Chapter 5

Inverse Spectral Theory for Symmetric

and Self-adjoint Operators

We prove that an operator measure in general is non-orthogonal and
unbounded. We prove that two orthogonal spectral measures are unitarily
equivalent. In accordance with the stieltjes inversion formula the spectral
measure admits an analytic continuation [90]. We discuss and prove a sharp
estimate that a strictly monotone function on each component interval of the
inverse function is analytic and also Strictly monotone. We prove that a non-
orthogonal spectral measure in a gab of any self-adjoint extensions can be
calculated, if exist a boundary triple and have various examples [93].
Section (5-1): Inverse Spectral Problem for Direct Sum of Symmetric

Operators

Let ' be a densely defined symmetric operator in Hilbert space

with deficiency indices n-(s)=n-(s)=e=_ We recall that abounded open
interval 7=(«A iscalled a gap for ' if

l2s (B =(a—AIf |.f Cidom s (1)
if —— ,then (1) turns into (sr.r)=AlFI’ forall rr=#ms  meaning that

(£ | isagap for + if ' issemi bounded below with the lower bound

Theorem (5-1-1) [131]:
Let {s}).. be afamily of closed symmetric operators ' , defined in

the separable Hilbert space ' such that the operators ' are unitarily

equivalent to a closed symmetric operator ' in  with equal positive

deficiency indices. If there exists a boundary triple ™ ={#..™.%} for = such
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that the corresponding Weyl function *! is monotone with respect to open

set 7 OAA) | A =alker(r;) | then for any auxiliary self-adjoint operator
in some separable Hilbert space ' the closed symmetric operator * admits
a self-adjoin extension ' such that the spectral, parts ' and ' are unitarily
equivalent i.e. ¥*0& [95.109,110].
The following result is known as a generalized Nuimark dilation theorem.
Proposition (5-1-2) [131]:
If >0):B(®) —[H] is abounded operator measure, then there exist a
Hilbert space ' abounded operator ™#.x] and an orthogonal measure
E()=B(rR) —{x] ( an orthogonal dilation) such that
St =B (Jk. 5B (R) 2)
If the orthogonal dilation is minima i.e.,
span{ B (Fran(k): ST B(R)} =K (3)
then it is uniquely determined up to unitary equivalence that is if one has two
bounded operator «M#.xl and &'=#.k] as well as two minimal orthogonal
dilation E()=8B(R) ~{x] and F():B(R) ~{K] obeying >(IJ=KE(IK
=K"E(JK,I(R)B(R) _then there exists an isometry ~:~ —= such that
EN(J="E(Jv.5B (R)
Definition (5-1-3) [131]:
We call fl/ satisfying (2) and (3) the minimal orthogonal measure

associated to Ill , or the minimal orthogonal dilation of il

Every operator measure !/ admits the Lebesque Jordan decomposition

3 »

>=5+5.5 =>+> where | , | , | and | arethe absolutely

continuous, singular, singular continuous and pure point components
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(measure) of Ill , respectively. Non-topological supports of mutually
disjoint, therefore if an operator measure [ is orthogonal, >{)=£.() | then
the ortho-projections »”=E7(R)(zt{ac.sc.pp})  are pair wise orthogonal.

Every subspace ®=rn reduces the operator =~ and the Lebesgue-Jordan
decomposition yields

h =h Oh Oh
T =T* OT* OT ™

4

Where 7°=pP7T th;, THac,sc.pp}  Now we show Nevanlinna functions:

Let ‘ be a separable Hilbert space, we recall that an operator-valued

function F:e- —[#] is said to be a Neranlinna (or Herglotz or * ) one if it is
holomerphic and takes values in the set of dissipative operators on ' i.e.,
sm(F(z)) =E(2)7F(2) o6 400,

Usually one considers a continuation of = in ‘ by setting rl)=

F(z).25c. | Bounded operator *t1#.X] obeying ker(K)=ker1FZ"(R) and

0

3(8)=k'E, (3K, oUB(R) . By

> () =f(1+)d :Z(t),cYEIBb(R) (5)

F >
One defines and operator measure which in general is non-orthogonal

and unbounded. It is called the unbounded spectral measure of ' . Using

| the representation [118],

1

F(z)=C,+Cz +I§i_z_l+t2 % Z(t),z Lc. uc. (6)

F

To show this we have [5]:
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. . 1+ o
From this representation F(z)=C, +Cz+ft_tjd2(t),z c,Uc. . To

F

prove representation (6) use equation (5)

Z 1+t dOZ ,oUB,

so d>(9) =(1+¢?)d 0Z(f), which implies that d :Z(t) =#d >(c) , put this in

F

the representation above we have

Tl+z 01 O = 1t —
F(z)=C,+Cz Ml et 2 (1) =Co+Crz +L(t—z R

([

21

. . . 1+tz _ A + Bt €
To analysis this component we use this (c—z)(1+¢7) c—z 1+ 1+e’ z

and A(l—l-tz)—i—Bt(t—z)—FC(t —z)=1—|-tz put =z we get A(l—i—zz)zl—i—zz, SO

»= at «=°a-<> = jmplies that < since ~=-<=> . Our equation

become 1-+? +B, (t —z)—|—0=1—|—tz , Bt(t—z) =1+tz —1—t?2 =—t(t —z) , Bt :_IB_Z%
-z
==+, Substituted ~-#-e~¢<  the equation
1+t __A Bt C _ ..
(t—z)(1+2) t—z 1+> 1+
We get the following
Flz)=CorCir [ e A (7)

z LT, UC_

Which complete the proof. From representation

F(z) =C, +Cz =J'1t:tzz a3 ()2 0C, UC.

determines uniquely the unbounded spectral measure ! by means of

the Stieltjes inversion formula, which is given by
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Z((a,b)) =s—lgrflg—gtrglo%bFSm(F(x+i£))dx (8)

a+o

By supp (F) we denote the topological (minimal closed) support of the spectral
measure ). . Since supp (F) is closed the set ©- =r\suer(¥) s open. The

Nevanlinna function f' admits an analytic continuationto ' given by

weo[] 1 t

F(A) =C, HC A+ (¢), A0,

H=A 1+ 5 FZ
Using this representation we immediately find that f/ is monotone on each

component interval 2o o. je., FA=F(. A= Arinrn [p general, this
relation is not satisfied if =~ and  belong to different component interval.
Definition (5-1-4) [131]:

Let 7/ be a Nevanlinna function, the Nevanlinna function is
monotone with respect to the open set ’=o- if for any two component
intervals ' and = of ' onehas F(A)=rF(A) forall 2% and *%: or

F(A)=F(A) forall *"™ and ~%: .

