his unlimited help.

I am really indebted to my wife *Rafiaa* and all members of my family for their constant support and help during the course of the work.

Table of Contents

	Item	Page
	Holly Versus	i
	Dedication	ii
	Acknowledgment	iii
	Table of Contents	iv
	List of Tables	ix
	List of Figures	xii
	List of Abbreviations	XV
	Abstract (English)	xvii
	Abstract (Arabic)	xix
	Chapter One: Introduction	
1.1	Background	1
1.2	Research Importance	2
1.3	Research Problem	2
1.4	Research Questions	3
1.5	Research Hypotheses	3
1.6	Research Objectives	3
1.7	Data Sources	3
1.8	Research Methodology	9
1.9	Research Outline	14
	Chapter Two: Literature Review	
2.1	Introduction	15
2.2	Epidemiology of the HIV/AIDS Epidemic	15
2.2.1	HIV/AIDS Background	15
2.2.2	Epidemiological Features of HIV/AIDS	17
2.2.3	Determinants of the HIV/AIDS Epidemic in Sub-Saharan Africa	19
2.2.4	The Incubation Period	21
2.2.5	HIV Transmission Mechanisms	22
2.2.6	Social and Economic Impacts of HIV/AIDS in Sub-Saharan Africa	24
2.2.7	Highly Active Antiretroviral Treatment (HAART)	25
2.2.8	Global Dimensions of the HIV/AIDS Epidemic	25
2.3	Modeling the Spread of HIV/AIDS	13
2.3.1	HIV/AIDS Models	13
2.3.2	Adhoc Methods	32
2.3.2.1	The Ratio Method	32
2.3.2.2	Multiplication Method	33
2.3.2.3	The Simple Extrapolation Method	33
2.3.3	The Delphi Survey Method	35
2.3.4	Statistical Models	36
2.3.4.1	Back- Calculation Method	36
2.3.4.2	EPIMODEL	37
2.3.5	Mathematical Models	40
2.3.5.1	The UNAIDS Estimation and Projection Package (EPP)	40

2.3.5.2	Workbook Method For Projecting HIV/AIDS	44
2.3.6	Demographic /Behavioral Models	47
2.3.6.1	Spectrum Method for Projecting HIV/AIDS	47
2.3.6.2	Bongaarts Model (1989)	49
2.3.6.3	John Stover Models (AIDSTECH /AIDSproj/AIM):	50
2.3.6.4	Interagency Working Group on AIDS (IWGAIDS) Model	51
2.3.6.5	Doyle model/ASSA500/ASSA600	52
2.4	Target Countries: General Background	53
2.4.1	Zimbabwe: General Background	53
2.4.2	Tanzania: General Background	56
2.4.3	Sudan: General Background	58
	Chapter Three: Statistical Models and the Study Model	
3.1	Introduction	61
3.2	Statistical Models	61
3.3	The General Linear Models (GLM)	62
3.3.1	Ordinary Least Squares (OLS) for Linear Models	63
3.4	Non Linear Models	64
3.4.1	Intrinsically Linear and Intrinsically Non-linear Regression Models	65
3.4.2	Least Squares in the Non-linear Case	70
3.4.3	Approaches to Estimation of Non-linear Regression Models	69
3.4.3.1	Direct search (Trial-and-Error or Derivative-free technique)	69
3.4.3.2	Linearization Method: (Gauss-Newton iteration)	69
3.4.3.3	Steepest descent (Direct Optimization)	73
3.4.3.4	Marquardt's Compromise	73
3.4.3.5	Maximum Likelihood Estimates	73
3.4.3.5.1	Criteria for Assessing Maximum likelihood Fit	74
3.5	Criteria for Comparing Models	76
3.5.1	The Extra sums of squares principle	76
3.5.2	The F-Test	76
3.5.3	Coefficient of determination R ²	77
3.5.4	Akaik's Information Criteria	77
3.6	The Study Model	77
3.6.1	Description of the Model	77
3.6.2	The Model Assumptions	79
3.6.3	Estimations of Model Parameters	82
3.6.4	Estimation of Life Tables Incorporating the Effects of HIV/AIDS	83
	Chapter Four : Estimation of HIV Prevalence Curves for the	
	Target Countries	
4.1	Introduction	84
4.2	Estimation of Prevalence Curve for Zimbabwe	84
4.2.1	Estimation and Evaluation of Zimbabwe Prevalence Using Single	84
	Logistic Model	
4.2.2	Estimation and Evaluation of Zimbabwe Prevalence Using Standard	89
	Logistic Curve	
4.2.3	Estimation and Evaluation of Zimbabwe Prevalence using Double	92
	Logistic Curve	
4.2.4	Comparisons among the Three Logistic Models for Zimbabwe	97

