

) لاَ يُكلُفُ اللَّهُ نَفْسًا إِلاَ وُسْعَهَا لَهَا مَا كَسَبَتْ وَعَلَيْهَا مَا الْمَسَبَتْ وَعَلَيْهَا مَا الْتَسَبَتُ رَبِّنَا لِاَ تُؤَاخِذْنَا إِن نَسِينَا أُوْ الْخُطَأْنَا رِبِنَا وَلاَ تَحْمَلْ عَلَيْنَا إِصْرًا كَمَا حَمَلْتَهُ عَلَى الذّينَ مِن قَبْلِنَا رَبِنَا وَلاَ تُحَمَّلْنَا مَا لاَ طا قَة لَنَا به وَاعْفُ عَنَا وَاغْفِرُ لَنَا وَارَّحَمْنَا أُنتَ مَوْلاَنَا فَالاَ طَا قَة لَنَا به وَاعْفُ عَنَا وَاغْفِرُ لَنَا وَارَّحَمْنَا أُنتَ مَوْلاَنَا فَانصَرُنْنَا عَلَى الْ قَوْمَ الْكَافِرِينَ (

سورة المالال المالال (286)

Dedication

```
We would like to dedicate
    this simple work
        To
         My father Soul
        To
            My Mother
             Soul
        To
          My Husband
        To
          My Brothers
        To
          My Collage
        To
          All whom Love
              US
```

Acknowledgements

First of all thanks my god for helping and supporting my research and lighting the way for me.

I would like to express my great thanks to those who assisted in this thesis as well as **Dr. Kouther Elhaj Mohamed**, Who supervised this work.

I also would like to thank institute of Nuclear medicine, Molecular Biology & oncology department in elgazira-Wad Madani and Head of radiation officer, (Radiation and the isotopes Khartoum center).

And I would like to thank many endividuals whom assisted me. In preparing this research **ustaza: Fwzia Alsadig.**

My great thanks to my husband who encourage and support me .

Finally I thank to my all family in Eldalang University.

Our thanks go to the masters of the Center for Computer Science Shahiqat

List of abbreviations

Quantity	symbol
Z	Atomic Number
EM	Electro Magnetic Radiation
STP	Standard Temperature and Pressure
A	Activity
X	Exposure
AD	Absorbed Dose
DE	Dose Equivalent
TLD	Thermoluminescence Doimetry
I	Intensity
Су	Cray
SV	Sievart
μCy	Micro Gray
SKIMS	Sher- i - Kashmir Institute of Medical Science
ICRP	Intentional Communication of Radiation
	Protection

Abstract

In the present study the (TLD's liF:Mg,Cu,P (GR200) have been used to measure the radiation effective doses of the workers of both the Khartoum Isotope Hospital and Medani Isotope Hospital the state of Gezira, (Isotope Section and Radiotherapy departments).

The (TLD's) was used to measure the level of the effective dose by the workers of the different medical professions (technicians, specialist in physics, physicians, and nurses (male).

(30) Workers of different medical professions at the hospitals subject of the study were chosen. The (TLD's) badge were used for the period of three successive months, to measure the effective dose in each month.

The main objective of the thesis is to know the effective dose for the workers during their work, as well as the safety and to compare the results obtained with other countries and with the reference dose level recommended by ICRP.

The doses obtained, during a period of three months, were range from (0.16 to 0.89) mSv at Khartoum Isotope hospital and from (0.08 to 0.21)mSv at Medani Isotope Hospital, which are reasonable and acceptable comparing with reference dose level (20 mSv pe year ICRP).

الخلاصة

تناولت هذه الدراسة كيفية استخدام الكاشف الوميضي الحراري (TLD's LiF: Mg, Cu,P (GR₂₀₀) لا قياس الجرعات الاشعاعية الفعالة للعاملين في كل من مستشفى الذرة الخرطوم ومستشفى الذرة مدني (ولاية

الجزيرة- قسم الطب النووي، والعلاج بالأشعة). استخدم الكاشف الوميضي الحراري(TLD's) لا قياس مستوى الجرعة الفعالة للعاملين في المهن الطبية المختلفة (تقنيين، فيزيائيون، أطباء،

ممرضين). أختير لهذه الدراسة عدد (30) من العاملين في مجال الطب النووي لكل من المستشفيات محل الدراسة. تم استخدام كواشف (TLD's) لفترة ثلاثة أشهر متتالية لـ قياس الجرعَةِ الفعالة شهرياً.'

