
Chapter 5

Inverse Spectral Theory for Symmetric

 and Self-adjoint Operators

We prove that an operator measure in general is non-orthogonal and 

unbounded. We prove that two orthogonal spectral measures are unitarily 

equivalent. In accordance with the stieltjes inversion formula the spectral 

measure admits an analytic continuation [90]. We discuss and prove a sharp 

estimate that a strictly monotone function on each component interval of the 

inverse function is analytic and also Strictly monotone. We prove that a non-

orthogonal spectral measure in a gab of any self-adjoint extensions can be 

calculated, if exist a boundary triple and have various examples [93]. 

Section (5-1): Inverse Spectral Problem for Direct Sum of Symmetric 

                       Operators

  Let S  be a densely defined symmetric operator in Hilbert space H  

with deficiency indices ( ) ( )n S n S+ −= ≤∞  . We recall that abounded open 

interval ( ),J α β=  is called a gap for S  if 

( ) ( )2 , ,S f f dom sαβ α β− ≥ − ∈ ,                                                         (1)

 if α→−∞, then (1) turns into ( ) 2
,Sf f fβ≥  for all f dom S∈ , meaning that 

( ), β−∞ ,  is a gap for A  if S is semi bounded below with the lower bound β

. 

Theorem (5-1-1) [131]:

Let { } 1k k
S

∞

=  be  a family of closed symmetric operators kS , defined in 

the separable Hilbert space R  such that the operators kS  are unitarily 

equivalent to a closed symmetric operator A  in h  with equal positive 

deficiency indices. If there exists a boundary triple { }0 0
0 0 0 1, ,Π = Γ ΓH for *A  such 
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that the corresponding Weyl function ( ).M  is monotone with respect to open 

set ( )0J Aρ⊆ , ( )* 0
0 0kerA A= Γ , then for any auxiliary self-adjoint operator R  

in  some separable Hilbert space R  the closed symmetric operator S  admits 

a self-adjoin extension S%  such that the spectral, parts JS%  and JR  are unitarily 

equivalent i.e. J jS R≅% [95.109,110].

The following result is known as a generalized Nuimark dilation theorem.

Proposition (5-1-2) [131]:

If ( ) ( ) [ ]. : B R →∑ H  is a bounded operator measure, then there exist a 

Hilbert space k abounded operator [ ],k K∈H  and an orthogonal measure 

( ) ( ) [ ].E B R k= →  ( an orthogonal dilation) such that 

( ) ( ) ( )* ,k E k B Rδ δ δ= ∈∑                                                         (2)

If the orthogonal dilation is minima i.e.,

( ) ( ) ( ){ }:span E ran k B R Kδ δ∈ =  ,                                                (3)

then it is uniquely determined up to unitary equivalence that is if one has two 

bounded operator [ ],k k∈H  and [ ],K K′∈H  as well as two minimal orthogonal 

dilation ( ) ( ) [ ].E B R K= →  and ( ) ( ) [ ]. :E B R K′ ′→  obeying ( ) ( )*K E Kδ δ=∑  

( ) ( ) ( )* ,K E K R B Rδ δ′ ′ ′= ∈ , then there exists an isometry :v K K′→  such that 

( ) ( ) ( )* ,E v E v B Rδ δ δ′ = ∈ .

Definition (5-1-3) [131]:

We call ( ).E  satisfying (2) and (3) the minimal orthogonal measure 

associated to ( ).∑  , or the minimal orthogonal dilation of  ( ).∑ .

Every operator measure ( ).∑  admits the Lebesque Jordan decomposition 

,
ppac s s sc

= + = +∑ ∑ ∑ ∑ ∑ ∑  where 
ac

∑ , 
s

∑ , 
sc

∑  and 
pp

∑  are the absolutely 

continuous, singular, singular continuous and pure point components 
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(measure) of ( ).∑ , respectively. Non-topological supports of mutually 

disjoint, therefore if an operator measure ∑ is orthogonal, ( ) ( ). .TE=∑ , then 

the ortho-projections ( ) { }( ), ,Tp E R ac sc ppτ τ τ= ∈  are pair wise orthogonal. 

Every subspace Th p hτ τ=  reduces the operator *T T=  and the Lebesgue-Jordan 

decomposition yields

ac sc pp
T T T

ac sc pp

h h h h

T T T T

= ⊕ ⊕

= ⊕ ⊕
                                                                   (4)

Where { }, , ,TT P T h T ac sc ppτ τ τ= ↑ ∈ . Now we show Nevanlinna functions:

Let H  be a separable Hilbert space, we recall that an operator-valued 

function  [ ]:F c+ →H  is said to be a Neranlinna (or Herglotz or RH ) one if it is 

holomerphic and takes values in the set of dissipative operators on H  i.e., 

( )( ) ( ) ( )*

0,
2!

F z F z
Sm F z z C+

−
= ≥ ∈

Usually one considers a continuation of F  in £  by setting ( )F z =  

( ) ,F z z C −∈ . Bounded operator [ ],k K∈H  obeying ( ) ( )0ker ker
F

K l R= ∑  and 

( ) ( ) ( )
0

* ,F
F

k E k B Rδ δ δ= ∈∑ . By

 ( ) ( ) ( ) ( )
0

21 , b
F F

t d t B R
δ

δ δ= + ∈∑ ∑∫                                                       (5) 

One defines and operator measure which in general is non-orthogonal 

and unbounded. It is called the unbounded spectral measure of ( ).F .  Using 

F
∑ the representation [118], 

( ) ( )0 1 2

1 1
,

1 F

F z C C z d t z C C
t z t

+∞

+ −
−∞

 = + + − ∈ ÷− + 
∑∫ U                           (6) 

To show this we have [5]:
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From  this  representation  ( ) ( )
0

0 1

1
,

F

tz
F z C C z d t z C C

t z

+∞

+ −
−∞

+= + + ∈
− ∑∫ U .  To 

prove representation (6) use equation (5) 

( ) ( ) ( ) ( )
0

21 , b
F F

t d t B R
δ

δ δ= + ∈∑ ∑∫

so ( ) ( ) ( )
0

21 ,
F F

d t d tδ = +∑ ∑  which implies that ( ) ( )
0

2

1

1F F

d t d t
t

=
+∑ ∑ , put this in 

the representation above we have 

( ) ( ) ( ) ( ) ( )0 1 0 12 22

1 1 1 1

1 11F F

tz tz
F z C C z d t C C z d t

t z t tt z t

+∞ +∞

−∞ −∞

+ +   = + + = + + ÷  ÷− + +− +   
∑ ∑∫ ∫

To analysis this component we use this ( ) ( ) 2 22

1
1

1 11

tz A Bt c
tz

t z t tt z t

+ = + + = +
− + +− +  

and ( ) ( ) ( )21 1A t Bt t z C t z tz+ + − + − = +  put t z=  we get ( )2 21 1 ,A z z+ = +  so 

1A =  at 0, 1t A Cz= − =  implies that 0c =  since 1, 0A c= = . Our equation 

become ( )21 0 1tt B t z tz+ + − + = + , ( ) ( )21 1Bt t z tz t t t z− = + − − =− − , ,
t z

Bt t
t z

− = −  ÷−   

1B =−  . Substituted , , andA B C  the equation 

( ) ( ) 2 22

1
1

1 11

tz A Bt C
tz

t z t tt z t

+ = + + = +
− + +− +

We get the following 

( ) ( )0 1 2

1

1 F

t
F z C C d t

t z t

+∞

−∞

 = + + − ÷− + 
∑∫                                                   (7)

z C C+ −∈ U

Which complete the proof. From representation 

( ) ( )0
0 1

1
,

F

tz
F z C C z d t z C C

t z

∞

+ −
−∞

−= + = ∈
− ∑∫ U

F  determines uniquely the unbounded spectral measure ( ).
F

∑  by means of 

the Stieltjes inversion formula, which is given by 
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( )( ) ( )( )
00

1
, lim lim

b

F a

a b s s Sm F x i dx
δ

εδ
δ

ε
π

−

→+→+
+

= − − +∑ ∫                                        (8)

By supp (F) we denote the topological (minimal closed) support of the spectral 

measure F∑ . Since supp (F) is closed the set ( )\ suppFO R F=  is open. The 

Nevanlinna function ( ).F  admits an analytic continuation to FO  given by 

( ) ( )0 1 2

1
,

1 F
F

t
F C C d t O

t t
λ λ λ

λ
+∞

−∞

 = + + − ∈ ÷− + 
∑∫

Using this representation we immediately find that ( ).F  is monotone on each 

component interval Fof O∆  i.e., ( ) ( ) , , , .F Fλ µ λ µ λµ≤ < ∈∆  In general, this 

relation is not satisfied if λ  and µ  belong to different component interval.

Definition (5-1-4) [131]:

Let ( ).F  be a Nevanlinna function, the Nevanlinna function is 

monotone with respect to the open set FJ O≤  if  for any two component 

intervals 1J  and 2J  of J  one has ( ) ( )1 2F Fλ λ≤  for all 1 1Jλ ∈  and 2 2Jλ ∈  or 

( ) ( )1 2F Fλ λ≥  for all 1 1Jλ ∈  and 2 2Jλ ∈ .

Let L N∈ ∞U  be the number of component interval of J. obviously if ( ).F  

is monotone with respect to J  and L <∞ , then there exists an enumeration 

{ } 1

L

k k
J

=  of the  components of  J  such that 

( ) ( ) ( )1 2 ... LF F Fλ λ λ≤ ≤ ≤

Holds for { }1 2 1 2, ,..., ...L LJ J Jλ λ λ ∈ × × × . If L =∞ , then it can happen that 

such an enumeration does not exist. If  ( ).F  is a scalar Nevanlinna function, 

then ( ).F  is monotone with respect to J if and only J  if the condition 

( ) ( )1 2 0F J F J =I  is satisfied for any two component intervals 1J  and 2J  of 

J  . 

Definition (5-1-5) [131]:
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A triple { }0 1, ,Π= Γ ΓH  consisting of an auxiliary Hilbert space H  and 

linear mappings ( )*: , 0,1i dom A iΓ → =H . Called a boundary triple for the 

adjoint operator *A  of  A  if the following two conditions are satisfied:

(i) The second Green's formula takes place 

       ( ) ( ) ( ) ( ) ( )* * *
1 0 0 1, , , , , ,A f g f A g f g f g f g dom A− = Γ Γ − Γ Γ ∈

(ii) The mapping { } ( )*
0 1, : dom AΓ= Γ Γ → ⊕H H , { }0 1,f f fΓ = Γ Γ is surjective 

the above definition allows one to describe the set AExt  in the 

following way.