4.2.5	Double logistic Model Validity and Accuracy	99
4.2.6	Comparing Double Logistic Results with UNAIDS Model (EPP)	99
4.2.7	Estimation of the Percentages of Infected People in Zimbabwe	101
4.3	Estimation of the Percentages of Infected People in Zimotowe Estimation of Prevalence Curve for Tanzania	103
4.3.1	Estimation and Evaluation of HIV Prevalence using Single logistic Model	103
4.3.2	Estimation of HIV Prevalence for Tanzania using Rational Model	107
4.3.3	Estimation and Evaluation of HIV Prevalence for Tanzania using Double logistic Model	108
4.3.4	Comparisons among the Three Models for Tanzania	110
4.3.5	Double logistic Model for Tanzania Validity and Accuracy	111
4.3.6	Comparing Double Logistic Results with UNAIDS Model (EPP) For Tanzania	112
4.3.7	Estimation of the Percentages of Infected People in Tanzania	112
4.4	Estimation of HIV Prevalence Curve for Sudan	114
4.4.1	Estimation and Evaluation of HIV Prevalence for Sudan Using Double Logistic Model	114
4.4.2	Estimation and Evaluation of HIV Prevalence for Sudan Using Rational Model	116
4.4.3	Estimation and Evaluation of HIV Prevalence for Sudan Using Fourth Degree Polynomial Model	118
4.4.4	Comparisons between the Three Models for Sudan	120
4.4.5	Rational Model for Sudan : Validity and Accuracy	121
4.4.6	Comparing Rational Model Results with UNAIDS Model (EPP) for Sudan	122
4.4.7	Estimation of the Percentages of Infected People in Sudan	122
	Chapter Five: Estimating and Projecting the Impact of HIV/AIDS	
5.1	Introduction	124
5.2	Estimating and Projecting the Impact of HIV/AIDS for Zimbabwe	124
5.2.1	Expected Number of HIV Infected People for Zimbabwe	124
5.2.2	Estimated and Projected No. of New HIV cases, AIDS Cases and AIDS Mortality for Zimbabwe	126
5.2.3	Comparisons between Estimated and Projected Number of AIDS Deaths Double Logistic Model Deaths and UNAIDS Model	133
5.2.4	HIV/AIDS Impact on Mortality in Zimbabwe	135
5.2.5	The impact of HIV/AIDS on Age and Sex structure	138
5.2.6	The Impact of HIV/AIDS on Life Expectancy in Zimbabwe	139
5.2.7	The Impact of HIV/AIDS on Population Growth in Zimbabwe	140
5.3	Estimating and Projecting the Impact of HIV/AIDS for Tanzania	141
5.3.1	Expected Number of HIV Infected People for Tanzania	141
5.3.2	Estimated and Projected No. of New HIV cases, AIDS Cases and AIDS Mortality for Tanzania	142
5.3.3	Comparisons between Estimated and Projected Number of AIDS Deaths Double Logistic Model Deaths and UNAIDS Model for Tanzania	148
5.3.4	HIV/AIDS impact on Mortality in Tanzania	150
5.3.5	The impact of HIV/AIDS on Age and Sex Structure for Tanzania	153

