

الآلية

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

قال تعالى :

(قُلْ إِنَّ صَلَاتِي وَنُسُكِي وَمَحْيَايَ وَمَمَاتِي
لِلَّهِ تَعَبُّدُ وَعَبْدُ الْعَالَمِينَ {162} لَا شَرِيكَ لَهُ وَبِذَلِكَ
أَمْرَتُ وَأَنَا أَوَّلُ الْمُسْلِمِينَ {163}).

صدق الله العظيم

سورة الأنعام الآية 162-163

DEDICATION

TO ... my mother and father

My life soul

Acknowledgment

First of all I gratefully thank Allah for helping me in the preparation of this work .

My thanks also go to the supervisor of this work : Dr. Sana Eltahir, Associated professor, University of El-Neelain, Faculty of Medicine for the guidance and encouragement afforded me in the preparation of this work .

My gratitude and deepest thanks are also extended to: Dr. Huda Haroon, manager of pediatric hospital in Madani for her guidance and support.

My thanks continuous to my colleagues in laboratory section in pediatric hospital and Renal Dialysis center in Madani.

I would like to thank all families and individuals who donated samples for this study.

finally I would like to thanks all my colleagues for their encouragement and support.

To these and to all others who have helped in one way or another, I express my gratitude.

Abstract

This was a descriptive analytical study conducted in Aljazeera State during November 2008 to January 2009 was carried out in patients suffering from β thalassemia and their relatives in Wad madani pediatric teaching Hospital, to estimate the frequency of β thalassemia in patients and their relatives .

70 persons (30 males and 40 females), their ages ranged between 2 to 80 years was enrolled .

Five mL of venous blood was collected from each person, 2.5 mL into EDTA containers, for blood films, full blood count (CBC) using electronically method (Sysmex Kx 21n. fully automated hematological analyzer), and hemoglobin F quantification (Betke *et al.* method), were performed on all subjects, and 2.5mL in to plain containers for serum ferritin , and serum iron using (A25 automated system), were performed only on microcytic hypochromic samples.

A reduced mean corpuscular volume (MCV) of <80 fl with reduced mean corpuscular haemoglobin (MCH) of <27 , and elevated HbF (mean 4.6) used as a screening test for thalassaemia in this population, followed by iron studies to the microcytic hypochromic samples (mean of iron 76.08 and ferritin 134.86), to confirm the diagnosis. Using this approach, 43 cases (61.4%) were diagnosed of β -thalassaemia trait, while 22 (31.5%) were normal and 5 cases (7.1%) was already diagnosed as β -thalassaemia patients.

أجريت هذه الدراسة التحليلية الوصفية في ولاية الجزيرة في الفترة ما بين نوفمبر 2008 و حتى يناير 2009 وشملت المصابين بمرض فقر دم حوض البحر الأبيض المتوسط النمط بيئياً وأقاربهم بمستشفى ودمدني للأطفال .

كان الهدف من هذه الدراسة هو تحديد تردد المصابين بهذا المرض والحاملين للصفة الوراثية لهذا المرض .

شملت الدراسة 70 شخص و تتراوح أعمارهم ما بين 2-80 سنة منهم 30 ذكور و 40 إناث حيث تمأخذ 5 مل من عينه الدم الوريدي من كل شخص ، وضفت 2,5 مل من العينة في حاوية بها مانع للتجلط وذلك لإجراء فحص الدم الكامل و عمل مسحات الدم الرفيعة أما بقية العينة وضفت في حاوية خالية من مانع التجلط وذلك لفصل المصل لإجراء اختبار تركيز الحديد في الدم .

تم اختبار الدم الكامل بواسطة جهاز تعداد الدم الإلكتروني (Sysmex) . وتحديد نسبة الخضاب الجنيني ، و تركيز الحديد عند الأشخاص الذين لديهم فقر دم صغير الكريات نا قص الصباغ في كل عينه . من هذه النتائج تم تحديد أن كل شخص حجم الكريات الوسطى لديه أقل من 80fL (صغير الكريات) ، و خضاب الكريات الوسطى لديه أقل من 27 pg (نا قص الصباغ) ، وكان تركيز الخضاب الجنيني له أكثر من 1,0 % ، و تركيز الحديد المصل طبيعي ، يكون مصاب بخلة فقر دم البحر الأبيض المتوسط ومن ثم كان عدد المصابين بالخلة 43 بنسبة 61,4 % ، والأصحاء 22 بنسبة 31,5 % ، أما المرضى كانوا عددهم 5 بنسبة 7,1 % وهؤلاء مشخصين مسبقا .