Proposition (5-1-6) [131]:

Let { }0 1, ,Π= Γ ΓH  be a boundary triple for *A  then the mapping Γ  

established abijective correspondence ( )( )A dom Aθ→ =Γ% %  between the set AExt  

of self-adjoint linear relations in H  . By proposition (5-1-6) the following 

definition is natural [144,145].

Definition (5-1-7) [131]:

Let { }0 1, ,Π= Γ ΓH  be a boundary triple for *A . We put A Aθ = % , if 

( )( )dom Aθ =Γ %  that is *A A Dθ θ= , 

( ) ( ) { }{ }*
0 1: ,dom A D f dom A f fθ θ θ= = ∈ Γ Γ ∈                                         (9)

If  ( )G Bθ =  is the graph of an operator  ( )*B B C= ∈ H ,  then  ( )dom Aθ  is 

determined by the equation  ( ) ( )1 0kerB Bdom A D B= = Γ− Γ . We set BA Aθ=  

Let us recall the basic facts on Weyl functions:

Definition (5-1-8) [131]:

Let A  be a densely defined closed symmetric operator and 

{ }0 1, ,Π= Γ ΓH  be a boundary triple for *A . The unique mapping 

( ) ( ) [ ]0.M Aρ= →H  defined by ( ) ( )*
1 0 , ker ,z z z zf M z f f N A z z C +Γ = Γ ∈ = − ∈  

145



Is called the Weyl function corresponding to the boundary triple π .

Proposition (5-1-9) [131]:

Let A  be a simple closed symmetric operator and let { }0 1, ,Π= Γ ΓH  be a 

boundary triple for *A with Weyl function ( )λM . Suppose that is self-adjoint 

linear relation in H  and ( )0Aρ∈λ  then 

(i) ( ) ( )MpsupA0 =δ  

(ii) ( )θρ∈λ A  if and only if ( )( )λ−θρ∈θ M  

(iii) ( )θδ∈λ AT  if and only if  ( )( ) { }c,pT.MO T ∈λ−θδ∈

We need the following simple proposition.

Proposition (5-1-10) [131]:

Let A  be a closed symmetric operator and let { }0 1, ,Π= Γ ΓH  be a boundary 

triple for *A

(i) If A  is simple and { }1 1
1 0 1, ,Π = Γ Γ1H  is another boundary triple for *A  

such that ( ) ( )1
10 kerker Γ=Γ  , then the Weyl functions ( ).M  and ( ).M1  

of  Π and 1Π  , respectively are related by ( ) ( )*
1 ,M z k M z k D= +  

z C C+ −∈ U . Where [ ]*D D= ∈H  and [ ],k ∈ 1H H  is boundedly 

invertible.

(ii) If ( ) *,G B B Bθ= = ∈H  , then the Weyl function ( ).MB  corresponding 

to the boundary triple { } { }0 1 0 1 0, , , ,B B
B BΠ = Γ Γ = Γ −Γ ΓH H  is given by

     ( ) ( )( ) 1
,M z B M z zβ

−
+ −= − ∈£ U£                                                           

Definition (5-1-11) [131]:

Let A  be a densely defined closed symmetric operator and let 

{ }0 1, ,Π = Γ ΓH  be a boundary triple for *A . The mapping ( ) ( ) [ ]0 zA z z Nρ γ∋ → ∈H

( ) ( ) ( )1

0 0: ,z zz N N z Aγ ρ−
= Γ → ∈H

is called the –filed of the boundary triple Π  . One can easily have
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( ) ( ) ( ) ( ) ( )1

0 0 0 0 0 0 0, ,z A z A z z z z Aγ γ ρ−= − − ∈                                            (10)

The γ -field and the Weyl function ( ).M  are related by 

( ) ( ) ( ) ( ) ( )* *

0 0 0M z M z z z z zγ γ− = −                                                    

Lemma (5-1-12) [131]:

Let A  be a simple densely defined closed symmetric operator on a 

separable Hilbert space h  with equal deficiency indies. Further let 

{ }0 1, ,Π= Γ ΓH  be a boundary triple for *A  with Weyl function ( ).M . If  ( )
0

.AE  

is the orthogonal spectral measure of 0A  define on h  and ( ).ME  the 

associated minimal orthogonal spectral dilation of ( )0
.

M∑  defined on such that 

( )
0AE δ =  ( )*

MW E Wδ  for any Borel set ( )B Rδ ∈ .

Proof: By (10) one obtains 

( )( ) ( ) ( )( ), ,S M x iy h h y x iy h x iy h hγ+ = + + ∈H                                       (11) 

To show this we have [5]:

( )( ) ( )( ) ( )( )*
, ,

,
2

M z h h M z h h
Sm M z h h

i

−
=

Where 

( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )* * * *

0 0 0 0 0

,1 ,1 2

2

z x iy h M z M z i

h z z z z M z z z z M z iγ γ γ

 = + = − 
 = − + − − − 

Multiply and divided by ( ) ( )*

0 0z z zγ−%

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

* *

0 0 0 0 0
* *

0 0 0 0
2

h z z z z z z z z

i z z z z z z

γ γ γ γ
γ γ

 − −
= − 

− −  

% %

% %

( ) ( ) ( ) ( )* *

2 2

h h
z z z z

i i
γ γ γ γ   = − = −   

( ) ( ) ( ) ( )*

0 02

h
z z z z

i
γ γ γ = − % %
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( ) ( ) ( ) ( )
*

* *
00 02

z z
h z z z

γ γ
γ

 −
= − 

 
%

( ) ( ) ( ) ( ) ( ) ( )* * *
0 0 0 02

h
z z z z z z z z

i
γ γ γ γ = − − − % % %

( ) ( ) ( ) ( ) ( )* *
0 0 02

h
z z z z z z z

i
γ γ γ = − − − % %

Where ( )*
0 2z i yγ = ( ) ( ) ( ) ( )( ), ,h y z z y z h z hγ γ γ γ= =  

Since z x iy= + , we get 

( )( ) ( ) ( )( ), ,Sm M x iy h h y x iy h x iy hγ γ+ = + +

Which is the prove of (11). Further, it follows from (10) that 

( ) ( )( ) ( ) ( )1

01x iy I x i y A x iy iγ γ− + = + + − − −                                     (12)

To prove (12) we use (10) [5]:

( ) ( ) ( ) ( )1

0 0 0z A z A z zγ γ−= − −

( ) ( ) ( ) ( )1 1

0 0 0 0 0 0z A A z z z A z zγ γ γ− −= − − −

       ( ) ( ) ( )
1

1

0 0 0 0 0
0 0

1 z
A I z z A z z

A A
γ γ

−
− 

= − − − ÷
 

      ( ) ( ) ( )1 11
0 0 0 0I ZA Z A z zγ

− −− = − − −  

      ( ) ( )11
0 0 0 0

1

n
n

n

I Z A Z A Z Zγ
∞

−−

=

  
= + − −  ÷ ÷   

∑

      ( ) ( )11 1
0 0 0 0

1

n n

n

I Z A Z A Z Zγ
∞

−+ +

=

 = + − −  
∑

Since *
0A A=  is self adjoint spectrum and 1

0 1nA + = , so 

( ) ( ) ( )11
0 0 0

0

n

n

z I Z Z A Z zγ γ
∞

−+

=

 = + − −  
∑

                ( ) ( )1

0 0 0
0

.n

n

I Z Z Z A Z zγ
∞

−

=

 = + − −  
∑
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But ( )
1

0
0

n

n

z A z
−∞

=
= −∑

Hence ( ) ( ) ( )( ) ( )1 1

0 0 0 0 0z I Z A z Z A A Z Zγ γ− − = + − − − 

                  ( ) ( ) ( )1

0 0 0I z z A Z Zγ− = + − − 

Let 00, 1 0x y z i= = ⇒ = +

Therefore ( ) ( ) ( ) ( )1

0z I z i A z iγ γ− = + − − 

Since z x iy= +

( ) ( ) ( )( ) ( )1

0x iy I x iy i A x iy iγ γ− + = + + − − + 

             ( )( ) ( ) ( )1

01I x i y A x iy iγ− = + + − − − 

Which is the proof of (12). Inserting (12) into (11) one gets

( )( )
( )

( ) ( ) ( )( )
0

2

2 2

1
, , ,A

t
Sm M x iy h h y d E t i h i h h

t x y
γ γ

+∞

−∞

++ = ∈
− +∫ H

On the other hand we obtain that ( )( ) ( ) ( ) ( ) ( )( )
0

2, 1 ,AM
d t h h t d E t i h i hγ γ= +∑ , 

inserting in the above representation we get 

( )( ) ( )( )
( ) 2 2

,
, M

d t h h
Sm M x iy h h

t x y

+∞

−∞

+ =
− +
∑

∫ , ∈h H

Applying the stieltjes inversion formula (8) we find 

( )( ) ( ) ( ) ( )( )
( )

0

2

,

, , 1 , ,A
M a b

a b h h t d E t i h h hγ = + ∈ ÷ 
∑ ∫ H

Which yields 

( )( ) ( ) ( )( ) ( )
0

0
*

, ,A
M

a b i E a b iγ γ=∑                                                           (13)

for any bounded open interval ( ),a b R⊆ . Since A  is simple it follows from 

(12) that 

( ) ( )( ){ }1

0 tan :A i C Cλ γ λ−
+ −− ∈ =U h                                                     (14)
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By (13) and (14), ( )
0

.AE  is a minimal orthogonal dilation of ( )0
.

M∑ . By 

proposition (5-1-2) we find that the spectral measure ( )
0

.AE  and ( ).ME  are 

unitarily equivalent. 

Definition (5-1-13) [131]:

Let { }0 1, ,Π= Γ ΓH  be a boundary triple for *A  with corresponding Weyl 

function ( ).M . We will call ( )0
.

M∑  the bounded non-orthogonal spectral 

measure of the extension ( )( )*
0 0kerA A= Γ . 

