بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

قال الله تعالى

﴿ قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِلاَّ مَا عَلَّمْتَنَا إِلَّا مَا عَلَّمْتَنا إِلَّكَ أَنتَ الْعَلِيمِ الْحَكِيمُ ﴾

<mark>صدق الله العظيم</mark> سورة البقرة الآية (32)

Dedication

To

My wonderful family

To

All those whom I always love and respect

Acknowledgments

All and first thanks to the almighty ALLAH.

My all and deepest thanks to my family for their support, bearing, and encouragement; especially my father who gave me the moral support, my mother for her prayers.

Deep thanks to my supervisor Dr.Abd Alhafiz
Hassan Khattab for his great effort and
patience.

Also great thanks to my friends who pushed me forwards and encouraged.

My gratitude to all staff in Alban Jaded and Diabetic and Endocrine Centre in Khartoum North for their great assistance.

At last and not to forget my great thanks to all people who helped me in this study.

ABSTRACT

Background: Abnormal blood glucose levels are common in ill patients with diabetes and increase the risk of complications such as infection, metabolic problems, and/or cerebral damage. Frequent monitoring of blood glucose levels and aggressive management of hyperglycemia can decrease these complications. Although laboratory analysis is the most accurate method for evaluating glucose levels, because of cost and time delays; bedside point-of-care (POC) testing is often used to determine glucose levels when frequent monitoring of glucose is important. The aim of this study was to compare glucose results obtained by Accu-Chek Active glucometer (dry chemistry) to glucose oxidase method (wet chemistry).

Method: Point of care values were compared with laboratory values in 60 diabetic patients who attended Alban Jaded Educational Hospital, and Diabetic and Endocrine Centre in Khartoum North, for routine follow up during the period from 18.11-9.12. First capillary whole blood samples were analyzed by glucometer (Accu- Chek Active), then venous blood samples were collected for plasma glucose analysis.

Results: This study showed that mean capillary whole blood glucose levels, measured in Accu- Chek Active glucometer (dry chemistry), were not significantly different from mean laboratory plasma glucose levels as measured by glucose oxidase method (wet chemistry) using independent-t test (P-value= 0.341).

Conclusion: Glucose values of point of care samples were not differ significantly from specific laboratory method values, therefore, the glucometer Accu-Chek Active can be used in the Sudan for monitoring of blood glucose level in diabetic patients, considering the appropriate use of the device.

ملخص الدراسة

إن مستويات جلكوز الدم العاليه فى مرضى السكرى تزيد من خطر الإصابه بالمضاعفات. إن المراقبه المتكرره لمستويات جلكوز الدم وعلاج إرتفاعه يقلل من خطر الإصابه بهذه المضاعفات. بالرغم من أن الفحص المعملى هو أكثر دقة لتقدير مستويات الجلكوز, ولكن بسبب التكلفه وتأخير الزمن فإن قياس معدلات سكر الدم فى المنزل تستعمل بإستمرار عندما تكون المراقبه المتكرره مهمه وضروريه.

كان الهدف من هذه الدراسه هو المقارنه بين نتائج الجلكوز لجهاز أكيو تشيك اكتيف (الكيمياء الجافه) وطريقة الجلكوز أوكسيديز (الكيمياء الرطبه) .

إن هذه الدراسه أجريت على 60 مريض بمرض السكرى والذين قصدوا مستشفى البان جديد التعليمى ومركز السكرى والغدد الصماء بالخرطوم بحرى للمتابعه الدوريه فى الفتره مابين 18-11 الى 9-12, لتقييم نتائج جهاز قياس السكر فى الدم فى المنزل أكيو تشيك اكتيف مقارنة بنتائج المعمل. أولا أخذت عينات الدم من الإبهام لجهاز قياس سكر الدم فى المنزل, ثم أخذت عينات الدم من الوريد مباشرة بغرض تحليلها بطريقة الجلكوز أوكسيديز.

كانت نتائج هذه الدراسه أنه لا يوجد فرق معنوى بين نتائج الجلكوز لجهاز أكيو تشيك اكتيف (الكيمياء أكيو تشيك اكتيف (الكيمياء الرطبه) .

