Abstract

The physiochemical properties of *Acacia Senegal* and *Acacia nubica* (new name *A. oerfota*) gums were studied. They include; moisture, ash, nitrogen hence the protein, solubility test, tannin content, total soluble fiber, intrinsic viscosity, specific optical rotation, the pH value, acid equivalent weight and accordingly the uronic acid. The molecular weight of the samples was estimated using osmotic pressure measurment.

The value of number average molecular weight (M_n) of A. nubica was found to be 4.4. The high molecular weight and, high water solubility suggest a highly branched structure; (the molecular weight of A. senegal is 2.2).

The cationic composition of *Acacia nubica* was determined and the result showed that Calcium was the most abundant cation in the samples (17.691 ppm) followed by Potassium (10.917 ppm), Magnesium (6.099 ppm), Sodium (5.818 ppm), Manganese (0.161 ppm), Lead (0.0883 ppm), Iron (0.0752ppm), and Copper (0.0135ppm).

Emulsification studies show that *Acacia* gums (*A. nubica*, *A. senegal*) possess good emulsifying activities and stability, however the emulsifying stability of the emulsion of *nubica* gum is less than that of *A. senegal* gum. Blends of *Acacia nubica* with *Acacia senegal* were investigated and it was found that a mixture containing 50% *A. nubica*: 50% *A. senegal* produced blends having better emulsifying stability compared to other blends of gums.

المُلخص

تم في هذه الاطروحه دراسه الخواص الفيزيوكيميائيه لصمغي اللعـوت والهشاب وتم تحديد محتوي كل من الرطـوبه, الرمـاد, النـتروجين, ومـن ثـم البروتين كما تم تحديد محتوي التـانين, الـذوبانيه, الاليـاف الـذائبه, اللزوجـه الضمنيه, الدوران النوعي, والوزن المكـافئ ومـن ثـم حمـض اليورانيـك وتـم حساب الوزن الجزئي عن طريق قياسات الضغط الازموزي للاصماغ.

لقد وُجد ان صمغ اللعوت يمتاز بوزن جزئي () أعلى من صمغ الهشاب () ونتيجه للوزن الجزئي العالي والذوبانيه العاليه يستنتج ان صمغ اللعوت اكثر تفر عا من صمغ الهشاب.

تحليل الايونات المعدنيه لصمغ اللعوت بين أن الصمغ عباره عن معقد (ppm 10.917), الماغنسيوم(ppm 17.917), الماغنسيوم(ppm 0.161), الصوديوم (ppm 0.161) ونسب ضيله من المنجنيز(ppm 0.161). والرصاص (ppm 0.0135) والحديد (ppm 0.0752) ثم النحاس (ppm 0.0135).

أظهرت دراسه الاستحلاب أن مستحلبات صمغ الهشاب أعلي ثباتا مـن مستحلبات صمغ اللعـوت والهشـاب مستحلبات صمغ اللعـوت والهشـاب أن مزيجا يحتوي علي 50% من اللعوت و 50%مـن صـمغ الهشـاب قـد أنتج مستحلبا يتميز بدرجه ثبات أعلي من بقيه الخلائط الاخرى .

Table Of Contents

Contents

	NO
Dedication	i
Acknowledgement	ii

Contents				iii
List of Ta	ıbles			iv
List of fig	gures			v
Abstract ((English)			vi
Abstract ((Arabic)			vii
1 Introduction				1
1.1Colloid				1
1.1.1	Colloid defin	nition		1
1.1.2	Colloid class	sification		1
1.1.3	Colloid disp	persions		1
1.1.4	Types of col	loids		2
	1.1.4.1	lyophilic colloids		2
	1.1.4.2	lyophobic colloids		2
1.1.5	Properties of	f colloids		2
1.1.6	Association	colloids		3
1.1.7	Gum as hyd	lrocolloid		3
1.2 <i>Acacia</i> gu	ım			4
1.2.1	Acacia Gum	definition		4
1.2.2	Occurrence			4
1.2.3	Gummosis			6
1.2.4	Collection a	nd processing		6
1.2.5	Chemical str	ructures		9
1.2.6	Properties			12
1.2.7	Industrial ap	pplication of <i>Acacia</i> gums		13
	1.2.7.1	Gum Arabic in food Industry	7	13
	127	.1.1 Confectionery		13