5.3.6	The Impact of HIV/AIDS on Life Expectancy in Tanzania	154
5.3.7	The Impact of HIV/AIDS on Population Growth in Tanzania	155
5.4	Estimating and Projecting the Impact of HIV/AIDS for Sudan	155
5.4.1	Expected and Projected Number of HIV Infected People for Sudan	155
5.4.2	Estimated and Projected No. of New HIV cases, AIDS Cases and	156
5.4.2	AIDS Mortality for Sudan	150
5.4.3	Comparisons between Estimated and Projected Number of AIDS	162
	Deaths Rational Model and UNAID Model	
5.4.4	HIV/AIDS Impact on Mortality in Sudan	164
5.4.5	The impact of HIV/AIDS on Age and Sex Structure for Sudan	167
5.4.6	The Impact of HIV/AIDS on Life expectancy in Sudan	168
5.4.7	The Impact of HIV/AIDS on Population Growth in Sudan	169
	Chapter Six : Summary, Conclusions and Recommendations	
6.1	Summary	170
6.2	Conclusions	170
6.3	Recommendations	172
	References	173
	Appendix(A.1): Estimation of single logistic model parameters - urban Zimbabwe	179
	Appendix(A.2): Estimation of single logistic model parameters - rural Zimbabwe	180
	Appendix(A.3): Estimation of standard logistic model - urban Zimbabwe	181
	Appendix(A.4): Estimation of standard logistic model parameters – rural Zimbabwe	182
	Appendix $(A.5)$: Estimation of double logistic model parameters - urban Zimbabwe	183
	Appendix(A.6): Estimation of double logistic model parameters - rural Zimbabwe	184
	Appendix(B.1): Estimation of single logistic model parameters - Tanzania	185
	Appendix(B.2): Estimation of rational model parameters - Tanzania	186
	Appendix(B.3): Estimation of double logistic model parameters - Tanzania	188
	Appendix(C.1): Estimation of double logistic model parameters - Sudan	189
	Appendix(C.2): Estimation of rational model parameters - Sudan	190
	Appendix(C.3): Estimation of fourth degree polynomial model parameters - Sudan	191

List of Tables

Table	Title	Page
2.1	Global summary of HIV/AIDS epidemic (December 2004) in	26
	millions	
2.2	Regional HIV and AIDS statistics and features; 2004 (in millions)	27
2.3	Population size and annual rate of increase in the population,	55
	Zimbabwe	
2.4	Selected demographic indicators, Zimbabwe 1992 and 1997	55
2.5	Selected demographic indicators for Tanzania, 1967, 1978,1988 and	58
	2002	
2.6	Some socio-economic indicators for the Sudan (1956-1993)	59

2.7	Some demographic indicators for the Sudan (1956-1993)	60
3.1	The deterministic component of common types of linear models	63
3.2	Commonly used statistical nonlinear models	66
3.3	Parameters for Weibull distribution with three scenarios	88
3.4	Adult progression from HIV to AIDS (percent of infection cohort	81
	developing AIDS by number of years since infection	
4.1	Some statistics of the single logistic model for rural and urban	86
	Zimbabwe	
4.2	ANOVA table for estimated urban model – single logistic model	86
4.3	ANOVA Table for Estimated Rural Model – Single Logistic Model:	86
4.4	Observed and estimated percentage values for rural and urban	87
	Zimbabwe – single logistic model – the period (1985 - 2004)	
4.5	Some statistics of the standard logistic model for urban and rural	89
	Zimbabwe	
4.6	ANOVA table for estimated urban Zimbabwe standard logistic model	90
4.7	ANOVA table for rural Zimbabwe standard logistic model	90
4.8	Observed and estimated percentages of infected people for rural and	91
4.0	urban Zimbabwe – standard logistic model	0.4
4.9	Some statistics of the double logistic model for urban and rural	94
4.10	Zimbabwe ANOVA table for urban Zimbabwa dauble legistic model	0.4
4.10	ANOVA table for urban Zimbabwe double logistic model	94
4.11	ANOVA table for rural Zimbabwe – double logistic model Observed and estimated percentages for Rural and urban	94 95
4.12	Observed and estimated percentages for Rural and urban Zimbabwe – double logistic model	95
4.13	F-test value and AIC of the tree estimated models	97
4.14	Theil's coefficients for both rural and urban Zimbabwe	99
4.15	The fitted values of HIV prevalence for Zimbabwe	102
4.16	The expected number of infected people Zimbabwe (1985 - 2004)	102
4.17	Some statistics of the Single Logistic Model for Tanzania	104
4.18	ANOVA table for Tanzania single logistic model	104
4.19	Observed and estimated values for Tanzania – single logistic model	105
4.20	Some Statistics of the rational model for Tanzania	106
4.21	ANOVA table for Tanzania - rational model	106
4.22	Observed and estimated percentages for Tanzania – rational model,	107
	the period (1985 - 2002)	
4.23	Some statistics of the double logistic model for Tanzania	108
4.24	ANOVA table for Tanzania - double logistic model	108
4.25	Observed and estimated percentages for Tanzania – double logistic model	109
4.26	F-test value and AIC for the three models - Tanzania	110
4.27	Theil's coefficients for Tanzania	111
4.28	Estimated number of infected people, double logistic model for	113
	Tanzania (1985-2002)	
4.29	Some statistics of the double logistic model for Sudan	114
4.30	ANOVA table for Sudan double logistic model	115
4.31	Observed and estimated values for Sudan – double logistic model	116
4.32	Some statistics of the rational model for Sudan	116
4.33	ANOVA table for Sudan - rational model	117