Let ==~ vu=be the number of component interval of J. obviously if

is monotone with respect to * and == , then there exists an enumeration

(7). of the components of ' such that

F(A)=F (A)=..=F ()
Holds for {A*-A...A}tv,>v.>=.>v, [f = |then it can happen that
such an enumeration does not exist. If ! is a scalar Nevanlinna function,
then f/ is monotone with respect to J if and only  if the condition

F(1)1 F(s.)=0 s satisfied for any two component intervals ' and = of

Definition (5-1-5) [131]:
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A triple ™=#.r..r}  consisting of an auxiliary Hilbert space * and

linear mappings ©:dom(a’) —#+.i=0.1  (Called a boundary triple for the
adjoint operator = of if the following two conditions are satisfied:
(i) The second Green's formula takes place
(A f.g)—f.A"g)<rif.Tog) —~(Tof .19 ).f ,g Cdom (A™)
(i) The mapping T ={r.r}:dom(A") —+# ¥ = 17 Hrr.rf} s surjective

the above definition allows one to describe the set . in the

following way.
Proposition (5-1-6) [131]:

Let ™=#.r..r'} be a boundary triple for ' then the mapping
established abijective correspondence #°—&=r(dom(#%) between the set *
of self-adjoint linear relations in * . By proposition (5-1-6) the following
definition is natural [144,145].

Definition (5-1-7) [131]:
Let ™=#.r..r'} be a boundary triple for =~ . We put 4.=4 | if
o=r(dom (&) thatis A=AD, |
dom (Ap) =D9={f CHom (A*):{I_Of,l_lf} Elq (9)
If e=¢(8) is the graph of an operator 5=8"0c(#) | then dom(4) is
determined by the equation  dom (As) =D, =ker(I; —8T)  We set 4 =
Let us recall the basic facts on Weyl functions:
Definition (5-1-8) [131]:

Let ' be a densely defined closed symmetric operator and

m={#.r..1}  be a boundary triple for ' . The unique mapping

M()=A4) ~[H] defined by Tf. =M (z)Fef..f. EN, =ker(A”—2).z LT
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Is called the Weyl function corresponding to the boundary triple
Proposition (5-1-9) [131]:

Let ' be asimple closed symmetric operator and let ™={#."."} be a
boundary triple for + with Weyl function ~© . Suppose that is self-adjoint

linear relation in + and *©e~.) then
(i) 2A,) =supp(M)
(i) rodae) if and only if erHe—mGY)
(iii) A3 () if and only if  © mE(©ME)T He. <}
We need the following simple proposition.
Proposition (5-1-10) [131]:
Let ' be a closed symmetric operator and let ™={#.7."'} be a boundary
triple for

(i) If « issimpleand ™ ={H.r.1} is another boundary triple for
such that ker(r;) =ker(r?) | then the Weyl functions 0 and ™0
of ~and " ,respectively are related by M.(z)=k™™ (z)k +D.

z0c.uc. 'Where P=p'HH] and kHH.H] is boundedly
invertible.

(i) If e=c(B).s=s5"tH  thenthe Weyl function ™.0 corresponding
to the boundary triple ™ ={H.r5. 7} ={H.8r, -1} i given by

M(z) =(B—M (z)) ",z [3£ ,UE£ _
Definition (5-1-11) [131]:
Let ' be a densely defined closed symmetric operator and let
n={nr.r}  be a boundary triple for ' . The mapping A4) =z —x{z){HN.]
Az) =(IN,) 7 i H —N,, 20 A,)
is called the —filed of the boundary triple . One can easily have
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M 2) (A —20) (A —20) " M 2,), 2.2, CUAA) (10)
The  -field and the Weyl function !/ are related by

M (z)—M (z,) =z —7,) MKz,) Az)
Lemma (5-1-12) [131]:

Let ' be asimple densely defined closed symmetric operator on a

separable Hilbert space ' with equal deficiency indies. Further let

m={H.r..r}  be a boundary triple for + with Weyl function *0 .If £l

is the orthogonal spectral measure of ' defineon ' and & the
associated minimal orthogonal spectral dilation of 3.() defined on such that

E, (9= w'E, (9w  for any Borel set °0B(R) |
Proof: By (10) one obtains
S (M (x +iy)hh) =y (3x +iv) b (x +iy) h)h CH (11)
To show this we have [5]:

(M (z) h,h) (M (z)h,h)

Sm(M (z)h,h) = o

Where

z =x +iy =|h|fM (z),1) (M (z),1)H2i

=[h|fz —2,) v(z,) V{z) +M (2,) ~(z =7,) v(z) =M (2,) [i

Multiply and divided by (= =28 m(=.)’

n| Bz 20 v(z.) vz) _(z =2 v(zo) z,)
E . *

C
(« =20 A=) E
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==V (2 B 20 Az) (2 —26) v (2 ) E

Where ¥(z,)/i2=y  =h|ly Bz). Lz ) By (342 )h. 4z )h)

Since -==*» | we get

Sm (M (x +iy) h.h) = (3x +iy) . 3hx +iy ) h)
Which is the prove of (11). Further, it follows from (10) that

Ax +y ) =H Hx +i (v 1)) (A — =iy )" A1) (12)
To prove (12) we use (10) [5]:

Hz) <A, —z) (A, =) Kz,)

y(Z):Ao(Ao_Z)_lWo_ZU(AD_Z)_l y<zo)

] oo n _,
=%+;Z"||Aglll ~Z,(A,—2) %V(Zo)

— +m Zn+1 An+1 -7 (A —Z S| A
A+ >z A=z —2) " gl 2,)
Since 4.=2" is self adjoint spectrum and [4:"[=t | so

Wz) =E +Zznﬂ —Z,(A, —z)*ﬁ/(zo)

:E +Zz".z ~Z,(A, —Z)_IE/(ZO)
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o -1

But 2" =(A,-z)

Hence Mz)=F+z(a,—z)" ~z,(A,(A,~2)")Hz,)

[ +r (A —2) U Z)

Let x =0,y =1 [z, =0 +i

Therefore Mz)=H+z —i)(A, —z)" i)
Since =z=x+v

U x +iy) =% +(x +iy —i)(A[, —(x +iy)) 1%/(i)

=% +(x +i(y —1))(A0 —x —iy)AB’(i)