Corollary (5-1-14) [131]:

Let A  be a simple densely defined closed symmetric operator in a 

separable Hilbert space H  with equal deficiency indices. Further, let 

{ }0 1, ,Π= Γ ΓH  be a boundary triple for *A  and ( ).M  the corresponding Weyl 

function, then 

( ) ( ) ( ) ( )0 0supp supp , suppT M
M

A M A
τδ δ = = = ÷ 

∑ ∑ . Where  { }, , ,ac s sc ppτ∈

Remark (5-1-15) [131]:

 ( ).BM  of the form ( ) ( )( ) ( )( )1 1
.BM z B M z B m z I

− −
= − = − H  is the Weyl 

function of the generalized boundary triple BΠ . Being a Wyle function. ( ).BM  

admits the representation

( ) ( )0 2

1
,

1B
B

t
M z C d t z C C

t z t

+∞

+ −
−∞

 = + − ∈ ÷− + 
∑∫ U                                (15)

Where ( ) ( ). .
B MB

=∑ ∑  is the (unbounded) non-orthogonal spectral measure of 

( ).BM . In accordance with the Stieltjes inversion formula (8) the spectral 

measure can be re-obtained by 

( ) ( ) ( )( )
00

1
, lim lim

2

b

B BB
a

a b s s M x i M x i dx
i

δ

δ
δ

ε ε
π

−

∈→→
+

= − − + − −∑ ∫                     (16)
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With ( ) ( )*
M z M z= . We get 

( ) ( ) ( )( ) ( )( ) ( )1 1

B B BM x i M x i m x i m x i dEε ε λ ε λ ε λ
+∞ +∞

− −

−∞ −∞

+ − − = − + − − +∫ ∫            (17)

Where z x iε= +  and *z x iε− = − . The representation admits this 

( ) ( ) ( )( ) ( )( )( ) ( )1 1

B B BM x i M x i m x i m x i dEε ε λ ε λ ε λ
+∞

− −

−∞

+ − − = − + − − −∫

By taking the integration both sides of equation (16) which leads to the 

expression [5]:

( ) ( )( )

( )( ) ( )( )( )1 1

1

2

1

2

b

B B

a

b

a

M x i M x i dx
i

m x i m x i dx
i

δ

δ
δ

δ

ε ε
π

λ ε λ ε
π

−

+

− +∞
− −

+ −∞

+ − −

= − + − − −

∫

∫ ∫

         ( )( ) ( )( )( ) ( )1 11

2

b

B

a

m x i m x i dE
i

δ

δ

λ ε λ ε λ
π

+∞ −
− −

−∞ +

= − + − − −∫ ∫

Put   ( )( ) ( )( )( ) ( )1 11
, ,

2

b

a

m x i m x i dx k t
i

δ

δ

λ ε λ ε λ δ
π

−
− −

∆
+

= − + − − − =∫

We get the following 

( )( ) ( )( )( ) ( ) ( )1 11
, , , 0

2

b

B B B

a

M x i M x i dx k t dE
i

δ

δ

ε ε λ δ λ ε
π

− +∞
− −

∆
+ −∞

= + − − = >∫ ∫        (18)

and 

( ) ( )( ) ( )( )( ) ( )1 11
, ,

2

b

B

a

k m x i m x i dE
i

δ

δ

λ δ ε λ ε λ ε λ
π

−
− −

∆
+

= − + − − +∫                 (19)

( ), ,R a b Rλε ∆= ⊆  and 0ε >  with ( ) ( ),m z m z z Cε −=  we denote by  the family of 

the component intervals ( ),L L La b∆ =  of ( )\mO R Supp m= . 

Further the function ( ).M  admits an analytic continuation to mO  such that 

( ) ( )0 2

1
,

1 m

t
m x C d t x O

t x t µ

+∞

−∞

 = + − ∈ ÷− + ∫
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Hence the function ( ).m  restricted to mO is analytic. Moreover one easily 

verifies that for every component interval ∆  of  mO

( ) ( ) , , ,m x m y x y x yε< < ∆

Therefore for every component interval ∆  of mO  the set ( )m′∆ = ∆  is 

gain an open interval. Thus ( )m mO m O′ =  is also open and the union of the sets 

( )O m′= ∆  where the union is taken over all component intervals ∆  of mO .

Lemma (5-1-16) [5]:

 Let ( ).m  be a scalar Nevalinna function. If ( ),a b∆=  is contained in a 

component interval L∆  of  mO  then ( )
( ]

( )
, 0,1

, ,
R

C Sup k
λε εε

δ λ δ ε∆ ∆= <∞ ,  for each 

0,
2

b aδ − ∈ ÷                                                                                      (20)

152



Proof: we have 

( ) ( ) ( ) ( )2
0 1, , , mm x i m x T x z T x x Oε ε ε ε ε ε+ = − +                                        (21)

Where 

( )
( )

( )0 2 2

1 1
, .T x d y

y x y x
µε

ε

+∞

−∞

=
− − +∫                                                     (22)

and 

( )
( )

( )1 2 2

1
,T x d y

y x
µε

ε

+∞

−∞

=
−∫                                                                 (23)

using (21) and (22) we find constant ( ) ( )0 1,x kδ δ  and ( )1w δ  such that 

( ) ( )0 0,T x xε δ≤   and ( ) ( ) ( )1 1 10 ,w T t x xδ δ< ≤ ≤ , 

( ),x a bδ δ∈ + −                                                                                    (24)

For [ ]0,1ε ∈  further we get from (20)

( ) ( ) ( ) ( )
( ) ( ) ( )
( )( ) ( ) ( )( )

1

1

1

1 1
, ,

,

,

,

P x
m x i m x i T x

m x i T x m x i

m x i m x i T x

λ ε
λ ε λ ε ε
λ ε ε λ ε
λ ε λ ε ε

= −
− + − −

− − − + +
=

− + − −

                          (25)

From (20) we get 

( ) ( )
( )( ) ( ) ( )( )

2
0

1

,
, ,

,

T x
P x

m x i m x i T x

ε ε
λ ε

λ ε λ ε ε
=

− + − − , , , 0mR x Oλ∈ ∈ ∈> . Since both ( )m x  and 

( )0 ,T x∈  are real for mx O∈  we have from (20) that ( ) ( )1 ,m x i T xλ ε ε ε− + ≥  and 

( ) ( )1 1 , ,m x i T T x Rλ ε ε ε λ− − ≥ ∈ . In view of (36) these inequalities yield 

( ) ( )
( )

0
2

1

,
, , , , , 0

,
m

T t x
p x R x O

T t x
λ ε λ ε≤ ∈ ∈ >                                                 (26) 

Combining (23) with (25) we obtain the estimate [5]:

( ) ( )
( )

( ) ( ]0
2

1

, , , , , , 0,1
x

P x R x a b
w

δ
λ ε λ δ δ ε

δ
≤ ∈ ∈ + − ∈                               (27) 

We set [5]:

153



( ) ( ) ( ) ( ) ( )1 1

1 1 1
, ,

2 , ,

b

a

r dx
i m x i T x m x i T x

δ

δ

λ δ ε
π λ ε ε λ ε ε

−

∆
+

 
= − ÷ ÷− − − + 

∫

for Rλ∈  and 0ε > . By the representation 

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

1 1

1 1

, ,1
, ,

2 , ,

b

a

m x i T x m x i T x
r dx

i m x i T x m x i T x

δ

δ

λ ε ε λ ε ε
λ δ ε

π λ ε ε λ ε ε

−

∆
+

− + − + +
=

− − − +∫

                        
( )

( ) ( )( )
1

2 22
1

2 ,1

2 ,

b

a

i T x
dx

i m x T x

δ

δ

ε ε
π λ ε ε

−

+

 
 ÷=  ÷ ÷− + 

∫

                         
( )

( ) ( )( )
1

2 22
1

,1

,

b

a

T x
dx

m x T x

δ

δ

ε ε
π λ ε ε

−

+

 
 ÷=  ÷ ÷− + 

∫

and the estimate (23) we obtain that ( ) ( )1 1,T x xε δ=  and ( ) ( )2 2
1 1,T x wε δ=  put 

this in the above equation we get 

( ) ( )
( ) ( )( ) ( ]1

2 2 2
1

1
, , , , 0,1

b

a

x
r dx R

m x w

δ

δ

ε δ
λ δ ε λ ε

π λ ε δ

−

∆
+

= ∈ ∈
− +∫                        (28) 

Form this equation 

( ) ( )0 2

1
,

1 m

t
m x C d t x O

t x t µ
+∞

−∞

 = + − ∈ ÷− + ∫

The derivation ( ) , mm x x O′ ∈ , admits the representation 

( )
( )

( )2

1
,

1
mm x d t x O

x
µ

+∞

−∞

′ = ∈
−∫                                                             (29)

Obviously, there exist constants ( )zw δ  and ( )2x δ  such that 

( ) ( ) ( ) ( )2 20 , ,w m x x x a bδ δ δ δ′< ≤ ≤ ∈ + −                                             (30) 

By combining the equation (27) and equation (29) where ( ) ( )20 ,w m xδ ′< ≤  

( ),x a bδ δ∈ + −  we have the following 

( ) ( )
( )

( )
( )( ) ( )

( ]1
2 2 2

2 1

.
, , , , , 0,1

b

a

x m x
r dx R

w m x w

δ

δ

δ ε
λ δ ε λ ε

π δ λ ε δ

−

∆
+

′
≤ ∈

− +∫ .
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Using the substitution ( )y m x=  we derive that ( )dy
m x

dx
′=  so ( )

dy
dx

m x
=

′  in 

the equation we get 

( ) ( )
( )

( )
( )( ) ( ) ( )

( )
( ) ( ) ( )

( ]
( )

( )

1
2 2 2

2 1

1
2 2 2

2 1

.
, ,

, , 0,1

b

a

m b

m a

x m x dy
r

w m xm x w

x
dy R

w y w

δ

δ

δ

δ

δ ε
λ δ ε

π δ λ ε δ

δ ε λ ε
π δ λ ε δ

−

∆
+

−

+

′
≤

′− +

≤ ∈ ∈
− +

∫

∫

Finally, we get 

( ) ( ]1

1 2

, , , , 0,1
x

r R
w w

λ δ ε λ ε∆ ≤ ∈ ∈                                                             (31) 

Obviously we have 

( ) ( ) ( ) ( ) ( )1
, , , , , , , , , , 0

2

b

a

k dx r R
i

δ

δ

λ δ ε ρ λ δ ε ρ λ δ ε λ δ ε λ ε
π

−

∆ ∆
+

= − + ∈ >∫

Hence we find the estimate 

( ) ( ) ( )1
, , , , , , , , 0

b

a

k dx r R
δ

δ

λ δ ε ρ λ δ ε λ δ ε λ ε
π

−

∆ ∆
+

≤ + ∈ >∫

Taking into account equation ( ) ( )
( )

0
2

1

, ,
x

w

δ
ρ λ δ ε

δ
≤  and the equation 

( ) 1

1 2

, ,
x

r
w w

λ δ ε∆ ≤  we arrive at the estimate ( ), ,k λ δ ε∆ ≤  ( ) ( )0

1

x
b a

wπ δ
−  

( )
( ) ( ) ( ]1

1 2

, , 0,1
x

R
w w

δ
λ ε

δ δ
+ ∈ ∈ . Which proves (19).