Table contents

Topic	Page
Verse	I
Dedication	II
Acknowledgement	III
Abstract (English)	IV
Abstract (Arabic)	V
Table of Contents	VI
List of Tables	VII
List of Figures	VIII
List of Abbreviations	xii
Chapter One : Introduction & Literature Review	
1.1.1 Hemoglobin	1
1.1.2 Genetic Control of Hemoglobin Production	2
1.1.3. Definition of Anemias	4
1.1.4. Classification of Anemia	4
1.1.4.1 Morphological Classification	4
Hypochromic Microcytic Anemia .1.1.4.1.1	4
1.1.4.1.2. Normocytic Normochromic Anemias	4
1.1.4.1.3. Macrocytic Anemias	5
1.1.4.2. Pathophysiologic (Functional or Kinetic)	5
1.1.5. Diagnosis of Anemia	6
1.1.5.1. Laboratory Investigation	6
1.1.5.2. Bone Marrow Examination	6
1.1.6. Hemoglobinopathies	6
1.2. Literature Review	8
1.2.1 Definition of Thalassemia	8
1.2.2. Historical Background	8
1.2.3. Geographical Distribution	11
1.2.4. Molecular Basis of Thalassemias	16
1.2.4.1. Defective β globin Gene Transcription	16
1.2.4.2. Processing	17
1.2.4.3. Mutations That Result in Abnormal Translation	18
1.2.5. Classification of Thalassemias	18
1.2.5.1. Alpha Thalassemia	19
1.2.5.2. Beta Thalassemia	20
1.2.5.3. Other Thalassemias	22
1.2.5.3.1. Heterozygous $\delta\beta$ thalassemia	22

1.2.5.3.2. Homozygous $\delta\beta$ thalassemia	22
1.2.5.3.3. Heterozygous β thalassemia/ $\delta\beta$ thalassemia	23
1.2.5.3.4. $\gamma\delta\beta$ thalassemia	23
1.2.5.5. Hb Lepore	23
1.2.5.6. Hereditary Persistence of Fetal Hemoglobin	23
1.2.5.7. Thalassemia Associated with Hemoglobin Variants	24
1.2.5.7.1. Sickle cell thalassemia	24
1.2.5.7.2. Hemoglobin C thalassemia	24
1.2.5.7.3. Hemoglobin E thalassemia	24
1.2.6. Pathophysiology of β thalassemia	24
1.2.7. Laboratory Diagnosis	25
1.2.7.1. Methods for Investigation of Thalassemia	26
1.2.7.2. Sample Collection	26
1.2.7.3. Blood Count, Film and Reticulocyte Count	26
1.2.7.4. Hemoglobin Electrophoresis	27
1.2.7.5. High Performance Liquid Chromatography	27
1.2.7.6. Electrospray Ionization Mass Spectrometry	28
1.2.7.7. Estimation of Hb A2	28
1.2.7.8. Estimation of Hb F	28
1.2.7.9. Assessment of The Intracellular Distribution of Hb F	29
1.2.7.10. Assessment of Iron Status in Thalassemia	29
1.2.7.11. Red Cell Inclusions	29
1.2.7.12. Fetal Diagnosis of Globin Gene Disorders	30
Chapter Two	
2.1 Rationale	31
Objective 2.2	32
Chapter Three	
Material and Methodology	
3.1. Study Design	33
3.2. Study Area:	33
3.3. Ethical Consent	33
3.4. Study Variables	33
3.5. Study Population	33
3.5.1 Sampling	33
3.5.2. Sample Size	33
Inclusion Criteria .3.5.3	34
3.5.4. Exclusion Criteria	34
3.6. Plan of Data Collection	34
Methodology .3.7	34
3.7.1. Methods of Data Collection	34
3.7.2. Method of Sample Collection	34