Which is the proof of (12). Inserting (12) into (11) one gets

1+¢2

d(E, (t)y(i)h,y{i)h),h OH

sm{ (er)in) =y [

On the other hand we obtain that (>, (t1)h.h) =(1+*)d (B, (c) i) h. i) h) |

inserting in the above representation we get

Sm(M(x+iy)h,h)=z% , how

Applying the stieltjes inversion formula (8) we find

@((a,b))h,h = J (1+e2)d (E,, (¢) (i) h.h).h OH

)

Which yields

0

S((a.b)) =mi) E,, ((a.b)) v(i) (13)

M

for any bounded open interval («?)0r  Since - is simple it follows from

(12) that

{(a, =) " tan((i)): ArC UC ) =h (14)
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By (13) and (14), £.U is a minimal orthogonal dilation of 3.() . By

proposition (5-1-2) we find that the spectral measure £.// and [/ are
unitarily equivalent.
Definition (5-1-13) [131]:

Let ™=#.r..r'} be a boundary triple for ' with corresponding Weyl

function /. Wewill call 3.() the bounded non-orthogonal spectral

measure of the extension 4 =(A"[ker(1)) |

Corollary (5-1-14) [131]:
Let ' be a simple densely defined closed symmetric operator in a
separable Hilbert space ° with equal deficiency indices. Further, let
m={#.r..r}  be a boundary triple for + and !/ the corresponding Weyl

function, then

S( A,)) =supp(M) qupp& _;,Edr(Ao) :supp(z; ) . Where 7™ ac.s,sc, pp}

M

Remark (5-1-15) [131]:

m,() of the form M, (2) =(B—M (2))” =(B—m(2).1,)" is the Weyl

function of the generalized boundary triple ' . Being a Wyle function. ()
admits the representation

t

M, (z)=C, +I§i_z—l+tz e S(). z0c,uc. (15)

Where 20)=2() is the (unbounded) non-orthogonal spectral measure of

v,() . In accordance with the Stieltjes inversion formula (8) the spectral

measure can be re-obtained by

b—3

J'(MB(x+i£) —M, (x—ig)) dx (16)

a+d

ZB( a,b) =s —lims—lim —
3.0 [O-027F
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With ™ (z)=m(7)" | We get

M, (x+ig) =M, (x —ig) T(/\ —m x+1£) B T(/\—m(x+i5))_1dEB(/\) (]_7)
Where -——~= and - =—= . The representation admits this
M, (x+ie) =M, (x—ig) = [((A=m(x+ig)) " ~(A=m(x~i€)) " )aE, (A)

By taking the integration both sides of equation (16) which leads to the

expression [5]:

ﬁb::(MB(X-FiE)_MB(X_ig))dx
‘%Iﬂ“ m{x+ie)) " =(A=m{x—ie)) "Jax

b—5

= [ 57 L ((A=m{xvie)) " ~{A=m(x—ie)Jae, (A

1 b—o

Put =EG_L((/\—m(x+i£))_l—(/\—m(x—is))_l)dx=kA(/\,5,t)

We get the following

:ﬁjj:((MB(XHE))_] —( M, (X—iE))_1)dx =IkA(A,5,t)dEB(/\),g>0 (18)
and
kA(/\’J’g) =2L7—"—i_£((/\_m()<+i£))l _(/\_m(x"'ig))ﬂ) dE, (A) (19)

AR, A=(a.b) LR gpnd <> with m(z) =m(7).zec. we denote by the family of
the component intervals 4 =(a..) of ©. =rR\supp(m)

Further the function !/ admits an analytic continuation to ' such that

t

—c o+ (HL _
=G+ s 1+t2%u(t),xmom
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Hence the function !/ restricted to ' is analytic. Moreover one easily

verifies that for every component interval = of

m(x)<rn(y),x<y,x, yvaN
Therefore for every component interval =~ of ' theset «=m(a s
gain an open interval. Thus ©: =m(c.) is also open and the union of the sets

o'=m(a) where the union is taken over all component intervals = of ' .
Lemma (5-1-16) [5]:

Let "/ be ascalar Nevalinna function. If 2=(e?) is contained in a

component interval ~ of  then ©a(d= Sup lks(ASe)|<e " for each

b-al
55@, S (20)
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Proof: we have

m (x + ) =m (x) —=T, (5x) +Z T, (5x).xD, (21)
Where

(e = o ) (22)
and

) = [ dul) (23)
using (21) and (22) we find constant *.(9.x(3) and (4 such that

T (sx)=%(39 and o=v. (=T (e.x)=x.(3 |

x [{a +&b —) (24)

For etloy  further we get from (20)
P(Axé) :A—m(1x+i£) _A—m(x)iisTl(s,x)
_ A=m(x) —ieT, (£,x) ~A+m(x +ie) (25)
[A=m{xvie]) (A=m{x] =ieT, (&, ]
From (20) we get
£°T; (£,x)

P(A’X’g):(}l—m(x+i£))(/\—m(x)—isTl(s,x)) , ALR.xLO,.0[3>0 . Since both ~(x) and

,(0x) arereal for *9. we have from (20) that [A-m(x+ig)=en(sx) and
[A—m(x) —ief| =21 (5x). AR n view of (36) these inequalities yield

To(t,x)

A, X, <
|p( * £)|< Tl(t,X)Z

,AOR,x0O,,£>0 (26)

Combining (23) with (25) we obtain the estimate [5]:

|P(A.x, ) S‘/:IO((;))Z ,AOR,x O(a +5,b —9),£(0,1] (27)

We set [5]:
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(AS€) = LT - B . #
WA = LR it (3] A—m(x) +ieL () 5

for ~= and - . By the representation

1 °° /\—m(x) +i£‘1"1(£,x) —A+m(x) +i£‘1"1(£,x)

ra(A.S,€) :Eala(,\_m(x) —i€T, (& x) ) (A—m(x) +ieT, (& x))

dx

s U
=lbI5D ‘ETI(E,X) _dx
7'ra+(5a)ﬁ—m(x)2 +&T,(&,x) )E

and the estimate (23) we obtain that 7.(sx)=x/(9 and T7.(sx)"=~’(9 put

this in the above equation we get

_1"° £x,(9)
ra(A S, €) _7Ta+5(/\—m ) +82W12(5))dx,/\ OR, £0(0,1] (28)

Form this equation

+oo[ ] 1 t
m(x)=Co+[_ B:_Hj%u(t)’x o,

The derivation m'(x).x©. admits the representation

1
(1-x)

() =z _du(t),x00, (29)