Since the function mO  is strictly monotone on each component interval 

i∆  of mO  the inverse function ( ).iϕ  exists there. The function ( ).iϕ  is analytic 

and also strictly monotone, its first derivative ( ).iϕ ′  exists, it is analytic and 

non-negative.
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Lemma (5-1-17) [131]:

Suppose that ( ).m  is a scalar Nevanlinna function, let ( ),a b∆=  be 

contained is some component interval i∆  of ( )\ suppmO R m= , then (with k ∆  

defined as in (18) ).

( ) ( )

( ) ( )

( ) ( ){ }
( ) ( ) ( )( )

0

0 \ ,

1
lim , , , ,

2

,

L L

L

R m a m b

k m a m b

m a m b

ε

λ δ δ

λ δ ε θ λ δ ϕ λ δ δ

ϕ λ λ δ δ

∆→+

 ∈ + −  
 ′= = ∈ + −

 ′ ∈ + −

                 (32)

For ( )( )0, / 2b aδ∈ −  and 

 ( ) ( )
( ) ( )( )

( ) ( ) ( )( )0 0

0 \ ,
lim lim , , ,

,
L

L

R m a m b
k

m a m bε ε

λ
λ δ ε θ λ δ

ϕ λ λ∆→+ →+

 ∈= = 
′ ∈

                     (33) 

Proof [5]:

At first let us show that 

( )
0

1
lim , , 0,

2

b

a

x dx R
i

δ

ε
δ

ρ λ ε λ
π

−

→
+

= ∈∫                                                       (34)

 by (24) one immediately gets that 

( ) ( ) ( ) ( )
( )

( )( ) ( ) ( )( )

0 0
1

2
0

0
1

1 1
lim , , lim

,

,
lim 0, , , 0

, m

x
m x i m x i T x

T x
R x O

m x i m x i T x

ε ε

ε

ρ λ ε
λ ε λ ε ε

ε ε
ρ λ ε

λ ε λ ε ε

→ →

→

 
= − ÷ ÷− + − − 

 
= = ∈ ∈ > ÷ ÷− + − − 

Which implies that ( )
0

lim , , 0x
ε

ρ λ ε
→

=  by lemma (5-1-16). Now (33) is implied 

by (26) and the Lebesque dominated convergence theorem. Next we set 

Lebesque 

( )
( ) ( )

( )3 2 22

1 1
, . , , 0mT t x d y x O t

y x y x
µ

ε

+∞

−∞

= ∈ ≥
− + −∫                             (35) 

Obviously there is a constant ( )3 0x δ >  such that  

( ) ( ) ( ) [ ]3 30 , , , , 0,1x x x a bτ ε δ δ δ ε≤ ≤ ∈ + − ∈                                            (36)

Let
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 ( ) ( ) ( ) ( ) ( )0
1 1

1 1
, , , ,

, 0, mx t R x O
m x i x m x i T x

ρ λ λ
λ ετ ε λ ε

= − ∈ ∈
− − − −         (37)

For 0ε >  , it follows from (20) , (35) and (37)  

That

( ) ( )
( ) ( )( ) ( ) ( )( )

3
3

0
1 1

,
, ,

, 0,

i x
x

m x i T x m x i T x

ε τ ε
ρ λ ε

λ ε ε λ ε
−

=
− − − −                           (38)

for 0ε > , since Rλ∈  and ( )m x  is real for mx O∈  we get from (38) 

( ) ( )
( ) ( )

3
0

1 1

,
, , , , , 0

, 0, m

x
x R x O

x T x

τ ε
ρ λ ε λ ε

τ ε
≤∈ ∈ ∈ >  where

 
( ) ( ) ( )
( ) ( ) ( )

1 1

1 1

, , ,

0, 0, ,

x m x i x

x m x i x

τ ε λ ετ ε
τ λ ετ

= − −

= − −

by using (23) and (36) we obtain the estimate [5]:

( ) ( )
( )

( ) ( ]3
0 2

1

, , , , , , 0,1x R x a b
w

ετ δ
ρ λ ε λ δ δ ε

δ
≤ ∈ ∈ + − ∈

Which immediately yields 

( )0
0

1
lim , , 0, , 0

2

b

a

x dx R
i

δ

ε
δ

ρ λ ε λ δ
π

−

→
+

= ∈ >∫                                                 (39)

Finally, let us introduce 

( ) ( ) ( ) ( ) ( )1 1

1 1 1
, ,

2 0, 0,

b

a
q dx

i m x i x m x i x

δ

δ
λ δ ε

π λ ετ λ ετ
−

∆ +

 
= − ÷ ÷− − − + 

∫           (40) 

For Rλ∈  and 0ε > . Using the representation 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )
( )( ) ( )

1 1

1 1

1
2 22

1

0, 0,1
, ,

2 0, 0,

2 0,1

2 0,

b

a

b

a

m x i x m x i x
q dx

i m x i x m x i x

i x
dx

i m x x

δ

δ

δ

δ

λ ετ λ ετ
λ δ ε

π λ ετ λ ετ

ετ
π λ ε τ

−

∆ +

−

+

 − + − − −
=  ÷ ÷− − − + 

 
 ÷=
 ÷− + 

∫

∫
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Form the equation (20) ( )
( )1 2

1
0, x d

y x
τ µ

+∞

−∞

=
−∫  and the equation 

( ) ( ) ( )1
, mm x d y x O

t x
µ

+∞

−∞

′ = ≥ ∈
−∫ . We get this relation ( ) ( )1 0, , mm x x x Oτ′ = ∈  from 

the equation (20) and equation (28) we get after change of variable ( )y m x=  

that 

( ) ( )
( )( ) ( )( )

( )

2 22
1

1
, ,

0,

b

m a

m x
q dx

m x x

δ

δ

ε
λ δ ε

π λ ε τ

−

∆
+

′
=

− +∫

               
( )

( ) ( )( ) ( )( )

( )

22 2
1

1
, , 0

0,

b

m a L

m x dx
R

m xy y

δ

δ

ε
λ ε

π λ ε τ ϕ

−

+

′
= ∈ >

′− +∫

              ( ) ( )( )( )

( )

22 2
1

1

0,

m b

m a L

dx
y y

δ

δ

ε
π λ ε τ ϕ

−

+

=
− +∫  

where ( )ix yϕ=

By ( )( ) ( )( ) ( )1 0,, 1/ ,i i i Ly m y y yτ ϕ ϕ ϕ′ ′= = ∈∆ , we finally obtain that 

( ) ( )
( ) ( )( )

( ) 2

2 2 2

1
, , , , 0

m b
i

m a i

t y
q dy y R

y y

δ

δ

ϕ
λ δ ε ε

π ϕ λ ε

−

∆
+

′
= ∈ >

′ − +∫                            (41)

Next we prove the relation 

( ) ( ) ( )( )
0

lim , , , , 0, / 2 ,Lq b a R
ε

λδ ε θ λδ δ λ∆→
= ∈ − ∈                                     (42) 

We consider only the case when ( ) ( )( ),m a m bλ δ δ∈ + − . The other cases can 

be treated in a similar way.

Noting that ( ) 0iϕ λ′ >  choose an arbitrary ( )( )0, iC ϕ λ′∈ . Since iϕ ′  is continuous 

we can choose 0η >  such that ( ) ( )m a m b aδ λ η λ η+ < − < + < +  and 

( ) ( ) ( )0 ,i i iC y C yϕ λ ϕ ϕ λ λ η λ η′ ′ ′< − ≤ ≤ + − < ≤ +                                   (43)

Let , 0a b > . The change of variables ( ) /x b y λ ε= −  yields [5]:

( )
2 2 2

2 22 2

1
.

1

b

b

a a a
dy dx

x b bb y

η

ε
η

ε

λ η

λ η

ε ε π
ελ ε

+

−
−

= →
+− +∫ ∫ as 0ε →                         (44)
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Setting ( )ia Cϕ λ′= −   and ib Cϕ′= −  in (43) and using (44) we obtain 

( )( )
( )

( )
( ) ( )

2 2

2 2 20
liminfi i

i i

C y
dy

C y y

λ η

ε
λ η

ϕ λ εϕ
π

ϕ λ ϕ λ ε

+

→
−

′ − ′
≤

′ + ′ − +∫                                    (45)

( )
( ) ( )

( )( )
( )

22

2 2 20
liminf ii

ii

Cy
dy

Cy y

λ η

ε
λ η

ϕ λεϕ
π

ϕ λϕ λ ε

+

→
−

′ −′
≤

′ +′ − +∫

Setting ( ) ( )( ) ( ), \ ,G m a m b aδ λ ηλ η= + − − +  and applying the Lebesgue 

dominated convergence theorem we get 

( )
( ) ( )

2

2 2 20
lim 0i

G i

y
dy

y yε

εϕ
ϕ λ ε→

′
=

′ − +∫                                                              (45)

By (44) and (45)

( )( )
( )

( )
( ) ( )( )

( )

( )
( ) ( )( )

( ) ( )( )
( )

2 2

2 2 20

22

2 2 20

liminf

liminf

m b
i i

i m a i

m b
ii

im a i

C y
dy

C y y

cy
dy

cy y

δ

ε
δ

δ

ε
δ

ϕ λ εϕ
π

ϕ λ ϕ λ ε

ϕ λεϕ
ϕ λϕ λ ε

−

→
+

−

→
+

′ − ′
≤

′ + ′ − +

′ +′
≤ ≤

′ −′ − +

∫

∫
                                 (46) 

Since (46) holds for every ( )( )10,C ϕ λ′∈ , (46) in combination with (40) imply 

(41) combining (18), (26), (36) and (39) we derive the representation

 
( ) ( ) ( )( )

( ) ( )( ) ( )0 0

1
, , , , , ,

2

1
, , , , , ,

2

b

a

b

a

k x x
i

x x q x
i

δ

δ
δ

δ

λ δ ε ρ λ ε ρ λ ε
π

ρ λ ε ρ λ ε λ ε
π

−

∆
+

−

∆
+

= − +

− +

∫

∫
                                       (47)

Where Rλ∈  and 0>ε . Now combining the relation (33), (38) and (41) with 

(37) we arrive at (41). The relation (32) immediately follows from (31). Now 

we are ready to calculate a non-orthogonal spectral measure ∑ 0

B  in a gap of 

any self-adjoint extension AXt
*
BB EAA ∈=  if only A  admits a boundary triple of 

a scalar-type Weyl function.
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Section (5-2): Gaps and Examples

The symmetric operator A  admits a boundary triple { }0 1, ,Π= Γ ΓH and 

is of scalar-type. On the spectrum ( )BAδ  of the operator BA , outside the gaps 

( )\c
m mO R O Supp m= = . We obtain results on the absolutely continuous 

spectrum [116,146].