3.8.1. Complete Hemogram	34
3.8.1.1. Principle of Automated Analyzer system	34
Procedure.3.8.1.2	36
3.8.2 Peripheral Blood Pictures	36
3.8.2.1. Preparation of blood films on slides	36
3.8.2.3. Labeling Blood Films	37
3.8.2.4. Fixation of Blood Films	37
3.8.2.5. Staining of Blood Films	37
3.8.2.6. Principle	37
3.8.2.7. Method of Staining	38
3.8.2.8. Examination of Blood Films	38
Red Cell Morphology .3.8.2.9	39
3.8.3. Quantitation of Hb F	39
Modified Betke Method for the Estimation of Hb F .3.8.3.1	39
Principle .3.8.3.1.1	39
Method .3.8.3.1.2	39
Measurement of Iron and Ferritin Concentration .3.8.4	41
3.8.4.1. Principle of The Method (Iron)	41
3.8.5.1. Principle of The Method (Ferritin)	41
3.8.5.2. Principle of A25 Automated Analyzer System	41
3.8.5.3. Procedure	41
3-9. Data Analysis	42
Chapter Four	
4.1 Results	43
Chapter Five	
5.1.Disscussion	54
5.2.Concolosion	56
5.3. Recommendation	57
Chapter Six	
References	58
Appendices	

List of Tables

Table	Page
(1.1) Normal Hemoglobin	3
(4-1): Hemoglobin level gm /dL of β thalassemia Trait and Normal	45
(4-2): Red Cell count of β thalassemia Trait and Normal	45
(4-3): MCV of β thalassemia Trait and Normal	45
MCH of β thalassemia Trait and Normal :(4-4)	45
MCHC of β thalassemia Trait and Normal :(4-5)	45
(4-6): HbF% of Normal and Normal Control	46
(4-7): HbF% of β thalassemia Trait and Normal Control	46
(4-8): HbF% of β thalassemia Patients and Normal Control	46
(4-9): Ferritin of β thalassemia Trait and Normal Control	47
(4-10): Ferritin of β thalassemia Patients and Normal Control	47
(4-11): Serum Iron of β thalassemia Trait and Normal Control	47
(4-12): Serum Iron of β thalassemia Patients and Normal Control	47
Hematological Parameters in Patients :(4-13)	48

List of Figures

Figure	Page
Frequency of Male and Females 4-1	49
4-2 Age Group Distribution	50
4-3 Distribution of β thalassemia Patients	51
4-4 Distribution of RBCs in the Normal Persons	52
4-5 Distribution of RBCs in β thalassemia Trait	53

LIST OF ABBREVIATIONS

A	Adenine
C	Cytosine
CBC	Complate blood count
CO2	Carbon dioxide
COOH	Carboxylic-group
dL	Deciliter
DNA	Deoxyribonucleic acid
EDTA	Ethylenediamine tetra acetic acid
ELISA	Enzyme linked immunosorbant assay
FBC	Full blood count (complete blood count, CBC)
Fe	Iron
fL	Femtolitre
G	Guanine
Hb	Hemoglobin
HbA	Hemoglobin A
HbA2	Haemoglobin A2
HbE	Hemoglobin E
HbF	Fetal hemoglobin
HbH	Hemoglobin H
HCT	Hematocrit
HiCN	Hemoglobin cyanide
HPHF	Hereditary persistence of fetal hemoglobin
HPLC	High performance liquid chromatography
K2 EDTA	Dipotassium ethylenediamine tetraacetic acid
kb	kilo base pairs
kDa	Kilo Dalton
MCH	Mean corpuscular Hemoglobin

MCHC	Mean corpuscular Hemoglobin concentration
MCV	Mean corpuscular volume
MPV	Mean platelet volume
mRNA	Messenger ribonucleic acid
NH ₂	Amino-group
nt	Nucleotide
PCR	Polymerase chain reaction
PCV	Packed cell volume
PDW	Platelet distribution width
pg	Pico gram
RBCs	Red blood cells
RDW	Red cell distribution width
RFLT	Restriction fragment length polymorphism
SD	Standar deviation
SPSS	Statistical product and service solution
T	Thymine
WBCs	White blood cells
μg	Microgram