Obviously, there exist constants »:(¢ and (9 such that
0=w, (F=m"(x)=x,(F.x {a+3b —I (30)
By combining the equation (27) and equation (29) where ©=v.(J=m"(x).

x Ha+ar—3 we have the following

£ < x,(0) *2 em’(x) . s
ra(A S, )_m2(5)aL(/\—m(x))2+s?wf(5)d , AR,e00,]]
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: I : dy _ _
Using the substitution »=m(x) we derive that - =m'(x) so d=

m'(x) in
the equation we get
r(A,3.¢) < x(d) "2 E.mz'(x) ,dy
7w, (8) A5 (A=m(x))* +&*w? (3) m'(x)
m(b—5)
A £ dy,AORe0(0,]]
nwz(d) m(a+5)(/‘_)’) +&w (5)
Finally, we get
ra(A S €) swxi‘:/,/\ElR,gEl(O,l] (31)

Obviously we have

b—o5
kn(A S8 =2L, [(A(AS8) —p(ASekx +1a(A 5 8), AR, £>0

a+o

Hence we find the estimate

-5
|kA(/\,5,g)|s%bf|p(/\,5,e)|dx +r,(A, S,€),ALR, £>0

a+d

x,(6)
Wl(é)Z

Taking into account equation [o(4.6:¢)[ and the equation

X
2,5,6) <X i i 59| =
n(Aoe) =" we artive at the estimate  [k(Aa<)l= T

+%,A OR,£0(0,1]  Which proves (19).

Since the function ' is strictly monotone on each component interval
of ' theinverse function ¢! exists there. The function ‘! is analytic

and also strictly monotone, its first derivative ‘! exists, it is analytic and

non-negative.
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Lemma (5-1-17) [131]:

Suppose that ! is a scalar Nevanlinna function, let 2=(a¢) be

contained is some component interval ~ of ©. =rR\sup(m) then (with

defined as in (18) ).
E«) AOR\fn(a+3),m(b-0)E
lim ks 1.0.6) =6, (2.8 = AT m (a-+0).m b =] (32)

rAY AO(m(a+8),m(b-0))

For ot(o.(b —)/2) gnd

. 9 AOR\(m(a),m (b))
lim lim k,(A,8,&) =6, (A, 9) = 33
Iy tmka(A 89 =A (A =0y ) b (a).m (8) (33)
Proof [5]:
At first let us show that
lim——~ G_Lp(/\,x,s)dx =0, AOR (34)

by (24) one immediately gets that

lim (/\x E)Zlim ! - ! ?
m p{ A, X, £-0 —m(x +ig) /\—m(x)—iETI(s,X)E
| 2 O
=lim STO(E’X) +=0,A0R,x 0O, ,£>0

saopﬁ/\—m(x +i$))(A—m(X)_iéT1(g’X))TD

Which implies that limAAx.2)=0 by lemma (5-1-16). Now (33) is implied
by (26) and the Lebesque dominated convergence theorem. Next we set
Lebesque

T (tx) = [ — !

Ay —x)*+& (y —x)’

du(y).x 0o, .t =0 (35)

Obviously there is a constant *:(9)>° such that
0 =2 (5x) =« (. x {a +3b —, =0.1] (36)

Let
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_ 1 _ 1
A = —ien (%) A—m(x) —ieT, (0.x) " X O (37)

For - | it follows from (20), (35) and (37)
That

o —i£'r, (& x)
AR ) =3 —ie (£3]) (A—m () ~ieT (0,3]) 9

for < ,since »= and 0 isreal for *%. we get from (38)

7,(&x)

Gl e e E )

,AOR, xOO, , =0 Where

by using (23) and (36) we obtain the estimate [5]:

|/q)(/\,x,£)|£gr3—(5) ADR,xO(a+3,b—3),£0(0,1]

Wl(é)z’

Which immediately yields

b—o

lim —— aLpo(/\,x,g)dx =0,A0R,3>0 (39)

Finally, let us introduce

(A 55) :L o1 1 _ 1 —'Ddx 40
Aa > 27t a+5E’\_m(x)_i‘€Tl(0’x) /\—m(x)+18T1(0,x)E| ( )

For »= and - . Using the representation

. _ 1 s A-m(x +i£T1(0,x))—(/\—m(x)—iETI(O,x))_DX
w108 =on E( A—m{x] —ier, (0,x)] (A —m(x) +ier, (0,x)] &
1 bsS Diet, (0, ) o

= 0 3 Z?dx
271 )0 (A~ m( )" +&°r, (0x)" £

157



+00

Form the equation (20) #(0:x) :_J;ﬁdﬂ and the equation

)= L : :
m'(x) = [oy@H=).x Do, We get this relation  ='(x) == (0.0).xt0.  from

the equation (20) and equation (28) we get after change of variable » =m(x)

that

(b-9)

1
A’J,g =_
%l ) nm(a[a)(/\—m(x))z+£2T1(0,X)2

Sm'(x) dx

(b—9) gm( x) dx

1
T, (A-y) +e (0.6, (y) ™ (4]

JAOR, >0

m(b-0)

1 £
_1 > dx
7Tm<J:cﬂ (A-y) +&'1,(0,9, ()

where x=¢(»)

By z(0. () =n'(#(») =/ #(»).»tx»  we finally obtain that

m(b—d) v 2
1 t@
qA(A,J,g) = ¢,()’)

T,aa #(y) (A=y) +&

dy,y OR,£>0 (41)

Next we prove the relation

limga(AJ2) = (A F, 3H0,(b —a)/2), ALR (42)

We consider only the case when A(m(a+3.m( —3) | The other cases can
be treated in a similar way.