Theorem (5-2-1) [131]:

 Let ( ).m  be a scalar Nevanlinna function in C +  with the integral 

representation ( ) ( )0 1 2

1 1
,

1 F

F z C C z d t z C C
t z t

+∞

+ −
−∞

 = + + − ∈ ÷− + 
∑∫ U and the ima-

ginary part ( ) ( )( )z S m zν =  with admits the representation 

( ) ( )
( )

( )
1 2 22

, ,
1R R

yd t d t
x y C y

tt x y

µ µ
υ = + <∞

+− +∫ ∫

Where ( ) ( ), ,x y x iy z x iy Cυ υ += + = + ∈ . Then 

(i) For any x R∈  the ( ) ( )lim 0 limx i x iyυ υ+ = +  exists and is finite if and 

only if the symmetric derivation  ( ) ( ) ( )
0

lim
2

x x t
D x

tµ ε

µ ε µ
→

+ − −
=

         exists and is finite. In case one has ( ) ( )0x i D xµυ π+ = .

(ii) If the symmetric derivative ( )D xµ  exists and is infinite, then 

( )zυ →+∞  as z x→> .

(iii) For each x∈¡  one has ( ) ( ) { }( )Sm z x z xυ µ− →  as z x→ .

(iv) ( )zυ  converges to a finite constant as z x→>  if and only if the 

derivative ( ) ( )d t
t

dt

µ
µ′ =  exists at t x=  and is finite.

Moreover, one has ( ) ( )0 0x i xυ πµ′+ = . The symbol →>  means that the limit 

( )
0

lim ,i

r
x re xθυ

→
+ ∈¡  exist uniformly in [ ],θ ε π ε∈ −  for each ( )0, / 2ε π∈ . 
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Theorem (5-2-2) [131]:

Let A be a simple symmetric operator in h  with infinite deficiency 

indices. Further, let { }0 1, ,Π= Γ ΓH  be a boundary triple for *A  with scalar-type 

Weyl function ( ).M  i.e., ( ) ( )M z m z I= H  and let ( )*B B C= ∈ H .

(i) Then ( ) ( ) ( )*
0 0 0, / kerac B acA A A Aδ δ⊃ = Γ .

(ii) If the operator B  is purely absolutely continuous, then the self-

adjoint extension BA  is purely absolutely continuous to o .

Proof: 

By corollary (5-1-14) we get that ( ) ( )0ac acA Suppδ µ=  where µ  is the 

random measure of the representation 

( ) ( ) ( )

( ) ( )( )
0

: lim

0 ,0 0

ac y
m x R m x io m x iy and

x Sm m x iυ
→

Ω = ∈ ∃ + = +
< = + < ∞

)   

Notice that the limit ( ) ( )
0

lim
y

m x io m x iy
→

+ = +  exists for almost all x R∈ . 

Further, let us introduce the set ( )accl x =  ( ){ : ,x R mes x xε ε∈ − +  

)0 0x for all ε> >I . We get ( )( ) ( )ac ac accl m Supp µΩ = . By remark (5-1-15) the 

Weyl function ( ).BM  of the extension BA  is given by ( ) ( )( ) 1

BM z B M z
−

= −  

( )( ) 1
. ,B m z I z C

−
+= − ∈H .  Let us introduce the scalar-function

( ) ( )( ) ( )( )( )
( )( )

( )

1

, , ,

,
,

B h B H

B

R

M z M z B m z I

d E t
z C

t m z

−

+

= = −

= ∈
−∫

h h h h

h h                                   (48)

For ∈h H  . If z x iy= +  and ( ) ( ) ( ), ,m z u x y i x yυ= + , then we get from (48) 

( ) ( )( ) ( ) ( )( )
( )( ) ( ), , 2 2

, ,

,

B
B n B h

R

x y d E t
F z S m z

t u x y x y

υ

υ
= =

− + +∫
h h

                                    (49) 
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Let ( )acx m∈Ω . Notice the limits ( ) ( )
0

,0 lim , 0
y

x x yυ υ
→

= >  and ( ) ( )
0

, 0 lim ,
y

u x u x y
→

=  

exists if ( )acx m∈Ω . If 0 0y >  is small enough, then 

    
( )

( )( ) ( ) ( ) ( ) [ ) ( )02 2

, 1 2
, 0, ,

, ,0, ,
ac

x y
y y x m

x y xt u x y x y

υ
υ υυ

≤ ≤ ∈ ∈Ω
− +        (50) 

Taking in to account (50) and applying the Lebesque dominated convergence 

theorem we obtain from (48) that 

( ) ( )

( ) ( )( )
( )( ) ( )

( )

, ,0

2

0 lim ,

,
,0 ,

,0 ,0

B h B hy

B
ac

R

F x i F x y

d E t
x x m

t u x x
υ

υ

→
+ = =

∈Ω
− +∫

h h                                             (51) 

Since ( ),0 0xυ >  for ( )acx m∈Ω  we fined 

( ) ( ),0 , 0 ,B h acF x i x m< <∞ ∈Ω

Furthermore we have 

( ) ( )( ) ( )( ) ( )( )
( )( ) ( ), , 2 2

, ,
Re

, ,

B
B h B h

R

t u x y d E t
G z M z

t u x y x yυ

−
= =

− +∫
h h

Since 
( )

( )( ) ( ) ( )( ) ( ) ( )2 2 2 2

, 1 2

,0, , , ,

t u x y

xt u x y x y t u x y x y υυ υ

−
≤ ≤

− + − +

For ( )acx m∈Ω  and ( )00,y y∈ . A gain by the Lebesque dominated conv-

ergence theorem we find

( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( ), , 20 2

,0 , 2
0 lim

,0, ,0

B
B h B h

y
R

t u x d E t h h
G x i G x iy

xt u x y x υυ→

−
+ = + = ≤

− +
∫

Which shows that ( )acx m∈Ω  implies ( ),ac B hx M∈Ω  for every ∈h H  where 

( ) ( ) ( ) ( )( ){ }, , , ,0
: lim 0ac B h B h B h B hy

M x R M x io M x iy and Sm M x io
→

Ω = ∈ ∃ + = + < + <∞
)

 

Since ( ) ( ),ac ac B hm MΩ ⊆Ω  one gets ( ) ( ) ( )( )0ac ac ac acA Supp cl mδ µ= = Ω  

( )( ),ac ac B hcl M⊆ Ω  for each ∈h H .
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If acB B=  then the measure ( ) ( )( ). . ,n BE h hρ =  is absolutely continuous for any 

∈h H , that is ( ) ( )n nd t t dtρ ρ′= , where ( ) ( ).n L Rρ′ ′∈   for  any ∈h H . One 

rewrite (48) as 

( ) ( ) ( )
( )( ) ( ), 2

,

,

n
B h

R

x y t dt
F z

t u x y x y

υ ρ
υ

′
=

− + +∫                                                     (52)

and the subset ( ) ( ){ }: nH h H L R L Rρ ∞
∞ ′ ′= ∈ ∈ I  is dense in ( )ac B=H H . For 

∞∈h H  we obtain from (48) that 

( ) ( )
( ), 2 2

0 1 0
B h n L

y x R v u R R

ds
C h Sup Sup SmF x iy Sup Sup

s u v

υρ
υ

∞∞
< < ∈ > ∈

′= + ≤
− +∫

)
               (53) 

Corollary (5-2-3) [131]:

Let A  be a simple symmetric operator with infinite deficiency indices. 

Further, let { }0 1, ,Π= Γ ΓH  a boundary triple for *A  with scalar-type Weyl 

function ( ).M . If AxtA E∈% A, then ( ) ( )0ac acA Aδ δ⊆ % .

Corollary (5-2-4) [131]:

Shows that under the assumption of a scalar-type Weyl function the 

absolutely continuous spectrum of any extension always contains ( )0ac Aδ . The 

above result implies the following corollary.

Corollary (5-2-5) [131]:

Let A  be a simple symmetric operator with infinite deficiency indices 

on the separable Hilbert space h . Further, let { }0 1, ,Π= Γ ΓH  be a boundary 

triple for *A  with scalar-type Weyl function ( ) ( ). .M m I= H  which is monotone 

with respect to the open set ( )0mJ O Aρ⊆ ⊂ . Then for any operator R  on 

some separable Hilbert space there is a self-adjoint extension A%  such that 

ac
J JA R≅
)

 and A%  is absolutely continuous [111,130].

Theorem (5-2-6) [131]:
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Let A  be a simple symmetric operator in h  with infinite deficiency 

indices. Further, let { }0 1, ,Π= Γ ΓH  be a boundary triple for *A  with scalar-type 

Weyl function ( ).M . i.e., ( ) ( )M z m z I= H  and let ( )*B B C= ∈ H

(i) If B  is singular i.e., sB B= , then the absolutely continuous parts 

ac
BA  and 0

acA  is unitarily equivalent, in particular ( ) ( )0ac B acA Aδ δ= .

(ii) If  B  and 0A  are singular, then BA  is singular.

(iii) If B  is pure point and the spectrum of 0A  consist of isolated 

eigenvalues, then BA  is pure point.

Proposition (5-2-7) [131]:

Let A  be a simple symmetric operator in h  with infinite deficiency 

indices. Further, let { }0 1, ,Π= Γ ΓH  be a boundary triple for *A  with scalar-type 

Weyl function ( ).M , i.e., ( ) ( )M z m z I= H , and ( ) ( ){ sup :Supp x pµ µ+ = ∈ ∃  

( ) ( ) }0D x and D xµ µ >  where µ  is the radon measure of representation 

( ) ( )0 1 2

1

1

t
m z C C z d t

t z t
µ

∞

−∞

 = + + − ÷− + ∫ . 

If ( )B C∈ H , then 

( )( ) { }0, , ,
B

T
AE Supp T s pp scµ+ = ∈                                                       (54)

In particular, it holds 

(i) ( ) ( ) ( ) ( )sup \ supp BA p Supp pδ µ µ µ+≤I   and 

(ii) ( )( )sup 0
B

ac
AE p µ =  provided ( ) ( )supp \ suppµ µ+  is either finite or 

countable.