4.34	Observed and estimated percentages for Sudan – rational model	117
4.35	Some statistics of the fourth degree polynomial model for Sudan	118
4.36	ANOVA table for Sudan – fourth degree polynomial model	119
4.37	F-test value and AIC for the three models - Sudan	120
4.38	Theil's coefficients for Sudan	121
4.39	Number of infected People, rational model for Sudan (1985-2003)	123
5.1	Expected number of infected people, double logistic model for	125
	Zimbabwe (1985-2010)	
5.2	Estimated and projected no. of new HIV cases, AIDS cases and AIDS	127
	mortality for Zimbabwe – slow scenario the period (1985- 2010)	
5.3	Estimated and projected no. of new HIV cases, AIDS cases and	129
	AIDS mortality for Zimbabwe – Medium Scenario the period (1985-	
	2010)	
5.4	Estimated and Projected No of New HIV cases, AIDS Cases and	131
	AIDS Mortality for Zimbabwe – Fast Scenario the period 1985- 2010	
5.5	Number of deaths AIDS and non AIDS scenarios Zimbabwe (1985-	136
	2010)	
5.6	Life Expectancy at birth with and with out AIDS Zimbabwe the years	139
	1985, 1995 and 2005	
5.7	Estimated and projected population size and annual population growth	140
	rate with and without AIDS scenarios for Zimbabwe	
5.8	Estimated and projected number of infected people, double logistic	141
	model for Tanzania (1985-2010)	
5.9	Estimated and projected no. of new HIV cases, AIDS cases and	143
	AIDS mortality for Tanzania – slow Scenario the period (1985- 2010)	
5.10	Estimated and projected no. of new HIV cases, AIDS cases and	145
	AIDS mortality for Tanzania – medium scenario (1985- 2010)	
5.11	Estimated and projected no. of new HIV cases, AIDS cases and	147
	AIDS mortality for Tanzania – fast scenario (1985- 2010)	
5.12	Estimated and projected number of deaths, CDR in both cases with	151
<u> </u>	AIDS and with out AIDS scenarios – Tanzania (1985-2010)	454
5.13	Life expectancy at birth with and with out AIDS Tanzania the years	154
	1985, 1995 and 2005	
5.14	Estimated and projected population size and annual population growth	155
	rate with and without AIDS scenarios for Tanzania	
5.15	Expected Number of Infected People, Rational Model and for Sudan	156
	(1985-2010)	
5.16	Estimated and Projected No of New HIV cases, AIDS Cases and	157
	AIDS Mortality for Sudan – Slow Scenario the Period 1985- 2010	
5.17	Estimated and projected no. of new HIV cases, AIDS cases and	159
	AIDS mortality for Sudan – medium scenario the period (1985- 2010)	
5.18	Estimated and projected no. of new HIV cases, AIDS cases and	161
	AIDS mortality for Sudan – fast scenario the period (1985- 2010)	
5.19	Estimated and projected number of deaths, CDR in both cases with	165
	and With out AIDS Scenarios – Sudan 1985-2010	
5.20	Life expectancy at birth with and with out AIDS Sudan the years	168
	1985, 1995 and 2005	

5.21	Estimated and projected population size and annual population growth	169
	rate with and without AIDS scenarios for Sudan	

