بسم الله الرحمن الرحيم

SUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Design, manufacturing and evaluation of Portable bio gas unit for use in Nomads areas

Osama Abd Alhamead Briema Abd Allah B.Sc. Agricultural Mechanization Honors Sudan University of science and technology 2003

A thesis Submitted to the Sudan University of science and technology

In partial fulfillment for the requirements of the degree of MSc. (agricultural engineering.)

Supervisor: Dr. Khalifa Ahmed Khalifa

Department of Agricultural Engineering

College of Agricultural studies

July 2009

DEDICATION

To my father soul
With great love to my mother, brothers
and sisters
To all who helped me

Acknowledgement

I am greatly indebted to my supervisor Dr. Khalifa Ahmed Khalifa for his deep interest, keen supervision and critics while preparing this thesis.

Special thanks to those who assisted me in one way or another in the various levels of this study.

Thanks to all my colleagues and brothers for their moral support

English Abstract

An experiment was conducted at Al -kalakla Quba town, Khartoum state - Sudan. The objective of the study was to design, fabricate and evaluate

a portable biogas unit to be used in rural communities.

The unit was fabricated using steel barrel designed from a barrel as a portable container and the abundant cow dung as a substrate.

The cow dung was left for ten days in the digester before the first reading .Reading were taken for twenty days .the successive reading showed an increasing rate of gas production.

The fabricated unit is mobile carried on a cart for transportation in nomad areas and it can work as affixed unit wherever it needed.

The results showed that small amount of gas was from this unit and this is due to the small size of the unit fabricated.

Despite this fact the gas produced from the designed unit satisfied the daily need of a rural family.

خلاصة البحث

تم إجراء التجربة في مدينة الكلاكلة القبة ولاية الخرطوم السودان . هدف الدراسة تصميم وتصنيع وتقييم وحدة إنتاج بيوغاز متنقلة للاستخدام في المناطق الريفية تم تصنيع الوحدة من برميل حديد كوعاء لوحدة إنتاج متحركة واستخدم روث الأبقار لوفرته وسهولة جمعه كخام تخمير.

لقد ترك روث البقر لمدة عشرة أيام في الهاضم قبل اخذ أول قراءة. لقد أخذت القراءة لمدة عشرون يوما. لقد أوضحت .القراءات المتتالية زيادة معدل إنتاج الغاز

إن الوحدة المصممة هي وحدة متحركة تحمل علي عربة للنقل في مناطق الرحل ويمكن أن تعمل كوحدة ثابتة متى ما تم الاحتياج .اليها

لقد أوضحت النتائج أنتاج كمية قليلة من الغاز من هذه الوحدة وهذا يرجع إلي صغر حجم الوحدة و بالرغم من ذلك فان الغاز ... المنتج يكفي احتياجات الأسرة الريفية اليومية

List of Contents

Subject		
DEDICATION		i
ACKNOWLEDGMENT		ii
		V
List of Contents		viii
List of tables		ix
List of figures		X
List of plates		iii
_	English abstract	
Arabic abst	ract	
	Chapter One	
	INTRODUCTION	1
	Chapter Two literature review	
2.1	Experimental site	5
2.2	The climate	5
2.3	Biogas	5
2.3.1	Biogas and global carbon cycle	5
2.3.2	Biology of methano genisis	6
2.3.3	Substrate and material balance of bio gas production	6
2.4	Composition and properties of biogas	6
2.5	History of biogas technology	7
2.5.1	Biogas technology in Europe and Germany	7
2.5.2	Biogas technology in China and India	8
2.6	three step of biogas production	10
2.6.1	Hydrolysis	10
2.6.2	Acidification	10
2.6.3	Methane formation	11
2.7	The physical appearance of different types of biogas plants	11
2.7.1	Balloon plants	12
2.7.2	Fixed dome plants	13

2.7.3	Floating drum plants	14		
2.8	Biogas applications and appliances	16		
2.8.1	Gas cooker and stove	16		
2.8.2.a	Two flame burners	16		
2.8.2.b	Gas demand	17		
2.8.3	Thermal radiation of heaters	17		
2.8.3.a	Gas pressure	17		
2.8.3.b	Safety pilot and air filter	18		
2.8.4	incubators	18		
2.8.5	refrigerators	18		
2.9	Biogas fueled engines	19		
2.10	Types of engines	19		
2.10.1	Four –strokes diesel engines	19		
2.10.2	Four –strokes spark –ignition engines	19		
2.11	Converting diesel engines	20		
2.12	Conversion to spark ignition (otto cycle)	21		
2.13	Converting spark –ignition engines	22		
2.14	Organic fertilizers from biogas plants	23		
2.14.1	Organic substances in fertilizers	23		
2.14.2	Nutrients and soil organisms	23		
2.15	Reduction of soil erosion	24		
2.15.1	Reduction of nitrogen washout	24		
2.16	Effects on crops	25		
2.17	Limitations of biogas technology	25		
2.18	Planning abiogas plant	26		
Chapter Three Materials and Methods				
3.1	materials	28		
3.2	methods	28		
3.2.1	Digester manufacturing	28		
3.2.2	Cart manufacturing	32		
3.2.3	Wastes materials	37		
3.2.4	Gas measured	37		
3.3	Operating the unit	38		
	Chapter four Results and Discussions			
4.1	Gas production	39		
	Chapter Five Conclusions and Recommendations			
5.1	Conclusions	42		
5.2	Recommendations	43		
	references	44		

LIST OF TABLES

Table Title	Page
4-1 gas production	38

LIST OF FIGURES

Figure	Page No
1: The three types of bacteria	10
2: Simple biogas plants	13
3: Fixed dome types biogas plants	14
4: Floating drum type biogas plants	15

List of plates

plate	Page No
Plate(1)oil barrel	28
Plate (1- 3) painting the unit	29
Plate (2-3) ahandle to avoid the crust	30
Plate (3-3) the designed bio gas unit	32
Plate (4-3) the designed unit and the designed cart	33

hihiiijiii