Proof: 

We set ( ) ( ) ( ){ }supp :Supp x D xµµ µ+ +
∞ = ∈ =∞ . By theorem (5-2-1) we 

derive that the limit ( )( )
0

lim ,
y

x yυ
→  exists and is finite for 

( ) ( )sup \ supx p pµ µ+ +
∞∈  and
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( ) ( ) ( )
0

,0 lim , 0
y

x x y D xµυ υ π
→

= = > , ( ) ( )sup \ supx p pµ µ+ +
∞∈                  (55)

 by proposition (5-1-5) there exists an operator ( )*B B C= ∈ H  such that 

( )*
1 0kerBA A A B= = ↑ Γ− Γ% . We consider the generalized Weyl function 

( ) ( )( ) 1

BM z B M z
−

= −  and define ,BF h  by (48). Following the line of reasoning 

of theorem (5-2-12) we obtain 

( ) ( ) ( ),0 , supp \ supp ,B hF x io x µ µ+ +
∞< + <∞ ∈ ∈h H                                 (56)

Further, let ( )suppx µ+
∞∈ . By theorem (5-2-1) (ii) and (iii) we fined 

( ) ( )
0

, 0 lim ,
y

x x yυ υ
→

= =∞  and ( ) { }( )
0

lim ,
y

y x y xυ µ
→

= .

Therefore for every 0 0y >  there exists ( )0N N y=  such that ( ),x y Nυ ≥  for 

( )00,y y∈  . Hence

( )
( )( ) ( )2 2

0

, 1

, ,

x y

Nt u x y x y

υ
υ

≤
− +  

By Lebesgue dominated theorem we obtain from (48) that 

( ) ( ),0
lim , 0, supp ,B hy

F x iy x µ+
∞→

= ∈ ∈h H                                                 (57)

Let ( ).
B

∑  be the unbounded non-orthogonal spectral measure of the Weyl 

function ( ) ( )( ) 1
,BM z B M z z C

−
+= − ∈  and ( ) ( )

,

. . , ,
B h B

 = ∈ ÷ 
∑ ∑ h h h H  . If 

( ){ },
,

: ,s B h
B h

x R F z as zδ  ′′ = ∈ →∞ →> ∈ ÷
 
∑ h H  

then we fined from (55) and (56) that ( )
,

supp 0s
B h

δ µ+ ′′ = ÷
 
∑ I . Let { } 1k k

hτ ∞

=
=  be 

a total set in H . Setting  1
,

,
k

s s
k

B B h

Uδ τ δ
∞

=

  ′′ ′′=  ÷ ÷   
∑ ∑ . One gets ( ), supp 0s

B

δ τ µ + ′′ = ÷ 
∑ I , 

and we gets 
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( )( ) ( )sup supp , 0
B B

s
A A s

B

E p Eµ µ δ τ+ +  ′′= = ÷ ÷  
∑I

Which proves (53) for sτ= . Similarly, setting 

( ) ( ){ },
.

: lim 0 ,pp Bz x
B h

x z x F zδ
→>

 ′′ = ∈ − > ∈ ÷ 
∑ ¡ h h H

and 

( ),1
,

k
pp pp B hk

B

Uδ τ δ
∞

=

 ′′ ′′= ÷ 
∑ ∑

We verity ( ), ,pp sB
B

δ τ δ τ ′′ ′′⊆  ÷ 
∑ ∑ , one proves (53) for ppτ= . Finally, setting 

( ) ( ) ( ) ( ){ }, ,,
: 0sc B h B hB h

x R F z and z x F z as z xδ′′ = ∈ →∞ − → →>∑ , ∈h H  , and 

( ) ( ) ( ),1
, \ ,

k
sc sc ppB B h Bk

Uδ τ δ δ τ
∞

=
′′ ′′ ′′=∑ ∑ ∑

We obtain ( ) ( ), ,sc sB h B h
δ δ′′ ′′⊆∑ ∑  which yield (53) for scτ=  

(i) We have ( ) ( ),p B pp B
Aδ δ τ′′= ∑  which yields ( ) ( )suppp BAδ µI  

( ) ( )supp \ suppµ µ+⊂  .

(ii) We have ( )( ) ( )( ) ( ) ( )( )supp supp supp \ supp
B B B

sc sc sc
A A AE E Eµ µ µ µ+ += +  

( ) ( )( )supp \ s upp
B

sc
AE µ µ+=  .

Since by assumption ( ) ( )supp \ suppµ µ+  is countable we obtain 

( ) ( )( )supp \ supp 0
B

sc
AE µ µ+ = , which shows ( )( )supp 0

B

sc
AE µ =  .

We consider several examples in order to illustrate the previous results 

[148].          

Example (5-2-8) [131]:

Let ( )( )2 0,1L=h . By A  we denote the closed symmetric operator 

( ) ( )Af x =  
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( ) ( ) ( ), 0,1 ,
d

i f x x f dom A
dx

− ∈ ∈ ( )( ) ( ) ( ){ }2 0,1 : 0 1 0f W f f′= ∈ = = . Which is simple 

and has deficiency indices ( )1,1 . We note that *A  is given by ( ) ( )*A f x =  

( ) ( ) ( )( )*
2, 0,1

d
i f x f dom A W

dx
′− ∈ = . A straight forward computation shows that 

{ }0 1, ,Π= Γ ΓH  where C=H  

( ) ( ) ( ) ( ) ( ) ( )( )*
0 1 2

0 1 0 1
, , 0,1

2 2

f f f f
f f i f dom A W

− +
′Γ = Γ = ∈ =               (58) 

forms a boundary triple for *A  . The operator ( )*
0 0/ kerA A= Γ  is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }
0 0

2

, 0,1 ,

0,1 : 0 1

d
A f x i f x x f dom A

dx

w f f

= − ∈ ∈

′= =

The spectrum of 0A  is discrete. It consist of isolated eigenvalues we have 

( ) { }0 i L z
Aδ λ

∈
=  with 2L Lλ π= . Obviously we have ( )0 L z LA Uρ ∈ ∆  where 

( )( )2 ,2 1L L Lπ π∆ = + .

Trivially the open intervals L∆  are gaps of the operator *
0 0A A= . Hence 

they are gaps of the symmetric operator A . The extension ( )*
1 1kerA A= ↑ Γ  

has the domain ( ) ( ) ( ) ( )( ) ( ) ( ){ }1,2
1 1, 0,1 : 0 1A dom A f W f f= ∈ =− . Its spectrum is 

discrete and consists of the eigenvalues ( )2 1 ,L L L Zλ π= + ∈ . Any other 

extension of A  is given by a real constant Rθ∈  and the boundary triple 

{ }0 1, ,C θ θ
θΠ = Γ Γ , where 1 0

θΓ = Γ  and 0 0 1
θ θΓ = Γ −Γ . The domain ( )dom Aθ  of the 

self-adjoint extension ( )*
0kerA A θ

θ = ↑ Γ  can be alternatively described by 

( ) ( )( ) ( ) ( ) ( ) ( ){ }11
2 0,1 : 0 1dom A f W i i f fθ θ θ −= ∈ − + =

the spectrum of A θ  is also describe and consists of eigenvalues. Setting 

( )cot / 2Tθ=− , ( )0, 2T π∈  one easily verifies that ( ) ,L T L Lθλ = + ∈¢ . 
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In other words any extension of A , which is different  from 0A , has an 

eigenvalues in the gaps ,L L∆ ∈¢ . i.e., it does not preserve the gaps L∆ . It is 

easily seen that the Weyl function corresponding to the boundary triple 

{ }0 1, ,Π= Γ ΓH  other form (57) is 

( ) ( )
( ) ( )cos 2

cot 2 ,
sin 2

z
m z z z C C

z + −=− =− ∈ U

The open set ( )\ supmO p m=¡  coincides with ( )0P A I ¡ . i.e., m L z LO U ∈= ∆ . 

The Weyl function admits an extension to mO  which is given by 

( ) ( )cot 2 . mm Oλ λ λ=− ∈ . Obviously the Weyl function ( ).m  is increasing on 

each open interval L∆ . However, choosing mJ O=  one easily verifies that the 

Weyl function ( ).m  is not monotone with respect to J . The lack of 

monotonicity is related to the fact that there does not exist an extension A%  of 

A  which has only an eigenvalue in one gap L∆  as we have seen above.

Let us consider the closed symmetric operator 1k kS S∞
==⊕  on the Hilbert 

space 1k kR R∞
==⊕  where the operators kδ  are unitarily equivalent to A  

defined above. Obviously the operator δ  is unitarily equivalent to the 

operator C  defined on ( )( )2 0,L= ∞h

( ) ( ) ( ) ( ) ( ) ( ) { }{ }1
2, : 0, 0

d
Cf x i f x f dom C W f k k N

dx +=− ∈ = = ∈¡ U .

We note that ( )( )2 ,2 1m L zO U L Lπ π∈= +  and ( ) ( ) ( )2arecot 2 1 ,L t t L Lϕ π=− + + ∈¡ .

By the associated non-orthogonal spectral measure ( )0
.

B∑  and ( ).
B

∑  of the 

Weyl function ( ) ( )( ) 1
,BM z B m z I

−
= −  are given by 

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

10 2

12

1

1 2 1 2 cot cot 2

L L BB

B

B B E m

L are B E

δ ϕ ϕ δ

π δ

−

−

′= + =

+ + − − −

∑
                                     (59)

and 

168



( ) ( ) ( )( ) ( ) ( )( ) ( )21 2cot 2 2 1 cot 2L B B LB
B E B E Bδ ϕ δ δ δ−−= − = + − ∈ ∆∑              (60) 

It follows from (59) that the measure ( ).
B∑  is periodic: 

( ) ( ) ( )02 , ,L B Lδ π δ δ+ = ∈ ∆ ∈∑ ∑ ¢

Having in mind this fact one obtains that for any L ∈¢  the operator 

( )( )2 , 2 1
BB sE L Lδ π π +  is unitarily equivalent to the operator ( )( )0, 2

BB sEδ π . 