Noting that #(4>0 choose an arbitrary < =°.#(4) . Since  is continuous

we can choose ¢ such that m(a +3 <=A—=7=A+7=m (b +a) and

0 =gp(A <€ =6(y ) =6(A) €, A—77—y =A+77 (43)

Let «c> |, The change of variables x =(» —%/= yields [5]:

A+ 2 2 bn 1 s 2

a & a

_a a .
Joiayree® e lotna ™ = as oo (44)
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Setting «=#(A—< and ®=4—< in (43) and using (44) we obtain

(#(N—) _. . "7 & (y)°

T <liminf > 5
g (A)+C e L (y) (A—y) +E

dy (45)

() _ (s =<)
o L (y)(A-y) +E ¢ (A)+C

Setting & =(m(a+.m (b —a))\(A—~2A+3) and applying the Lebesgue

dominated convergence theorem we get

Yy —
e Ay T (45)

By (44) and (45)

' —\? m(b-0) , 2
n—(qbi,(}‘) C) <liminf f¢" (y) - dy
g (A)+C T i (y)(A-y) +E
m(b—é) ! 2 ] 2 (46)
<liminf f¢l(y) - dy S(¢1’(/‘)+C)
€0 m(a+o) ¢l’(_y) (/‘_y) +£2 ¢1(A) —C

Since (46) holds for every < ™o #(A) | (46) in combination with (40) imply
(41) combining (18), (26), (36) and (39) we derive the representation

kA ——J'( /\x £ A,x,e‘))+
(47)

j’ (p0 (A.x,€)-p, (/\,x,&‘)) +q,(Ax,€)
Where ~+= and == .Now combining the relation (33), (38) and (41) with
(37) we arrive at (41). The relation (32) immediately follows from (31). Now
we are ready to calculate a non-orthogonal spectral measure }. in a gap of

any self-adjoint extension ~-=2:tEx. if only ' admits a boundary triple of

a scalar-type Weyl function.
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Section (5-2): Gaps and Examples

The symmetric operator * admits a boundary triple ™=".7.r} and
is of scalar-type. On the spectrum 9] of the operator ' , outside the gaps

o, =r\o, =supp(m) _We obtain results on the absolutely continuous
spectrum [116,146].
Theorem (5-2-1) [131]:

Let r! be ascalar Nevanlinna function in = with the integral

a1 1

representation F(#) =Co+Cz + [ 5~ % >(t).z 0, Uc_ and the ima-

ginary part (=) =s(m(2)) with admits the representation

_ ydp(t) dp(t)
u(x,y)=Cy +-,!'(t —x)2+y2,£1+t2 <oo

Where «x.y)=dx +y).z =< +Hy .  Then

(i) For any -~ the lm«(x—+0)=limefx+y) exists and is finite if and

only if the symmetric derivation D, (x) =lim £ x +£)2:/'1 b =)

exists and is finite. In case one has «x +i0) =72 .(x)
(i)  If the symmetric derivative ©2.(x) exists and is infinite, then
U(z) — oo as - —

(iii) Foreach -~ onehas sm(z—)Az) —£({x) as - ~ .

(iv) 'z converges to a finite constant as - — if and only if the
. d : e
derivative #/(t)= Zt(t) exists at = and is finite.
Moreover, one has “x.+,)=7#4(x) _ The symbol - means that the limit

limo(x+re?).x0i  exist uniformly in €-{s77-4 for each &-(0.772)
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Theorem (5-2-2) [131]:

Let ' be a simple symmetric operator in ' with infinite deficiency
indices. Further, let ™=H.r..r}  be a boundary triple for * with scalar-type
Weyl function ¥/l ie., ™ (z)=m(-)1, andlet B=B"rc(*)

() Then < (A.) Kz (A,).A, =a"/ker(r5)
(i) If the operator ' is purely absolutely continuous, then the self-
adjoint extension ' is purely absolutely continuous to
Proof:
By corollary (5-1-14) we get that < (A.) =surr.. (4  where  is the

random measure of the representation

Q (m) =§ R :Dn(x +io) =lin3m(x +iy)and

ac
Yy -

0<u(x,0) =Sm (m (x +i0)) < oo

Notice that the limit ™ (x +ie) =limm (x +iv)  exjsts for almost all ~=—=

Further, let us introduce the set <. (x)=  {x ER:mes(x —sx +5

I x =0forall £>0)  'We get L. (<2 (m))=Supr.. (4 |, By remark (5-1-15) the
Weyl function .() of the extension ' is given by M, (z)=(B—M (z))”
=(B —m(z)1,)" .z ¢, . Let us introduce the scalar-function

Mou(z)=(My(z) nb)=((B=m(2)1,)" hh

S L -

For rw If ===» and m(z)=u(x.»)+x.») | then we get from (48)

F,,(z) =S(mg,(2)) :,I[(tli(;(i)j)()fi(:z :+/;))2

(49)
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Let x©<.(m) _ Notice the limits ¢(x-0)=limu(x.y)>0 gpd u(x,0) =limu(x,y)

exists if xo<.(m) _If »>0 issmall enough, then

= (x,l:z(;);yjlf(x,y) SU(xl,y) Su(xz,o) .y 0,y,).x OQ, (m) (50)

Taking in to account (50) and applying the Lebesque dominated convergence
theorem we obtain from (48) that
Fy, (x +i O) :li%FB!h (x ,y) =

d(E,(t)h h)

ols (51)
| ,O)i[(t—u(x,O))z+U(x,0)

X DQac(m)

Since ¢x.00=0 for x0.(m) we fined
0 <F, ,(x,i0) <oox CX2 (m)
Furthermore we have

(t —u(x,y))d(EB (t) h,h)
(t —u(x,y))2 +U(x,y)2

Gy, (Z) =Re(MB’h (z )) 21!’

|t—u(x,y)| 1 \/E

Since (c—u(xy)) +0(xoy ) S\/(t e ) o) = u(x,0)

For x©<.(m) and »™o°vx,) . A gain by the Lebesque dominated conv-

ergence theorem we find

(¢ —u(x,0))d (E, (t)h.h) _ 2

R \/(t —u(x,y))2 +U(x,0)2 ~u(x,0)

Gy [ +10) ZHmG,, (x +iy) =

Which shows that x =< (m) implies x &< (M..) forevery »+ where
Q. (MB)h) ={x LR :CM, , (x +io) =}l}i£n0MB,h (x “+iy )and o <S)m (MB,,T (x +io)) <0<%
Since <2 (m)tx2(M..) onegets < () =Supr. (F==l.(<2(m))

Clel, (2 (M5.)) foreach »row .
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If »=s- then the measure <()=(£.()h.n) is absolutely continuous for any

nonthatis da()=a()d where A()L’(r)  for any » .One
rewrite (48) as

U(x,y)p,'l(t)dt

=) et =) 52

R

and the subset H.={hrtH :grr=(rR)! L’(R)} jisdensein #=H"(B) _For

hoH.  we obtain from (48) that

Lds
+U/

(53)

oo
o<y <l x[R

C SupSupS)mF x+1y <||,d|| SupSupT!'

Corollary (5-2-3) [131]:

Let ' be a simple symmetric operator with infinite deficiency indices.