List of Figures

Figure	Title	Page
1.1	Trends in HIV prevalence among antenatal clinic attendees in	6
	Zimbabwe	
1.2	Trends in HIV prevalence among antenatal clinic attendees in	7
	Tanzania	
1.3	Trends in HIV prevalence among antenatal clinic attendees in Sudan	8
1.4	Schematic representation of the study	10
2.1	The natural history of HIV/AIDS	17
2.2	HIV incubation period (adults)	22
2.3	HIV transmission mechanism	23
2.4	Global estimates for adults and children living with HIV as of	28
	December 2004	
2.5	HIV adult prevalence rate in Sub-Saharan Africa 2006	30
2.6	The influence of the four parameters on the basic epidemic curve	42
3.1	Adult progression from HIV to AIDS	82
4.1	The logistic curve	85
4.2	Observed and estimated percentages of infected people rural	87
	Zimbabwe (1985-2004)	
4.3	Observed and estimated percentages of infected people urban	88
	Zimbabwe (1985-2004)	
4.4	Observed and estimated percentages of infected people rural	91
	Zimbabwe (1985-2004)	
4.5	Observed and estimated percentages of infected people urban	92
	Zimbabwe (1985-2004)	
4.6	Double logistic model	93
4.7	Observed and estimated percentages of infected people urban	96
	Zimbabwe (1985-2004) – double logistic model	
4.8	Observed and estimated percentages of infected people rural	96
	Zimbabwe (1985-2004) – double logistic model	
4.9	The estimated three models for urban Zimbabwe	98
4.10	The estimated three models for rural Zimbabwe	98
4.11	Comparing both models double logistic and UN Model (EPP) for	100
	urban Zimbabwe	_
4.12	Comparing both models double logistic and UN model (EPP) estimate	101
	for rural Zimbabwe	
4.13	The expected number of infected people Zimbabwe (1985 - 2004)	103
4.14	Observed and estimated percentages of infected people Tanzania	105
	(1985-2002) - single logistic model	10=
4.15	Observed and estimated percentages of infected people Tanzania	107
4.10	(1985-2002) - rational model	100
4.16	Observed and estimated percentages of infected people Tanzania	109
4 1 7	(1985-2002) - double logistic model	111
4.17	The estimated three models for Tanzania	111
4.18	The estimated three models for Tanzania	112
4.19	Estimated number of infected people, double logistic model for	113

	Tanzania (1985-2002)	
4.20	Observed and estimated values for Sudan – double logistic model	115
4.21	Observed and estimated values for Sudan – rational model	118
4.22	Observed and estimated values for Sudan – fourth degree polynomial model	120
4.23	The Estimated three models for Sudan	121
4.24	Comparing both models rational model and UN model (EPP) estimate for Sudan	122
4.25	Number of infected People, rational model for Sudan (1985-2003)	123
5.1	Expected number of infected people, double logistic model for Zimbabwe (1985-2010)	126
5.2	Estimated and projected number of people living with HIV- Zimbabwe (1985-2010) - Slow scenario	128
5.3	Estimated and projected number of people living with HIV- Zimbabwe (1985-2010) - medium scenario	130
5.4	Estimated and projected number of people living with HIV- Zimbabwe (1985-2010) - fast scenario	132
5.5	Comparisons among the three AIDS deaths scenarios – Zimbabwe (1985 – 2010)	133
5.6	Comparison between estimated and projected number of AIDS deaths double logistic model deaths and UNAIDS Model — slow Scenarios Zimbabwe (1985-2010)	134
5.7	Comparison between estimated and projected number of AIDS deaths double logistic model and UNAIDS Model – fast scenario – Zimbabwe	135
5.8	Impact of AIDS mortality in Zimbabwe – medium scenario – (1985-2010)	137
5.9	CDR in Zimbabwe – AIDS and no AIDS scenario	137
5.10	AIDS mortality impact on age and sex structure Zimbabwe, the year 2003	138
5.11	AIDS mortality impact on age and sex structure Zimbabwe, the year 2010	139
5.12	Estimated and projected number of people living with HIV- Tanzania (1985-2010) - slow scenario	144
5.13	Estimated and projected number of people living with HIV- Tanzania (1985-2010) - medium scenario	146
5.14	Estimated and projected number of people living with HIV- Tanzania (1985-2010) - fast scenario	148
5.15	Comparison between estimated and projected number of AIDS deaths double logistic model and UNAIDS model – slow scenarios – Tanzania	149
5.16	Comparison between estimated and projected number of AIDS deaths double logistic model and UNAIDS model – fast scenario – Tanzania	150
5.17	Impact of AIDS mortality in Tanzania – medium scenario – (1985-2010)	152
5.18	CDR in Tanzania – AIDS and no AIDS scenario	152
5.19	AIDS mortality impact on age and sex structure Tanzania, the year	153