ألهدف الرئيسي لهذه الأطروحة هو معرفة الجرعة الفعالة للعاملين أثناء عملهم وسلامُة العّاملين في هُذَا المجال ومُ قارنة الجرعات المتحصل عليها مع نتائج أخرى لبعض الدوّل وم قارنتها مع الجَرعات العالمية المو صى بها من قبل اللجنّة الدولية للو قاية من اللهشعاع ICRP.

كانت نتائج الجرعات المتحصل عليها لفترة الثلاثة أشهر تتراوح مابين mSv (0.16 -0.89) لمستشفى الذرة الخرطوم وما بين إلى (0.08-0.21) mSv لمستشفى الذرة مدني، وهي تع تبر ُ قيم م قبو لة م قار نة مع القيم المرجعية الموصى بها في (ICRP).

Contents

Title	Page		
الآية	I		
Dedication	II		
Acknowledgments	III		
List of abbreviations	IV		
Abstract (English)	V		
Abstract (Arabic)	VI		
List of tables	IX		
List of figures	X		
Chapter (1) Introduction			
1-1 Radiation	1		
1-2 Electro magnetic Radiation	1		
1-3 classification of Radiation	4		
1-4 Radiation Measurement	6		
1-5 Basic Concepts And unit of Radiation	11		
1-6 Methodology	15		
1-7 Problem of study	15		
1-8 Aim of study	15		
1-9 Literature Review	15		
Chapter (2)			
Theoretical Background			
2-1 Introduction	18		
2-2 thermoluminescence dosimetry (TLD)	18		
2-3 thermoluminescence process	18		
2-4 Glow curve	19		
2-5 2-5 LiF: Mg, Cu, P	23		
2-6 Application of the (TLD's) In The medicine	29		
2-7 Advantages of (TLD's)	31		
2-8 disadvantage of (TLD's)	31		
Chapter Three			
Martial and Methods			
3-1 Introduction	32		

3-2 Description the materials	32	
3-3 Setup	33	
3-4 Operation	34	
3-5 Filter drawer	36	
3-6 Filling the Charging Magazine	36	
3-7 PCL3 Operating Software	37	
3-8 Performing a Measurement	38	
3-9 Dosmeter GR200, GR207	41	
3-10 Storage, Cleaning and Disposal	42	
3-11 Technical Specification	43	
3-12 For your Safety	45	
3-13 Experimental Methods	46	
Chapter (4)		
The Result and discussion		
The Result and discussion		
4-1 Introduction	47	
	47 49	
4-1 Introduction		
4-1 Introduction 4-2 The result of effective Dose in (mSv) of the		
4-1 Introduction 4-2 The result of effective Dose in (mSv) of the Khartoum center 4-3 The result of effective Dose in (mSv) of the Wad Madani	49	
4-1 Introduction 4-2 The result of effective Dose in (mSv) of the Khartoum center 4-3 The result of effective Dose in (mSv) of the	49	
4-1 Introduction 4-2 The result of effective Dose in (mSv) of the Khartoum center 4-3 The result of effective Dose in (mSv) of the Wad Madani	49 50	
4-1 Introduction 4-2 The result of effective Dose in (mSv) of the Khartoum center 4-3 The result of effective Dose in (mSv) of the Wad Madani 4-4 Statical Analysis	49 50 52	
4-1 Introduction 4-2 The result of effective Dose in (mSv) of the Khartoum center 4-3 The result of effective Dose in (mSv) of the Wad Madani 4-4 Statical Analysis 4-5 Discussion	50 52 56	
4-1 Introduction 4-2 The result of effective Dose in (mSv) of the Khartoum center 4-3 The result of effective Dose in (mSv) of the Wad Madani 4-4 Statical Analysis 4-5 Discussion Chapter Five	50 52 56	
4-1 Introduction 4-2 The result of effective Dose in (mSv) of the Khartoum center 4-3 The result of effective Dose in (mSv) of the Wad Madani 4-4 Statical Analysis 4-5 Discussion Chapter Five Conclusion and Recommendation	49 50 52 56	