Further, let ™=H.r.."}  a boundary triple for = with scalar-type Weyl

function »¢ .If 4®e. A, then <& (A)0Da (4 |

Corollary (5-2-4) [131]:

Shows that under the assumption of a scalar-type Weyl function the

absolutely continuous spectrum of any extension always contains (4] . The

above result implies the following corollary.
Corollary (5-2-5) [131]:

Let ' be a simple symmetric operator with infinite deficiency indices
on the separable Hilbert space ' . Further, let ™=".."}  be a boundary
triple for * with scalar-type Weyl function » ()=m()z, which is monotone

with respect to the open set 7 =°. ©@~4,) | Then for any operator ' on

some separable Hilbert space there is a self-adjoint extension ' such that

A orrand ' is absolutely continuous [111,130].
Theorem (5-2-6) [131]:
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Let ' be asimple symmetric operator in ' with infinite deficiency
indices. Further, let ™=H.r..r}  be a boundary triple for * with scalar-type

Weyl function *( .ie., ™M (z)=m(z)i, andlet B =B rt(H)

() If © issingulari.e., »=s | then the absolutely continuous parts
¢ and ¢ isunitarily equivalent, in particular < (As) =< (A.)

(ii) If '+ and ' aresingular, then ' is singular.

(iii) If ' is pure point and the spectrum of ' consist of isolated

eigenvalues, then ' is pure point.
Proposition (5-2-7) [131]:

Let ' be a simple symmetric operator in ' with infinite deficiency
indices. Further, let ™=H.r..r}  be a boundary triple for * with scalar-type
Weyl function “l/ ,ie., M(z)=m(z)1, and Surp (4 ={x Bupp(4):LC

D,(x)and D,(x) >0} where is the radon measure of representation

“O1
m(z) =G, "‘ClZ"'J-BTZ_l_'t_tz %H(t)

If Boc(#) | then
E}, (Supp+(M) =0,T s, pp.sc} (54)

In particular, it holds

() F(As)1 supp (£ =Supp (J\suwppr (4  and
(i) Ef (supp(4)) =0  provided supp(4\supp™(£) s either finite or
countable.
Proof:

We set SuppZ(#) ={x Thupp™(£):D(x) ==¢ | By theorem (5-2-1) we

derive that the limit !m(v(x.¥)) exists and is finite for

x Cupp*(\supp(4)  and
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x,0) =},ir£10L}(X,y) =D, (x)=0 , X Csup p (£ \sup p(4) (55)
by proposition (5-1-5) there exists an operator 2 =8"=t(#) such that
A=A, =A" rker(; —81,) | We consider the generalized Weyl function

M, (z)=(B—M (z))" and define * by (48). Following the line of reasoning

of theorem (5-2-12) we obtain

0 <F, , (x +Ho) <eeox [Bupp () \suppl (). hH (56)
Further, let x™suwerz(4 | By theorem (5-2-1) (ii) and (iii) we fined
Ax,0) =limefx,y) =eo apd limyfx,y)=24{x})
Therefore for every ».>° there exists ~ =N(».) suchthat “~.»)=~ for

y oy, , Hence

u(x,y) 1
(t —u(xo,y))2 +U(x,y) N

By Lebesgue dominated theorem we obtain from (48) that

lim F, , (x,iy) =0, x Chupp( 49, hH (57)

Let 1! be the unbounded non-orthogonal spectral measure of the Weyl

function M. (z)=(B M (z)) .z, and Z § hh hOH  If
6"; x OR :F,,(z) —ooas z —>>},/7EIH

then we fined from (55) and (56) that & @ E supp”(4) =0 Let r=(n}i. be

total set i . Setti 5ﬂ§ T'D:f}yD E O t &Ly oo supp{/f)zo
atotal setin ' . Setting o' 7= ICH = . One gets SH;,TD ,
and we gets

165



s + — L] + 4 |:[_l—|:
E; (sup p* (1)) =E,, (SupP (241 5;§ =0
Which proves (53) for — . Similarly, setting

3, @ %‘=[x[li :lirn(z—x) FB’h(z) >0} ,hOH

z =X

and

We verity  3,(>, .7) Dd’i T E , one proves (53) for - . Finally, setting

5;.:(2,1 )={x [R:Fg, (z) —sooand (z —X)FB)h (z) —0as z —>x} hOH , and

b

2>, . )=0a(>,., (> 1)
We obtain < (>,. )24(>,. ) whichyield (53) for -
(i) Wehave &(A)=4,(3 .7) whichyields (A1 swp(4)
Chupp (49 \supp* (49
(i) Wehave EX (supp(£9) =Ex (supp™(£9) +E S (supp (49 \supp™(£9)
=£ 3, (supp (29 \supp™(£9)
Since by assumption supp(£3\supp* (43 is countable we obtain

EJ, (supp (£ \supp™(£9) =0 which shows E: (supp(£)) =0

We consider several examples in order to illustrate the previous results
[148].
Example (5-2-8) [131]:

Let #~=r’((01) By ° we denote the closed symmetric operator

(A (x| =
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i 2= (x).x D(0,1).f Tdom (A)  ={r owi((01):r (0)=r (=] . Which is simple

and has deficiency indices " . We note that ~ is given by (47)(x)=

i <f (x).f Cdom (A") =w/((0.1)) _ A straight forward computation shows that

MN={H,r,,r} where H=C

ro =IO = OO rdom (47) = 2((0.1) (58)
forms a boundary triple for . The operator 4.=A"/ker(5%) s given by
(ASf ) (x) == %f (x).x 0(0,1),f Cidom (A,)

={wi(0):f (0) =f (1)}
The spectrum of ' is discrete. It consist of isolated eigenvalues we have
Aa,) <A},  with A=2t7 _Obviously we have A4.)v..a  where
o =2r772(L+) 7§
Trivially the open intervals  are gaps of the operator 4.=4; . Hence

they are gaps of the symmetric operator ' . The extension A =A" 1ker(r)
has the domain (A.).dom (A,) ={f tw “?((0,1)):f (0) =— (1)} | Its spectrum is

discrete and consists of the eigenvalues A =(2& +)77zz = Any other

extension of ' is given by a real constant = and the boundary triple
m,<{c. 2.7} where ™= and ™=e.— .The domain m(4,) of the
self-adjoint extension A.=A"1ker(I7) can be alternatively described by
dom (Ap) ={f W ((0.1)):(€—i)(&+i)™f (0) =f (1)}
the spectrum of ' is also describe and consists of eigenvalues. Setting

o=—ot(r/2) - TU(027) ope easily verifies that A7 =r +r.L %
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In other words any extension of ' , which is different from ' , has an

eigenvalues in the gaps 2.2=¢ | i.e., it does not preserve the gaps . Itis

easily seen that the Weyl function corresponding to the boundary triple

n={(H.r,.r}  other form (57) is

__cos(z/2) __
)= ) e/ e v
The open set ©. =i ‘supp(m) coincides with »(a)ti  je, ©. V.5

The Weyl function admits an extension to ' which is given by
m (A) =—cot(A2).Ac0,  QObviously the Weyl function -/ is increasing on
each open interval . However, choosing ’=°- one easily verifies that the
Weyl function -/ is not monotone with respect to . The lack of
monotonicity is related to the fact that there does not exist an extension ' of
which has only an eigenvalue in one gap  as we have seen above.
Let us consider the closed symmetric operator s =/%=s. on the Hilbert
space R =Cti=R. where the operators  are unitarily equivalent to
defined above. Obviously the operator is unitarily equivalent to the

operator ' defined on #=r((0.=9)