	1.2.7.1.2 Flavours	14
	1.2.7.1.3 Bakery	14
	1.2.7.1.4 Beverages	14
	1.2.7.2 Non –food industry	14
	1.2.7.2.1 Pharmaceuticals	14
	1.2.7.2.2 Inks	15
	1.2.7.2.3 Environmental Protection and Soil Improvement	15
	1.2.7.2.4 Gum Arabic Plant as Fodder	15
1.3Acacia ni	ıbica	16
1.3.1	Scientific classification	16
1.3.2	General Description	16
1.3.3	Distribution	17
1.3.4	Habitat	17
1.3.5	Chemical characteristic	17
1.3.6	Uses	18
1.4Acacia Se	enegal	19
1.4.1	Scientific Classification	19
1.4.2	General Description	20
1.4.3	Distribution	20
1.4.4	Habitat	20
1.4.5	Chemical characteristic	20
1.4.6	Uses	21
1.5 Aims of t	he study	22
Methodology		23

2.1Samples preparation 2			
2.2Analytical Methods			
2.2.1	Solubility		23
2.2.2	Moisture con	tent	23
2.2.3	Determination	n of the specific optical rotation	24
	Total ash con	tent	25
2.2.5	pH value		26
226	Determination	n of Viscosity	26
2.2.0		•	26
	2.2.6.1	Capillary Viscometers	27
	2.2.6.2	Relative viscosity	
	2.2.6.2	Caraitia in and	28
	2.2.6.3	Specific viscosity	28
	2.2.6.4	Reduced viscosity	29
	2.2.6.5	Molecular weight	
2.2.7	Determination	n of acid equivalent weight and uronic	29
2.2.8	Tannin Content 2.2.8		30
2.2.9	Determination	n of total Nitrogen	30
	2.2.9.1	Digestion	31
	2.2.9.2	Distillation	31
	2.2.9.3	Titration	31
	2.2.9.4	Calculation	32
2.2.10	Total soluble	fiber	33
2211	I Emulsion		33

2.2.11.1Genarel aspects	33	
2.2.11.2 Emulsifiers	34	
2.2.11.3 Emulsion formation	34	
2.2.11.4 Physical principles of emulsion formation	35	
2.2.11.5 Breaking of emulsion	37	
2.2.11.6 Emulsification properties of <i>Acacia</i> gum	37	
2.2.11.7 Maturation process	39	
2.2.12 Turbidity	41	
2.2.12.1 Definition	41	
2.2.12.2 Causes	41	
2.2.12.3 Theoretical backgrounds	41	
2.2.12.4 Turbidity Measurement	43	
2.2.12.5 Turbidity meter	43	
2.2.13Osmotic pressure and polymer molecular weight	45	
determination		
2.2.14 Determination of cationic composition	47	
2.2.14.1 Optical parameters and preparation of	47	
Standard Curves		
2.2.14.2 Preparation of samples for analysis	47	
2.2.14.2.1 Preparation of Samples Extracts	47	
2.2.14.2.2 Wet digestion by microwave	47	
method		
2.2.14.2.3 Atomic absorbance spectrometer-	48	

Measurement of samples for heavy metals

3	Result and discussion	49
	3.1Physiochemical properties of acacias gum	49
	3.2 Cationic composition of <i>A</i> . <i>nubica</i>	52
	3.3Emulsion stability	52
	3.4Emulsion stability of Gum blends	56
	3.5Conclusion	62
4	References	63

List of figures

Figure 1:1	Proposed structure of gum arabic	10
Figure 1.2	Gum arabic molecule	12
Figure 2.1	Size of the droplets produce in an emulsion	36
Figure 2.2	Illustration of the stabilization of the oil droplets by gum arabic	38
Figure 2.3	Turbidity meters diagram	43
Figure 3.1	Variation of reduced viscosity with concentration	51
Figure 3.2	Variation of osmotic pressure with concentration	51
Figure 3.3	Variation of turbidity of emulsion with time	54
Figure 3.4	Emulsion stability index (ESI) of <i>Acacia</i> gums	54

Figure 3.5	Emulsion stability of the gum blends	57
Figure 3.6	Emulsion stability index of gum blends	57
Figure 3.7	Emulsion stability of <i>A. nubica</i> and its blends	59
Figure 3.8	Emulsion stability index of <i>A. nubica</i> and its blends	59
Figure 3.9	Emulsion stability of <i>A .nubica</i> , <i>A. senegal</i> blends	61
Figure 3.10	Emulsion stability index of <i>A .nubica</i> , <i>A. senegal</i> blends	61

List of Tables

Table1.1	Classification of colloids	1
Table1.2	Grades of Sudanese gum Arabic	8
Table1.3	Physiochemical properties of Acacia nubica	18
Table2.1	Blends Formation	45
Table3.1	Analytical data of <i>Acacia</i> s gum studied	49
Table 3.2	Qualitative / quantitative mineral analysis of <i>A. nubica</i> .	52