List of Tables

Title	Page NO
TABLE(1.1)	14
Table (3-1) For GR100, GR100M. GR200, GR206,	40
GR207 material	
Table (3-2): The Dosemeter needs a 10 minutes	41
annealing at 240 °C followed by a fast cooling	
Table (3-3) The dosemeter needs a one hour annealing at	42
400°C followed by a two hours stabilization level at	
100°C.	
Table (3-4):Features (for GR200, GR206 and GR207	44
detectors)	
Table(3-5):	44
Table (4-1): Results of the Linearity test	48
Table (4-2) The results of the effective dose in (mSv) of	49
the center Khartoum (A,B,C):	
Table (4-3) The result of the effective dose (mSv) of the	50
Wad Madani (D, E,F):	
Table (4.4) Maximum and Minimum Dose for the	52
personal at the Radiation and Isotopes Center Khartoum	
Table (4-5): Percentage of The Job	52
Table (4.6) Maximum and Minimum Dose for the	53
personal at the Institute of Nuclear Medicine Moleculer Biology & oncology Algazira – Wad Madani.	
Table (4-7): Percentage of The Job	53
Table (4-8) Hand Doses for Group diagnostic workers	54
Involved in handling 1-131 and ^{99m} Tc-Labeled	3.
Compounds in two of the nuclear medicine facilities	
Table (4-9): Average annual whole body dose per	54
radiation workers	
Table (4-10A) Average month equivalent doses in	55
Clinical Center Podgorica obtained by DOSICARD	
personal dosimeters in the period April-November 2007	
Table(4-10B): Average month equivalent doses in 11	55
various medical institutions in Montenegro obtained by	
personal TLD in the period April 2007-April 2008	
personal TED in the period April 2007-April 2000	

List of Figures

Title	Page NO
-------	---------

Figure (1-1) The EM Spectrum	3
Figur (1-2): Classification of radiation	5
Fig (1-3): The free air ionization chamber.(From	7
Whyte1959.)	
Fig(1-4) Simplified electrical circuits for measuring (a)	8
current flow (exposre rate),(b) total charge exposure.	
Figure (1-5) Variation in current appearing across capacitor plates with applied potential difference for a fixed X-ray beam intensity.(AB) loss of ions by recombination . (BC) ionization plateau. (CD) proportional counting .(EF)Geiger -Muller region .(Beyond F) continuos discharge .The voltage axis shows typical values only	10
Fig (1-6) Amplification of ionization by the electric field	11
Figer (1.11): The four concepts that relate a radiation	11
worker to a radioactive source 4cril'ln. measured in curies	
or becquerels, exposure. measured in roentgens or	
coulombs/kg. absorbed dose. measured in rads or grays,	
and dose equivalent, measured in rems or sieverts.	
Figure (2-1): A simplified Energy level diagram to	19
illustrated thermoluminescence process	
Figure (2-2): An example of glow curve peaks of LiF	20
(TLD-100) after phosphor has been annealed at 400°C for	
1 h and read immediately after irradiation to 100R. ⁽²⁾	
Figure (2-3): Normalised TL response for LiF: Mg, Cu ,P	23
in the range from 0.3R to 10 ⁴ R following ²²⁶ Ra and ⁶⁰ Co	
gamma exposure.	2.4
Figure(2-4): Normalised TL response for LiF: Mg, Cu, P	24
exposed with ⁶⁰ Co gamma rays in the range from 100 R to	
10 ⁵ R.	25
Figure (2-5): Normalised TL dose response of LiF: Mg, Ti	25
following: a, ⁶⁶ Co gamma irradiation (1.25Mev); b, 50kv _p	
X-ray irradiation; c, 20kv _p X- ray irradiation; and d, LiF:	
Mg, Cu ,P following ⁶⁶ Co irradiation.	2=
Figure (2-6): Photon energy response of LiF: Mg, Cu, P.	27
Dotted lie, relative response $s_{\epsilon}^{(E)}$; Solid line, relative Tl	
efficiency $\eta(E)$; broken line, ratio of Mass energy	
absorption coefficients of LiF and air $S_{\epsilon}(E)$.	

Figure (2-7); The dependence of the sensitivity and glow	28
curve shape of LiF: Mg, Cu, P on the thermal history.	
Curve A: glow curve following a pre – irradiation anneal	
of 250°C for 15min and 100°C for 1 h. Curve B: glow	
curve after a pre-irradiation anneal 400°C for 1 h.	
Figure (3-1-a) the (TLD's) Materials	32
Figure (3-1-b) the different (TLD's) Materials	33
Figure (3-2) PCL ₃ automatic TLD reader	34
Figure (3-3) TLD reader	35
Figure (3-4) Program Example annealing oven ETT	41
Figure (4-1) Linearity	48
Figure (4-2) Maximum and Minimum Dose for the	52
personal at the Radiation and Isotopes Center Khartoum	
Figure (4-3) Maximum and Minimum Dose for the	53
personal at the Institute of Nuclear Medicine Moleculer	
Biology & oncology Algazira – Wad Madani	