Example (5-2-9) [131]:

Let ( )2
1 L += ¡h  and let 1δ  be a closed symmetric operator in 1h  defined 

by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }

2
2

1 1 22

2
2

,

: 0 0 0

d
f x f x f dom s W

dx

f W f f

δ +

+

= − ∈ =

′= ∈ = =

¡

¡
                                     (61)

Obviously 1 0δ ≥ . Setting 

( ) ( ) ( ) ( ) ( ) ( )
( )

*
0 1 1

2
2

0 0 , 0 ,

0

f f f f f f dom

W

θ θ θ δ

+

′ ′ ′Γ = − Γ =− ∈ =

∈¡ ¡
 

We obtain the boundary triple ( ) ( ){ }0 1 1
1 0 1, ,θ θΠ = Γ Γ£ . It is clear that the 

extension *
1δ  is non-negative if 0θ ≥ . The corresponding Weyl function is 

( ) ( ) 1

m iθ λ θ λ
−

= − . It is regular in \ +£ ¡  if 0θ ≥ , where the branch of λ  is 

fixed by the condition 1 1= . The Weyl function ( ).mθ  admits the following 

integeral representation 

( ) ( ) ( ) ( )
1

2
0

1
, 0

t
m i z dt

t z t
θ λ θ θ

π θ

∞−
= − = ≥

− +∫

and the corresponding spectral measure is given by ( )
1

11 22d t t dtµθ π θ
−−= + . 

Clearly ( ).mθ  is holomorphic within ( ), 0−∞  such that ( ) ( )1, 0 0,mθ θ−−∞ = . The 

inverse function ( ) ( ) ( )1. : 0, ,0θϕ θ− →−∞  is given by ( ) ( ) 21 ,θϕ ζ ζ θ−=− −  
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( )10,ζ θ−∈ . We set ( ),0∆= −∞  and ( ) ( )10,mθ θ−′∆ = ∆ = . Notice that 

( ) ( )1 22θϕ ζ ζ θ ζ− −= − .

Let 1 1,k k k kA δ∞ ∞
= ==⊕ =⊕h h  and { }0 1 1, , k k

θ∞
=Π= Γ Γ =⊕ ΠH  where 1k =h h , 

function ( ).M  is of scalar-type, i.e., ( ) ( )M z m z Iθ= H . Further, let 

( )*B B C= ∈ H . To the self-adjoint extension BA  it corresponding the Weyl 

function ( ) ( )( ) 1

BM z B m z Iθ
−

= − H . Let ( ).
B∑  be the unbounded non-

orthogonal spectral measure of the Weyl function ( ).BM . It follows from (60) 

( ) ( ) ( )( ) ( ) ( ) ( )1 22 , ,B m BB
B B E m B B BE Bθ θδ θ δ δ− −

′ ′ ′∆ ∆ ∆ ′= − ∆ = = ∆ ∈ ∆∑         (62)

Let ( ), 0 , 0x xδ= < . Since ( )( ) ( ) 1
1, 0 ,m x xθ θ θ

−
− = + ÷   for 0x <  we get from (62) 

( )( ) ( ) ( ) 1
1 2 1,0 2 , , 0B

B

x B B E x xθ θ θ
−

− − −
′ ′∆ ∆

 = − + < ÷ ∑                                (63)

we note that ( ) [ ]
B

x ∈∑ H  for every 0x < , while 1B −
′∆  may be unbounded.

Further, starting with (50) we can explicitly calculate the non-orthogonal 

spectral measure ( ).
B

∑  outside the ( ) ( )gap ,0 . ,
B

 ∆= −∞ = ÷ 
∑ h h . Setting ( )

,

.
B h
∑  

and ( ),B hF z  ( )( )3 ,Bm M z h h we easily derive from (51) and the Fatous theorem 

that 

( )
( ) ( )( )

( )
,

, 2 2

,
, 0,

1

BB
B

R

d x x d E t
F x io x

dx t xt
π

θ
= + = > ∈

− +
∑

∫h
h

h h
h H                     (64) 

Where ( ) ( )( )
, ,

0, , 0
B B

x x x= >∑ ∑
h h . A  straight forward computation shows that 

( ) ( )0 0,Supp µ+ = ∞ . By proposition (5-2-7) we have ( )( )0, 0, , ,T
ABE T s pp sc∞ = = . Hence 

( ) ( ],0 , , ,T BA T s p scδ ⊆ −∞ = . Since ( ) [ )0 0,ac Aδ = ∞  we obtain from theorem (5-2-2) 

that ( ) [ ). 0,ABE ⊇ ∞ . Therefore, the orthogonal spectral measure ( ).ABE  of BA θ  is 
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absolutely continuous on ( )0,∞  which yields that ( ).
B

∑  is absolutely 

continuous on ( )0,∞ . i.e., ( ) ( )ac

B B
δ δ=∑ ∑  for ( )( )0,Bδ∈ ∞ . Hence 

( )( ) ( )( )
( ) 2 2

, 0

,1
0,

1

x
B

B h R

sd E t
ds

t tπ θ δ
∞ =

− +
∑ ∫ ∫

h h
                         

( ) ( )( ), , 0,B

R

x t d E t xθ= Φ > ∈∫ h h h H                              (65) 

Where ( ) 2

12
, are tan 0

1

t t x
x t x x

t t tθ
θ

π θ
  −

Φ = − > ÷ ÷ ÷ ÷−  
. Which yields 

( )( ) ( ) ( )0, , , 0,B
B R

x x t dE t xθ= Φ > ∈∑ ∫h h h H                                         (66) 

Thus, formulas (62) and (65) together give the explicit form for the 

unbounded non-orthogonal spectral measure ( ).
B

∑  of the extension BA .

Section (5-3):  Inverse Spectral Problem for Direct Sum of Symmetric 

                        Operator

We have [30,89,91,92]

Lemma (5-3-1) [133]:

Let H  be a symmetric operator in the Hilbert space H . Suppose that 

H  has a gap J  . Let 0H  be a closed subspace of H  and M  a self-adjoint 

operator in 0H  such that M  is a restriction of the adjoint *H  of  H  and 

( )M Jδ ⊂  . Then 

( ) ( )
*

0M ID D M M G+= = ⊕HH H                                                                       (67)

For some symmetric operator 0G  with gap J  in the Hilbert space 0
⊥H  . In 

particular  H  has a self-adjoint extension H  such that 

J JM=%H

Proof: 
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We have only to show that the there exists a symmetric operator  0G  

with gap J  such that (66) holds. In fact since J  is a gap of 0G  there exists a 

self-adjoint operator G  in 0
⊥H  such that ( )G Jδ θ=I  and G  is an extension 

of 0G . Then obviously M G= ⊕%H  is a self-adjoint extension of  H  and 

satisfies j JM=%H .

Lemma (5-3-2) [133]:

Let H  be a symmetric operator in the Hilbert space H . Let 0H   be 

closed subspace. H  and M  a self-adjoint operator in 0H  such that M  is a 

restriction of *H  . Then ( ) ( )
*

0M ID H D MH M G+= = ⊕H

For some symmetric operator 0G  in 0
⊥H
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Proof: 

Let ( ),f f D H∈%  and ( ),g g D M∈% . We have 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( )

*

*

, , , ,

, , ,

,

M

M

H f g f g Hf f g H g f Mg g

f H f g g Hf g Mg

f g H f g

+ + = + + +

= + + +

= + +

% % %% % %

% %% %

% %

    

This MH  is a symmetric operator in the Hilbert space H . Let ( )Mf D H∈ . For 

every n Z∈  let [ ) ( )
0, 1n n nP I M P+= H .

Since M  is a self-adjoint operator in the Hilbert space 0H  it follows from 

the spectral theorem  that every n ∈¢  the operator nP  is an orthogonal 

projection in H  onto the closed subspace ( )nR P  of H

( ) ( ) ,nR P D M n⊂ ∈¢                                                                      (68)

 ( ) ( ) ,n mR P R P n⊥ ≠¢                                                                     (69) 

0nn
P P

∈
=∑ ¢ H                                                                                     (70)

, ,n nP Mg MP g g DM n= ∈ ∈¢                                                               (71) 

Thus we have 

( ) ( ) ( )
( ) ( )

, , ,

, ,

n M M

n n

P H f g H f g f Mg

P f Mg MP f g

= =

= =

For every ( )ng R P∈ . In the second step we have used (67) and the facts that 

MH  is symmetric and M  a restriction of MH . In the third step we have used 

(70) and in the last step a gain (67).

Thus we have 

,n M nP H f MP f n= ∈¢                                                                         (72) 

Since by (71), (68) and (69) 

( ) ( ), , 0n k n M k MMP f MP f P H f P H f k n= = ≠

and 0

22 2
0n n M Mn z n z

MP f P H f P H f
∈ ∈

= = <∑ ∑ H
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The sequence 
N

n
n N N

M P f
− ∈

 
 
 

∑
¢

 converges in 0H . Since M  is closed and by (69), 

0
lim

N

nn NN
P f P f

=−→∞
=∑ H  it follows that 

( )
0

P f D M∈H                                                                                   (73)

and  

0 0
lim

N

n n M Mn NN
n z

MP f MP f P H f P H f
=−→∞ ∈

= = =∑ ∑H H                                       (74)

Hare again we have used (71), (69). By (72) and (73) 

0MH M G= ⊕

( ) 0
0 / Mm D H H

G H ⊥=
I

0G  is a symmetric operator in the Hilbert 0
⊥H  since MH  is asymmetric operator 

H . 

Proposition (5-3-3) [133]:

Let H  be a symmetric operator in the separable Hilbert space H  

suppose that H  has a gap J . Let { } 1

N

n
λ

=  be a (finite or infinite) sequence in 

J [54]. Then there exists a self-adjoint extension %H  of H  such that

( ) { }: ,1p uH J n N n Nδ λ= ∈ ≤ ≤%I

and for every eigenvalue λ  of H%  in J  the multiplicity of λ  equals the 

number of times it occurs in the sequence { } 1

N

n
λ

=  if and only if N  is less than 

or equal to the deficiency number of { } 1

N

n
λ

= . In this case H%  can be chosen such 

that it has a pure point spectrum inside the gap J .

Proof:

First we shall do the "only-if-part" . Trivially the assertion of this part is 

true provided the deficiency number of H  is finite. But then the "only-if-part" 

follows from kreiu's theorem suppose now that N  is less that or equal to the 
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deficiency number of H . Then we can choose by induction an orthonarmal 

system { } 1

N

n n
e

=  such ( )* , , 1n ne N H n n Nλ∈ − ∈ ≤ ≤¥ .

Due to the well known fact that the dimension of ( )*N H λ−  equal the 

deficiency number of H  for every regular point λ  of H  and in particular for 

every Jλ∈ [107,126].