بناءا على هذه النتائج فإنه يمكن إستعمال جهاز أكيو تشيك اكتيف لقياس سكر الدم فى المنزل فى السودان مع مراعاة طرق الإستعمال الصحيحه.

Abbreviations

ADP Adenosine Diphosphate

ACTH Adrenocorticotrophic Hormone

ATP Adenosine Triphosphate

BGMg Blood Glucose Monitoring

BGM Blood Glucose Monitor

CDC Center for Disease Control

CDRH Center for Devices & Radiological Health

DM Diabetes Mellitus

ECF Extracellular Fluid

EDTA Ethylindiamine-tetra Acetic Acid

EMI Electromagnetic Interference

ER Emergency Room

FDA Food and Drug Administration

GDM Gestational Diabetes Mellitus

HbA1c HemoglobinA1C

HBGM Home Blood Glucose Monitoring

HCT Hematocrit

HMP Hexose Monophosphate Shunt

ICU Intensive Care Unit

IDDM Insulin Dependent Diabetes Mellitus

MODY Maturity Onset Diabetes of the Young

MRDM Malnutrition Related Diabetes Mellitus

NADP Nicotinamide Dinucleotide Phosphate

(NADPH Nicotinamide Dinucleotide Phosphate (reduced form

NCCLS National Committee for Clinical Laboratory

Standards

NIDDM Non Insulin Dependent Diabetes Mellitus

NIH National Institute of Health

POL Physician's Office Laboratory

SMBG Self Monitoring of Blood Glucose

SPSS Statistical Package for Social Science

TCA Tricarboxylic Acid Cycle

Contents

.Subject	Page No
الأدة	I
Dedication	II
Acknowledgements	III
Abstract (English)	IV
Abstract (Arabic)	V
Abbreviations	VI
Contents	VII
List of figures	XI
List of tables	XII
CHAPTER ONE. INTRODUCTION AND LITE	RATURE REVIEW
Introduction	1 1.1
Literature review	6 1.2
Diabetes Mellitus	6 1.2.1
Diagnosis	6 1.2.1.1
Glucose	7 1.2.2
Glucose metabolism	8 1.2.2.1
Fate of glucose	10 1.2.2.2
Regulation of blood glucose concentration	12 1.2.2.3
Methods of glucose measurement	14 1.2.2.4
Stability of glucose in body fluids	14 1.2.2.4.1
Portable blood glucose devices	17 1.2.2.5
Background	17 1.2.2.5.1
Device description	19 1.2.2.5.2
Human factors studies	20 1.2.2.5.3

Performance considerations for regulatory clearance	22 1.2.2.5.4
Quality control	25 .1.2.2.5.5
Limitations	27 1.2.2.5.6
Rationale	28 1.3
Objectives	29 1.4
General objective	29 1.4.1
Specific objectives	29 1.4.2
CHAPTER TWO. MATERIALS AND METHODS	
Materials and methods	30 .2
Study design	30 2.1
Study area	30 2.2
Study population	30 2.3
Inclusion criteria	30 2.4
Ethical consideration	30 2.5
Samples	30 2.6
Materials	31 2.7
Methodology	32 2.8
Estimation of plasma glucose by enzymatic glucose oxid	ase method 2.8.1
	32
Estimation of blood glucose by glucometer(Accu Chek A	Active)33 2.8.2
Quality control	34 2.9
Data analysis	34 2.10
CHAPTER THREE. RESULTS	36
CHAPTER FOUR. DISCUSION, CONCLUSION, an	d
RECOMMENDATIONS	39
Discussion	39 5.1
Conclusion.	41 5.2
Recommendations	41 5.3
REFERENCES	42

APPENDIX	 47

List of Figures

.Figure	Page No
Figure 1.2.2 The pathways used in carbohydrate metabolism	9
Figure 1.2.2 Out line of glycolysis	11
Figure 1.2.3 The pathway of aerobic metabolism	12
Figure 1.2.4 Insulin is the key for glucose entrance into the cell.	13

List of Tables

.Table	Page No
Table 3.1 Comparison between means of glucose results obtaine	ed by
glucometer (Accu-Chek) Active and glucose oxidase method	37
Figure 3.1: Scatter plot show strong positive correlation between results obtained by Accu-Chek Active glucometer & glucose ox	0
method (r=0.97)	38