	2003	
5.20	AIDS mortality impact on age and sex structure Tanzania, the year 2010	154
5.21	Estimated and projected number of people living with HIV- Sudan 1985-2010 - Slow scenario	158
5.22	Estimated and projected number of people living with HIV- Sudan (1985-2010) - medium scenario	160
5.23	Estimated and projected number of people living with HIV- Sudan (1985-2010) - fast scenario	162
5.24	Comparison between estimated and projected number of AIDS deaths rational model and UNAIDS model – slow scenarios – Sudan	163
5.25	Comparison between estimated and projected number of AIDS deaths rational model and UNAIDS model – fast scenarios – Sudan	164
5.26	Impact of AIDS mortality in Sudan – medium scenario – (1985-2010)	166
5.27	CDR in Sudan – AIDS and no AIDS scenarios	166
5.28	AIDS mortality impact on age and sex structure Sudan, the year 2001	167
5.29	AIDS mortality impact on age and sex structure Sudan, the year 2010	168

List of Abbreviations

AIDS Acquired Immunodeficiency Syndrome

ANC Antenatal Care

ASMRs Age Specific Mortality Rates
ASSA Actuarial Society of South Africa

CBR Crude Birth Rate

CDC Centers for Disease Control

CDR Crude Death Rate
CSWs. Commercial Sex Workers
DNA Deoxyribonucleic Acid

EPIMODEL Program That Estimate the Number of AIDS

Deaths

EPP Epidemiological Projection Package

FSW Female Sex Workers
GDP Gross Domestic Product
GLM General Linear Model
GNP Gross National Product

HAART Highly Active Antiretroviral Treatment
HIV Human Immunodeficiency Virus

HSS HIV Sentinel Surveillance

IDS Intercensal Demographic Survey

IDU Injecting Drug Users

IWGAIDS Interagency Working Group on AIDS

LDCs Least Developed Countries
MDGs Millennium Development Goals

MSM Man Having Sex with Man

MTC Mother to Child

NSGRP National Strategy for Growth and Reduction of

Poverty

OLS Ordinary Least Square

PTR Perinatal Transmission Rate

RBG Risk Behavior Groups
RNA Ribonucleic Acid

SDHS Sudan Demographic and Health Survey
SNAP Sudan National AIDS Control Programme
SPSS Statistical Package for Social Science

STDs Sexually Transmitted Diseases

STIs Sexual Transmitted Infections

TB Tuberculosis

TDHS Tanzania Demographic and Health Survey

TFR Total Fertility Rate

UNAIDS Joint United Nations Program on HIV/AIDS

UNFPA United Nations Population Fund

ZDHS Zimbabwe Demographic and Health Survey

Abstract

The main objective of this study was to improve the methodological basis for modeling the HIV/AIDS epidemics in adults in sub-Saharan and to develop estimates of prevalence, incidence and mortality and to study the impact of HIV/AIDS on life expectancy and population growth with examples of Zimbabwe, Tanzania and Sudan. Understanding the magnitude and trajectory of the HIV/AIDS epidemic is essential for planning and evaluating control strategies.

Previous mathematical models were developed to estimate epidemic trends based on sentinel surveillance data from pregnant women. In this study, we have extended these models in order to take full advantage of the available data. The methodology involved a Gauss Newton approach for the estimation of prevalence and incidence of HIV/AIDS in the studied countries using curve fitting procedure. Further back calculation method was used to estimate AIDS cases and mortality. Also life tables were constructed to asses the impact of HIV/AIDS on life expectancy. To trace the impact of HIV/AIDS on population growth, we have projected the population growth with and without AIDS using demographic techniques for estimating population growth.

For every country three models were estimated and the best among them were selected for Zimbabwe, double logistic curve has been selected. The same model was found to be suitable for Tanzania. For Sudan, we used the rational model because it produced suitable fitting of the data. Also the estimated models were compared with the UNAIDS estimate.

Our application to the model revealed the impact of HIV/AIDS in the target countries where adult HIV prevalence is significant. The epidemic has already had a number of serious consequences, including rise in the number of deaths and the reduction of life expectancy and the particularly deaths of persons aged 15 to 49. Furthermore, some of the serious effects of the epidemic are expected to worsen in the future. By the year 2020 population of studied countries is expected to be lower than it would have been in the absence of AIDS. Increases of mortality have been particularly marked in the Zimbabwe the country with the highest HIV prevalence. Also life expectancy at birth has already fallen dramatically, dropping within a decade or two to levels last recorded before 1985, and in the cases of Tanzania, the impact of HIV/AIDS on mortality and

population growth is of less degree than in Zimbabwe, this due to the fact that Tanzania epidemic is considered as moderate. For Sudan the impact of HIV/AIDS is less effective, because the epidemic is of low level.