Let { }00 : ,1nSpan e n n N= ∈ ≤ ≤¥H and 0 00=H H , 00

*
0 1M H= H

By construction { } 1

N

n n
e

=  is an orthonormal base of the Hilbert space 0H  

and for every ,1n n N∈ ≤ ≤¥  is an eigenvector of 0M  corresponding to the real 

eigenvalue uλ . Thus 0M  can be and will be regarded as an operator in the 

Hilbert space 0H  its closure M  is a self-adjoint operator in 0H  has a pure 

point spectrum ( ) { }: ,1p uM n N n Nδ λ= ∈ ≤ ≤  and for every eigenvalue λ  of 

M  the multiplicity of λ  equals the number of times it occurs in the sequence 

{ } 1

N

n n
λ

= . M  is a restriction of *H  since the adjoint of any operator closed. Thus 

H  has a self-adjoint extension H%  such that JH M=% . i.e., such that H%  has the 

required properties.

Definition (5-3-4) [133]:

A symmetric operator H  is significantly deficient if and only if it has a 

real regular point and ( ) ( ) ( )*

*

N H z
P D H N H z

−
≠ −% . For every regular point z  of H

.

Proposition (5-3-5) [133]:

(i) Let H  be a closed symmetric operator in the Hilbert space H . Let 

J  be a gap of H  and 0 J∈ . Let ( ) ( )
1 1,R H R H

A P H B P H⊥
− −= = , and P  an 

orthogonal projection in ( )R H
⊥  such that the operator PB  belongs to 

the trace class and let 0  be the zero-operator in the Hilbert space 
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( )1R P− , then for every invertible self-adjoint operator Q  in the 

Hilbert space ( )R P  the operator 
( )

( )

( )

( )

( )*

:
R H R H

D Q R P

A PB
L

PB Q

 
= ⊕ → ⊕ ÷ ÷ 

% , is 

invertible and the operator 10H L−= ⊕% %  is a self-adjoint extension of H  

such that 1
ac J ac JH Q−% ; .

(ii) There exists an orthogonal projection P  in the Hilbert space ( )R H
⊥  

such that the operator PB  belongs to the trace class and ( )R P  is 

infinite dimensional if and only if the operator H  is significantly 

deficient in the sense of the definition (5-3-4).

Corollary (5-3-6) [133]:

Let H  be a significantly deficienct symmetric operator and let J  be a 

gap of H . Then for every self-adjoint operator M ′  in a separable Hilbert 

space there exists a self-adjoint extension H%  of H  such that 

acJ acJH M ′% ; .

Definition (5-3-7) [133]:

A symmetric operator H  is weakly significantly deficient if there exists 

a real regular point v  of H  and a real number λ  which is not an eigenvalue 

of the operator ( ) ( ) 1

R H v
A P H v

−

−
= −%

% . Such that ( )( ) ( )*R B A N Hλ ν− ≠ − . Where 

( ) ( )*

1

N H
B P H

ν
ν

−

−
= −% . We may assume that the operator H  is closed and 0ν = . 

( )R A λ−  is dense in the Hilbert space ( )R H  since A  is self-adjoint and λ  is 

not an eigenvalue of A . Since B  is bounded and ( )R B  is dense in ( )R H
⊥  

this implies that ( )( )R B A λ−  is dense in ( )R H
−⊥ . Thus we can replace B  by 

( )B A λ−  in the consideration at the beginning and get that there exists an 
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orthogonal projection P  in the Hilbert space ( )R H
⊥  such that ( )dim R P =∞ . 

And the operator ( )PB A λ−  belongs to the trace class. Let 0  be the zero 

operator in ( )1R P− . We have shown that ( ) ( )
*

0 1D H R P
H H + −=  can be decomposed 

as 

0 00H G= ⊕                                                                                       (75) 

for some continuously invertible operator 0G  in ( ) ( )R H R P⊕  such 

( )
( )

( )
1

0 :
R H

R P

A
G R H

PB
−  = → ⊕ ÷

 

Let Q  be any invertible self-adjoint operator in the Hilbert space ( )R P . 

By the given considerations 0G  has an invertible self-adjoint extension G  

such that 

( )

( )

( )

( )*
1 :

R H R H

D Q R P

A B P
G

PB Q

λλ
λ

−  −
− = ⊕ → ⊕ ÷− 

                                                     (76)

The following simple lemma will play role in the investigation of the 

absolutely continuous spectrum of the operator G .

Lemma (5-3-8) [133]:

Let 2k  be a bounded self-adjoint operator and 1k  a self-adjoint 

operator such that ( )2 1 1k k I k∆  belongs to the trace class for every bounded 

interval ∆  . Then 

( )1 2 1ac
k k k R′+ = ⊕

For some self-adjoint operator 1k ′  and R  such that 1 1ack k′ ; .

Corollary (5-3-9) [133]:

Let H  be a symmetric operator with gap J  in the complex Hilbert 

space H  suppose that 
1

n
n

H H
∞

=
= ⊕

For some symmetric operator ,nH n∈¥  with strictly positive deficiency 

numbers.
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Then for every self-adjoint operator M ′  in a separable Hilbert space there 

exists a self-adjoint extension H%  of  H  such that 

J acJH M ′% ;

Proof:

It easily follows from the spectral theorem that 
1

ac J n
n

M Qρ

∞

=
′ ⊕;

for suitabley chosen 1, , 0 .n loc nL dx aeρ ρ+∈ = − . On \ ,J n ∈¡ ¥ . Since ¥  can be 

decomposed into infinitely sets the operator H  can be decomposed as 

( )
1

n

n
H H

∞

=
= ⊕ ,

where for every n ∈¥  operator ( )nH  is the orthogonal sum of two operators 

with infinite deficiency numbers. For every n ∈¥  there exists a self-adjoint 

extension nH%  of ( )nH  such that nJ nH Qρ
% ;

Then 
1

n
n

H H
∞

=
⊕% %;  is a self-adjoint extension of H  and 

1 1
J nJ n acJ

n n
H H Q Mρ

∞ ∞

= =
′=⊕ ⊕% % ; ;

Proposition (5-3-10) [133]:

Let H  be a symmetric operator in some Hilbert space H . Suppose that 

the operator H  has some gap J  and its deficiency number is infinite. Let 0J  

be an open subset of J . Then H  has a self-adjoint extension H%  such that 

( ) 0sc H J J Jδ =%I I

Corollary (5-3-11) [133]:

Let H  be a symmetric operator in the Hilbert space H . Suppose H  

has a gap J  and the deficiency number of H  is infinite. Let 0J  be anon-

empty open subset of J . Then there exists self-adjoint extensions H  and H%  

and H  a non-empty compact subset 0C  of 0J  with lebesque measure zero 

such that H%  and H%  have a purely singular continuous spectrum in the gap J  

of H

( ) 0sc H J J Jδ =%I I  and ( ) 0sc H J Cδ =%I
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We shall combine studying the point singular continuous and absolutely 

continuous spectra.

Theorem (5-3-12) [133]:

Let H  be a symmetric operator in the Hilbert space H . Suppose that H  

has a gap J  and its deficiency number is infinite. Then for every open subset 

0J  of J  and every finite or infinite sequence { } 1

N

n n
λ

=  in J  there exists a self-

adjoint extension %H  of H  with the following properties.

(i) ( ) { }: ,p nH J n n Nδ λ= ∈ ≤%I ¥  and for every eigenvalue λ  of H%  in J  

the multiplicity of  equals the number of times it occurs in the 

sequence { } 1

N

n n
λ

=  .

(ii) ( ) 0sc H J J Jδ =%I I

(iii) ( ) 0ac H Jδ =%I

Proof:

Let 0λ  be any point in J  and if N <∞ , let 0nλ λ=  for all , 2n N n N∈ ∈ . 

Since for every regular point λ  of H  and in particular for 0λ λ= , the 

dimension of ( )*N H λ−  equals the deficiency number of H , we can choose 

by induction an orthogonal system { }n n N
e

∈  such that ( )* ,n ne N H n Nλ∈ − ∈  and 

( )*
0 ,je N H λ∈ −  2 1,J n n N= − ∈ as in the proof of proposition (5-3-3) we can 

show that there exist self-adjoint operators M  and M
)  in the Hilbert space 

[ ]0 2 : ,ne n n N= ∈ ≤¥H , [ ]0 :ne n= ∈
)

¥H

Respectively such that 

( )2 , ,n ne N M n n Nλ∈ − ∈ ≤¥ , ( )2 ,n ne N M n Nλ∈ − ∈
)

( )0 , 2 1,je N M J n nλ∈ − = − ∈
)

¥

and M  and M
)  are restrictions of the adjoint *H  of H . Obviously M  is also a 

restriction of the operator M
)  and therefore, , MM M

MH H H⊂) ) .
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Where the operators MH  and M
H )  are defined by (66). Moreover the self-

adjoint operator M  has a pure point spectrum ( ) { }: ,p nM n n Nδ λ= ∈ ≤¥ and 

for every eigenvalue λ  of M  the multiplicity of λ  equals the number of 

times it occurs in the sequence { } 1

N

u n
λ

= . By lemma (5-3-11) the operator MH  

can be decomposed as 0MH M G= ⊕ . Where 0C  is a symmetric operator in the 

Hilbert space 0
⊥H  and J  is also a gap of 0G . We have only to show that the 

deficiency number of 0G  is infinite. In fact, then corollary (5-3-18) yields that 

there exists a self-adjoint operator G  in 0
⊥H  such that G  is an extension of 

0G  and 

(i)  ( ) 0sc G J J Jδ =I I   , ( ) ( ) 0ac ppG J G Jδ δ= =I I

Then obviously the operator H M G= ⊕%  is a self-adjoint extension of H  

with the required spectral properties. By lemma (5-3-1) the operator M
H )  can 

be decomposed as 0M
H M G= ⊕)

))
. Where 0G

)
 is a symmetric operator in the 

Hilbert space 0
⊥)H  and J  is also a gap of 0G

)
. Since the symmetric operator 0G

)
 

has a gap it has a self-adjoint extension G
) . Let H M G= ⊕

)% . Since *M H H⊂ =
) )  

we have MH H=
) )

. Since M  is a self-adjoint operator in 0H  and ( )M Jδ ⊂  it 

follows from lemma (5-3-1) that 

H M G′= ⊕
)

for some self-adjoint operator G ′  in the Hilbert space 0
⊥H . Since 

0 ,ej ej ej jH M G eλ′= = =
) )

 2 1,j n n= − ∈¥  the point 0λ  in the gap J  of 0G  is an 

eigenvalue of G ′  with infinite multiplicity. Since obviously G ′  is a self-

adjoint extension of 0G  this implies, by Krein's theorem, i.e., that the 

deficiency number of 0G  is infinite.
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