ACKNOWLEDGMENT

My special praise and thanks be to Allah , the Almighty , most gracious who gave me the health , strength and patience to conduct this research.

I would like to express my deep thanks and gratitude and indebtness to my supervisor Dr . E . A . Hassan for his keen guidance and advice throughout this study .

I wish to express my gratitude and thanks to Dr. Mymona Mubrak . IRCC . for her support and also to the member of department of Science and Technology .

Thanks to Mr. Nadia Hussain for help and also to the member of Department of Chemistry Faculty of Science , Sudan University of Science and Technology .

I wish to acknowledge Mr. Mutaz awaad for typing the manuscript. last but not least I would like to thank my family and sisters for their support.

Dedication I would like to dedicate this research

TO the soul of my father & my mother

• • • • • • • • • •

To my husband

To my sisters and daughters

ABSTRACT

Two processed *A.seyal* and *A.senegal* samples of gum arabic have been studies in order to establish the physico chemical properties and functionality of processed gum samples in comparison with unprocessed gum arabic. Some of the determined physico - chemical properties have the following values :

Moisture content: Moisture content for processed *A.seyal* was found to be 7.3% where as that for *A.senegal* was 7.6%, which differe from the values reported by other authors for non-processed *A.seyal* gum, which were 8.5%, 12.6%, and 11.6% the value for non-processed *A.senegal* gum were 10.7%, 11.8% and 14.8%.

Ash content: Ash content for processed *A.seyal*& processed *A.senegal* was found to be 0.25 %and 0.34% respectivly. which differe from the values reported by other authors for non-processed gum which were , 2.74 , 2.9% , 0.7% for non-processed A.seyal and 6.5% , 2.6%, 3.9% for non processed *A.senegal*.

Intrinsic viscosity: Intrinsic viscosity for processed *A.seyal* and *Asenegal* was found to be 11.5ml/g and 14.5ml/g respectively these values were similar to the values of non-processed samples which were found to be 11.4ml/g, 14.2ml/g. for non-processed *A.seyal* and 14.6 ml/g, 16.4 ml/g for non-processed *A.senegal*.

Specific optical rotation: A.seyal, processed sample has specific rotation ranging from +49.7 to +50.2. The average value was +49.9. and the value

for *A.senegal*, processed sample was found to be -29.2 which agrees with the values reported by other authors for non-processed sample which were +49.4, +51, +54. for *A.seyal* and -26, -31.3, -29.4 for non-processed *A.senegal*.

Nitrogen Content:

The nitrogen content for. *Aseyal* gum was found to be where as that for A.senegal gum was found to be 0.34% which does not differe from the values reported by other authors for non-processed gum , which were 0.13, 0.11 and 0.33, 0.35 respectively.

Theacid equivalent weight and glucuronic acid:

For processed *A.seyal* gum were found to be 1154 and 16.8% respectively , where as those for processed *A.senegal* were 1315.8 and 14.7.

pH values:

The pH values for processed and row gum were almost equales , hence processed dose not affect the pH value of the gum .

Emulsifing Index:-

The relative emulsifying abilities of processed gum does not changed by the treatments.

Conductance:

Spraydring processed has affected the conductance at infinite dilution for *A.seyal* was found to be where as that of *A.senegal* was

Which was different from those values reported for non-processed samples which were found to be for *A.seyal* and for *A.senegal* sample .