The study recommends the development of ANC data since it is the only available source and to use different stochastic epidemiological curves for fitting data, and finally to validate the HIV/AIDS impact by other independent studies.

الهدف الرئيس لهذه الدراسة هو تطوير المنهجية المستخدمة لنمذجة اثر وباء الايدز في جنوب الصحراء الافري قية وذلك بالتركيز علي شريحة البالغين. وهدفت ايضا له قياس واسه قاط معد لات الحدوث والاصابة والتاثير المباشر لمرض الايدز على الوفيات، تو قع الحياة عند الميلاد والنمو السكاني. ركزت الدراسة على ثلاث أ قطار هي زيمبابوي ، تنزانيا والسودان. وتنبع أهمية هذه الدراسة من حقي قة أن أثر الايدز أصبح جلي على التنمية ولايمكن السيطرة عليه إلا بتوفر المعلومات الكافية لانفاذ الخطط والاستراتيجيات لمكافحته.

النماذج الساب قة تم إعدادها لت قدير اتجاهات الوباء اعتماداً على بيانات نظام الرصد المرضي للنساء الحوامل اللائى راجعن الخدمات الصحية اثناء الحمل و قمن بإجراء اختبار مرض الايدز. أعتمدت منهجية هذه الدراسة على تطوير هذه النماذج مع تعديل بعض الافتراضات، وساعد في ذك البيانات المتوفرة في الفترة الأخيرة. تضمنت المنهجية ايضاً إستخدام طرد قة جاوس نيوتن التكرارية لتوفيق منحنيات الاصابة بالل قطار المدروسة. وتم أستخدام أسلوب الاستقاط الخلفي لاحتساب عدد المصابين بمرض الايدزو الوفيات الناجمة عن المرض. أيضًا تم تكوين جداول الحياة لـ قياس تأثير المرض على تو قع الحياة عند الميلاد. كما تم الاعتماد على الاساليب الديمغرافية لـ قياس أثر هذا الوباء على النمو السكاني بالله قطار المدروسة. لكل قطر من الله قطار تم توفيق ثلاث نماذج شائعة الاستخدام في علم الوبائيات ومن بينها تم اختيار الأفضل وف قا للمعايير الإحصائية. وللتأكد من قدرة هذه النماذج على تمثيل البيانات تم م قارنتها بنموذج برنامج الأمم المتحدة المشترك لمرض الايدز.

أثبتت نتائج النموذج أن للايدز أثر عميق على الا قطار المدروسة، حيث أن هنك أرتفاع جلي في معدلات الإصابة بالمرض وزيادة في عدد الوفيات الناتجة عن المرض، كما تم انخفاض تو قع الحياة عند الميلاد بصورة واضحة. ومن الآثار المهمة تقليل معدل النمو السكاني في المست قبل بدرجة واضحة مقارنة بسيناريو عدم وجود المرض فمثلاً بمرور العام 2020 ستكون أعداد السكان أقل من من ماكان متو قعاً في حالة عدم وجود المرض.

تأثير المرض على الدول المختلفة سجل بدرجات متفاوتة، حيث سجلت زيمبابوي الأثر البالغ للمرض على الوفيات وتو قع الحياة عند الميلاد والنمو السكاني. بينما جاء ت تنزانيا في المرتبة الثانية من ناحية أثر المرض وذلك ناتج من حجم الوباء (وسيط). أما السودان فجاء في المرتبة الثالثة من ناحية تأثير الوباء وذلك لأن المرض في السودان يوصف بانه منخفض المستوى.

توصي الدراسة بتطوير نظام الرصد المرضي لأنه المصدر الوحيد لبيانات المرض بالأ قطار المختلفة، والانت قال من الاعتماد علي النماذج المحددة الى النماذج الاحتمالية لتوفيق منحنيات الاصابة وذلك بجانب إجراء دراسات مست قلة لـ قياس أثر الايدز الديمغرافي.