(cf )(x) == %f (x).f Cdom (C) ={w, (i ,):f (k) =0,k C{o} UN}

We note that o, =U, ., (2717,27‘(‘L —0—1)) and 2 (t) ==2arecot (t) +274L +1),L [}

By the associated non-orthogonal spectral measure ;) and } of the
Weyl function M. (z)=(B —m(2).1)" are given by

S0(3)=¢i(B)(1+¢, (B)") Eu(m(3))=

(1+27T(L +1)—20recot—(B)2)_lEB(_Cot(cj/z)) (59)

and
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S (I =" (B)E, (—cot(F2)) =2(1+B*) " E, (—cot(F2)) LB (4H) (60)
It follows from (59) that the measure ./ is periodic:
S(S+278) =S(J. S B (D).L ¢
Having in mind this fact one obtains that for any := the operator
2E., (272.274L +1))  js unitarily equivalent to the operator <., ((0.273) |
Example (5-2-9) [131]:
Let h=t’(i.) andlet be aclosed symmetric operatorin ' defined

by

__ 4 X om (s,) =W /(i
(of )(x) ==_=f (x).f Odom(s,) =w (i . 61)

={f ow (i .):f (0)=f (0) =0)
Obviously 4=0 . Setting

M (6)f =f'(0)—6F (0),1;(6)f == (0),f Ddom (&) =
w2 (i ,)oOi

We obtain the boundary triple ™ ={£.7:(8.m (8} | It is clear that the
extension  is non-negative if ¢= . The corresponding Weyl function is
mo(A) =(6—ivA)" . Itisregularin #i. if e~ | where the branch of 7 is

fixed by the condition +i=: . The Weyl function =l admits the following
integeral representation

mg(A) :(Q—i \/Z—)—l :;jﬁ\/(i_kgz)dt,ezo

and the corresponding spectral measure is given by a o=z (c+o) " ar .
Clearly ™l is holomorphic within (=9 such that me(—=<0)=(0.€")  The

inverse function #():(0.6") —(—==0) jsgivenby @(<)=—(<"-9".
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¢oloe’)  Weset 4=(—=0) and &=mo(a=(0.€") , Notice that
#(S) =2(s" -9 |
Let ~=t7.h.A=3.< and "T=HH.r.r}=0.rY where #=1 ,
function 0/ is of scalar-type, i.e., M (z)=mo(z)1, _ Further, let
B =8"Lt (#) | To the self-adjoint extension ' it corresponding the Weyl
function ™, (z)=(B —m.(2)1,)" .Let Z.l) be the unbounded non-
orthogonal spectral measure of the Weyl function () . It follows from (60)

>.(F=2(BZ —9BZE. (mo(F). Bo(L) =B =BE, (&), B (2 (62)

Let &=(x.0).x <0 _ Since me((x’o)):ﬁmﬁ)qﬁl% for = we get from (62)

Z((X’O)) =2(B; —6)BFE, @eﬁ/ﬁ)ﬂ,éﬂ %x <0 (63)

we note that 2*)7Hl forevery -« ,while * may be unbounded.

Further, starting with (50) we can explicitly calculate the non-orthogonal

| . C . I
spectral measure J° outside the gapA=(—,0) =§(-) hhs . Setting L

B

and F.(z2)  3m(M,(z)hh) we easily derive from (51) and the Fatous theorem

that
A2l | (x vio) =SB D) 0 nen (64)
Where 2(¥)=2(0x)).x =0 " grajght forward computation shows that

swp'(w)=(0=) By proposition (5-2-7) we have Eu(lo=))=0T =sms  Hence
& (A,) H(—==0].T =s.p.sc _ Sjnce < (A)=0.=9 we obtain from theorem (5-2-2)

that £. () o9 _ Therefore, the orthogonal spectral measure E-() of ' is
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absolutely continuous on (°) which yields that 1" is absolutely

continuous on [°°] .i.e., >;(9d=>.(9 for omB((0.=9) | Hence
_ Vsd (E, (¢) hh)
;((0’ ))_;_!-d_l!- (t@ 1) + &2
=f®(x,t)d (E, (t) h.h) x =0,hCH (65)
— ]
Where q’a(x’t):;zﬁr ko laretangi% x >0 Which yields
(66)

Z((o,x))h=_!¢6(x,t)dEB (t) h,x =0, h[H

Thus, formulas (62) and (65) together give the explicit form for the

unbounded non-orthogonal spectral measure }'" of the extension

Section (5-3): Inverse Spectral Problem for Direct Sum of Symmetric

Operator

We have [30,89,91,92]

Lemma (5-3-1) [133]:
be a symmetric operator in the Hilbert space * . Suppose that
a self-adjoint

Let
has a gap .Let ' be a closed subspace of * and
operator in * such that ' is arestriction of the adjoint ' of and
sm)us | Then
(67)

=M LG,

H,, :H;D(H)m(m)

For some symmetric operator * with gap ' in the Hilbert space ¢ .In

has a self-adjoint extension ‘ such that

particular
Ho=m,

Proof:

171



We have only to show that the there exists a symmetric operator

with gap  such that (66) holds. In fact since ' isagap of ' there exists a
self-adjoint operator * in * suchthat <c)'7=€ and ° is an extension
of ' . Then obviously #- & is a self-adjoint extension of ' and

satisfies H°=m,

Lemma (5-3-2) [133]:

Let ' be a symmetric operator in the Hilbert space * .Let ' be
closed subspace. ' and ' a self-adjoint operator in ‘' suchthat ' isa
restriction of * . Then Hu =Hiuwen =M HG,

For some symmetric operator ' in
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Proof:
Let r 7w(H) and 9.6 (M)  We have
(B, (1 +9), Podh=(r, Po b+ {H'g, P+ (Mg, b
(.11 P g} +{ .9, 3p
=(f+g,HM(f’/°F§)f’)

This * is a symmetric operator in the Hilbert space * . Let ftp(#.) | For

every - let P =l.w(M)P,
Since ' is a self-adjoint operator in the Hilbert space * it follows from
the spectral theorem that every - the operator ' is an orthogonal

projection in * onto the closed subspace *»] of

R(P,)CID(M), nih (68)
R(P,) CR(P,). n=¢ (69)
S b —p, (70)
P Mg =MP,g.g CM 0 T8 (71)

Thus we have

(P,H,f.g)=(H,f.g9)=(f .Mg)
=(P,f ,Mg)=(MP,f ,g)

For every 9¢C®(2) | In the second step we have used (67) and the facts that

“ is symmetric and ' arestriction of * . In the third step we have used
(70) and in the last step a gain (67).