Contents

Topic Dedication Acknowledgement AbstractArabic abstractContent	Pag
List of Tables List of Figures Chapter One 1.1	<i>e</i>
Introduction 1.1.1 Botanical sources 1.1.2 Description and distribution 1.1.3 Different kinds of gum 1.1.4	IVVII
Grades and prices 1.1.5 World supply and Demand	IXX1
Trends1.1.5 Production 1.1.6 Markets 1.2	235
Classification of natural gums1.2.1 Chemical investigation and structure of plant gums 1.2.3 The	688
moleculer characterization of the polysaccharide gum	
from A.senegal .1.3 Physico-chemical properties	111
A.senegal1.3.1 Moisture content 1.3.2 Ash	217
content1.3.3 Nitrogen content1.3.4 Specific rotation 1.3.5 Viscosity 1.3.6 Intrinsic viscosity 1.3.7 Equivalent	193
weight 1.3.8 pH values 1.3.9 Physico – chemical	434
properties of <i>A.senegal</i> 1.4. Moisture content1.4.1 Ash	343
content1.42 Nitrogen content1.4.3 Specific	
rotation1.4.4 Viscosity1.4.5 Intrinsic viscosity1.4.6 Equivalent Weight1.4.7 pH values1.4.8 Conductivity of	434
electrolytes 1.4.9 Theory and techniques 1.5	353
Terminology 1.5.1.2 Theory 1.5.2 Conductivity of water	535
1.5.3 Conductance data1.5.4 Collection / primary processing 1.5.5 Processing of gum Arabic for	353
improved functional properties 1.5.6 Function of Gum	636
in food products 1.5.7.1Colloids1.5.8.1 Emulsion 1.5.9	
Emulsifying Behavior of Gum Arabic1.6 Stabilization	363
1.6.1 Homogenization 1.6.2 Antagonism 1.6.3 Breaking	636
Emulsions 1.6.4 Flavor fixation 1.6.5 Function in food applications 1.6.6 Pharmaceutical use1.6.7 Technical	373
and miscellaneous Objectives Chapter Two2	737
Characterization of A.seyal A.senegal2.1 Introduction	383
2.2 Materials and Methods2.2.1 Materials 2.2.2	
Methods2.2.2.1 Purification of Gum samples2.2.2.2	838
Determination of moisture content 2.2.2.3	383
Determination of total ash content2.2.2.4 Determination of total nitrogen2.2.2.4.1 Theoretical	839

consideration 2.2.2.4.2 Method 2.2.2.5 Determination 4	404
of pH values2.2.2.5.1 Method2.2.2.6 Specific optical	244
rotation 2.2.2.7 Determination of total glycuronic acid 2.2.2.7.1 Theoretical consideration 2.2.2.7.2 4	494
Mothods 2 2 7 3 Experimental precedure 2 2 2 9	
Determination of intrinsic viscosity 2.3 Orange oil	949
	505
Emulsifying index(EI)2.5 Conductivity measurement $\frac{1}{7}$	759
Chapter Three3.1 Results 3.2 Discussion	506
References lable lable(1-1): Summary of gum arabic	
(production and export (tons 1 from African countries (Islam et al 1997)Table(1-2) :	163
Gum Arabic, imports into the united states, and its	546
sources 1991- 94 (tonnes)Table(1-3) : Botanical 6	666
classification of acacia tress (Islam et al , 1979)Table(1-	676
4) Comparative data of important acacia (islam), et al	368
from Gummiferae and VulgaresTable(1-6) data for	
A.seyal and Smith degraded polysaccharides 6	686
	368
molecular weight determination by GPC-MALLS.Table(1-8) comparison of compounds present in	686
·	369
Emulsion StabilityTable(10) Functions of Gum in food	596
products lable (2-1)Using stock A to prepare the	
, ,	970
processed and unprocessed Acacia seyal Table(3-2) Show analytical data for processed and unprocessed	717
	171
for A.seyal sample (processed)Table(3-4) Result 7	727
of conductivity Vs. for A.senegal sample 2	272
(processed)Table(3-5) Result of conductivity of A.seyal.	737
A conogal (uppresessed Table (2.7) The result of	
viscosity for Talha gum sample is (11.5ml/g)	374
	747
[processed for Hashab gum sample [14.5 ml/g Figur 5	575

)Figure	76 77
Fig(1-3	5891
Fig(1-4):	
Fig(15):E	
Fig(1-6):Comp e (1-1):Four basic sugar constituents shows that periodate oxidation of the arabinose:(1-2 Fig(1-7):shows	
):Street and Anderson(1983)Proposal from the structure of Acacia ser	ıegal
The equivalent conductance of Gum Arabic solutions (Robert , et al ,	1931)
quivalent conductivity In mhos VS Concentration Fig (1-	
arative solubility's of Raw and kibbled Gum 8):Propose	
Schematic Fig (2-1):Shows	
representation VS Concentration	
of wattl-	
blossom	
thorienfatione of gum Arabic on the oil-water interface Islam, et al, (L997).
structure of	
gum Arabic ,	
as reproduced Fig(2-2):Shows conductivity at infinite dilution VS	List
from	of
Dickinson	Table
and Mc	s :-
Clements	Page
(1996)	9101
	3141
	5223
	2335
	4637

5767
7787
980
81
8281
List
of
Figur
es
Page 1831 3940 4453 5574 76