بنالية الخالخ بنزن

قال تعالى:

"اقْرَأْ بِاسْم رَبِّكَ الَّذِي خَلَقَ {1} خَلَقَ الْإِنسَانَ مِنْ عَلَقٍ {2} اقْرَأْ وَرَبُّكَ الْأَكْرَمُ {3} الَّذِي عَلَّمَ بِالْقَلَمِ {4} عَلَّمَ الْإِنسَانَ مَا لَمْ يَعْلَمْ {5}"

صدق الله العظيم

سورة العلق الآيات من (1-5)

Dedication

Acknowledgements

Great thanks and gratitude are forwarded to my main supervisor **Prof**. **Mohammed** Talballa El-Sheikh for his valuable advice and guidance through the various stages of this project, in planning, implementing and concluding the research. In the same vein thanks are extended to co-supervisor, **Dr.** Abdelsalam Abdallah. Dafalla, and without mincing of words as many thanks to Dr. Hassan Abdurrahman, Fatah of Khartoum University, Faculty of Chemical Engineering. Thanks are also extended to Mr. Adel Ali and Mr. Tarig Abdelrahman of Petrodar Company. Special thanks to Mr. Omar Elbadawy in Khartoum University's Central Laborarory. Special thanks are extended to Mr. Mohammed Ali Idris and Mr. Omar Babiker of the Central Petroleum Laboratories (C.P.L). Thanks are extended to whomever in wherever hereby contributed in the bringing up and in the completion of this research.

Thanks everybody.

Abstract

(English)

Zeolite samples were collected from Wadkawly in Gadarif region. These samples were characterized with respect to both physical and chemical properties. X-ray Diffraction Analysis (XRD) showed these samples to be composed of Thomsonite zeolite, exclusively. The samples were treated with strong brine solution to ensure that Na-zeolite is generated and used as the stationary ion exchange phase. Solutions containing 100ppm of the ions (Pb²⁺ or Fe³⁺ or Ni²⁺) were artificially prepared, then processed with the zeolite. Excellent extraction was achieved, with final residual concentration of 0.02 ppb, 3.0 ppb and 1.38 ppm for (Pb²⁺, Fe³⁺ and Ni²⁺) respectively. This gives extraction efficiency of \sim 100 %, 99.9 %, and 98.6 %, for Pb²⁺, Fe³⁺ and Ni²⁺, respectively. The relative efficiency is, therefore :

 $Pb^{2+} > Fe^{3+} > Ni^{2+}$.

الخلاصية

جمعت عينات من الزيوليت من ود كولي في منطقة القضارف. أجريت دراسة للخصائص الفيزيائية والكيميائية لهذه العينات. وقد بين التحليل بحيود الأشعة السينية أن هذه العينات تنتمي حصراً إلى فصيلة الزيوليت المعروفة "بالتمسونيت". وجرت معالجة العينات بحلول الملح المركز للتأكد من أنتاج زيوليت الصوديوم (Na-Zeolite) الذي وظف كالطور الثابت في عملية التبادل الأيوني. وتم تحضير محاليل من الأيو نات ($^{\text{Te}}$ $^{\text$

 $.Pb^{2+} > Fe^{3+} > Ni^{2+}$

List of Contents

Topic	Page	
الآية	i	
Dedication	ii	
Acknowledgment	iii	
Abstract(English)	iv	
Abstract (Arabic)	V	
List of Contents	vi	
List of Tables	ix	
List of Figures	X	
Chapter I		
Introduction		
1. Introduction	1	
1.1 Justification	1	
1.2 Specific Objectives	2	
1.3 Work plan	2	
Chapter II		
Literature Review		
2. Literature Review	4	
2.1 Surface water	4	
2.2 Ground water	5	
2.3 Water purification	6	
2.3.1 Chemical coagulants	7	
2.3.2 Filtration	8	
2.3.3 Disinfection of water	8	
2.4 Ion Exchange	9	
2.4.1 General	9	
2.4.2 Heavy-metal ions	11	
2.4.3 Removing of Heavy-metal ions by Zeolites	12	
2.5 Zeolites	13	
2.5.1 Composition	13	
2.5.2 Structure	14	
2.5.3 Classification	19	
2.5.4 Properties	22	
2.5.5 Applications	25	
2.5.6 Regenerations	27	
2.5.7 Modifications	27	
2.6 Zeolites in water treatment	28	
Chapter III		
Experimental (Materials and Methods)		

3. Experimental (Materials and Methods)	30
3.1 Materials	30
3.1.1 Samples of Zeolites deposits	30
3.1.2 Samples of Well water	30
3.2 Equipments	30
3.2.1 X-Ray diffractometer	30
3.2.2 Scanning Electro-microscopy	30
3.2.3 Atomic Absorption spectrophotometer	30
3.2.4 The glass equipments	31
3.3 Procedures	31
3.3.1 Zeolites deposits characterization	31
3.3.1.1 Physical characterization of sample	31
3.3.1.2 Chemical characteristics of sample	31
3.3.2 X-Ray Diffractometry procedure	32
3.3.3 Scanning Electron-microscope procedure	32
3.3.4 Standard curves of heavy metal ions procedure	32
3.3.5 Processing of Zeolite	32
3.3.6 Removal of Heavy metal ions by Zeolite	33
3.3.7 Regeneration of Na-Zeolite	33
Chapter IV	
Results and Discussion	
4. Results and Discussion	34
4.1Charactrization of Zeolite deposits	34
4.1.1 Location of deposits	34
4.1.2 Physical characteristics	34
4.1.3 XRD analysis of deposits	34
4.1.4 Internal structure	35
4.1.5 Chemical composition of Zeolite	36
4.2 Removal of heavy metal ions by Na-Zeolite	36
4.2.1 Lead-containing solution	36
4.2.2 Iron-containing solution	37
4.2.3 Nickel-containing solution	38
4.3 Conclusions and recommendations	41
Appendix "A"	42
Appendix "B"	47
References	49

List of Tables

Title	page
Table (1) Coordinates of Zeolite deposits	34
Table (2) The chemical composition of Zeolite	36
Table (3) Lead on Zeolite ion exchange data	37
Table (4) Iron on Zeolite ion exchange data	38
Table (5) Nickel on Zeolite ion exchange data	39
Table (6) Extraction efficiency for Fe, Pb and Ni	40

List of Figures

Figure	Page
Fig (1) Satellite image for the location of Zeolite deposits	35
Fig (2) Effect of retention time on the extraction of Pb ⁺² by	37
Zeolite	
Fig (3) Effect of retention time on the extraction of Fe ⁺³ by	38
Zeolite	
Fig (4) Effect of retention time on the extraction of Ni ⁺² by	39
Zeolite	