Thus we have

P.H, f =MP,f, n[& (72)

Since by (71), (68) and (69)

(MP, f.MP, f) =(B,H,, f.B.H, ) =0 Kk ==n
and S..lIMP P =S |BH, | =R H, f|| <o
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The sequence %MIVZ P.f % converges in ' . Since ' is closed and by (69),

O¢

lim > P.f =P.f it follows that

P, f CD (M) (73)
and
MPB, f 2}]11;120 Zj:—N MP, f ZZP"HM f=B,H,f (74)

Hare again we have used (71), (69). By (72) and (73)

H,, =M G,

G, =H ,

D(Hy )1 Hy'

is a symmetric operator in the Hilbert ¢ since * is asymmetric operator

Proposition (5-3-3) [133]:
Let = be a symmetric operator in the separable Hilbert space
suppose that * hasagap ' .Let /. be a (finite or infinite) sequence in
[54]. Then there exists a self-adjoint extension ' of ' such that
JP(I%I J ={ A :nN,1=n=N}

and for every eigenvalue  of ' in ' the multiplicity of = equals the

number of times it occurs in the sequence (/.. if and only if ' is less than

or equal to the deficiency number of (/.. . In this case ' can be chosen such

that it has a pure point spectrum inside the gap
Proof:

First we shall do the "only-if-part" . Trivially the assertion of this part is
true provided the deficiency number of ' is finite. But then the "only-if-part"

follows from kreiu's theorem suppose now that ' is less that or equal to the
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deficiency number of ' . Then we can choose by induction an orthonarmal
system le)., such e CW(H —A).n¥, 1=n=N

Due to the well known fact that the dimension of ~(# -4 equal the

deficiency number of = for every regular point  of ' and in particular for

every -~ [107,126].

Let Hy, =Span{e, :n [3¥,1=n =N} and H, =H,, s M, =H,,

By construction {e},. is an orthonormal base of the Hilbert space

and for every ~=¥.'="=v g an eigenvector of * corresponding to the real
eigenvalue . Thus " can be and will be regarded as an operator in the
Hilbert space ' its closure ' is a self-adjoint operator in * has a pure

point spectrum < (M)=A:ntnNv.1=n=n~} and for every eigenvalue = of

the multiplicity of ~ equals the number of times it occurs in the sequence
(Al .+ is arestriction of ‘ since the adjoint of any operator closed. Thus

has a self-adjoint extension ' such that #=v _ij.e, suchthat ' has the

required properties.
Definition (5-3-4) [133]:

A symmetric operator ' is significantly deficient if and only if it has a

real regular point and P P(##N(H ~z)  For every regular point ~ of

Proposition (5-3-5) [133]:

(i) Let ' be a closed symmetric operator in the Hilbert space - . Let
beagapof * and °v .Let AP -B=F,,-H" 'and ' an

orthogonal projection in k(#)" such that the operator * belongs to

the trace class and let ' be the zero-operator in the Hilbert space
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r(1-p) then for every invertible self-adjoint operator ' in the

Or(s) &)
Hilbert space *(?) the operator f/‘tﬁpB (P2 o )5 oo " am 0 1S

invertible and the operator #—=#¢ js a self-adjoint extension of
such that #&.: <l
(i) There exists an orthogonal projection ' in the Hilbert space &(H)

such that the operator * belongs to the trace class and */?I is

infinite dimensional if and only if the operator - is significantly
deficient in the sense of the definition (5-3-4).
Corollary (5-3-6) [133]:
Let ' be a significantly deficienct symmetric operator and let ' be a
gap of ' . Then for every self-adjoint operator * in a separable Hilbert

space there exists a self-adjoint extension ' of ' such that

He, ; M,

Definition (5-3-7) [133]:
A symmetric operator ' is weakly significantly deficient if there exists

areal regular point =~ of * and areal number  which is not an eigenvalue

of the operator A=Pys.,(H#*v)" . Suchthat R(B(aA—A)=n(x#"—)  Where

B=P,,.,(#>v)"  We may assume that the operator ' is closed and -~ .

r(A-4)  is dense in the Hilbert space *# since ' is self-adjointand  is
not an eigenvalue of ' . Since ' is bounded and *(8/ is dense in R(H)
this implies that ®(8(2—4) isdensein =*(#)" .Thus we canreplace ' by

B(A=-4) in the consideration at the beginning and get that there exists an
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orthogonal projection ' in the Hilbert space *(#) such that dimr(p)=c |

And the operator #8(A-4) belongs to the trace class. Let ' be the zero

operator in ®(1-P) _ We have shown that . =Huum«» can be decomposed
as

H, =0 106G, (75)
for some continuously invertible operator * in ®(H)©r(P) such

L _0AD R(H]
G =ppr RIH) -

Let ' be any invertible self-adjoint operator in the Hilbert space *I?)
By the given considerations ' has an invertible self-adjoint extension
such that

[A—A BP OrH) &)
;O

(;_1 —A = = - O
EPB Q_/\DD(Q) R(P) (76)

The following simple lemma will play role in the investigation of the
absolutely continuous spectrum of the operator
Lemma (5-3-8) [133]:

Let ' be a bounded self-adjoint operator and ' a self-adjoint
operator such that k:kZa(k) belongs to the trace class for every bounded
interval = . Then

(ki +k,), =k TR
For some self-adjoint operator ' and ' such that *i e
Corollary (5-3-9) [133]:

Let * be a symmetric operator with gap ' in the complex Hilbert

space ' suppose that H=0H,

For some symmetric operator *..»=* with strictly positive deficiency

numbers.
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Then for every self-adjoint operator * in a separable Hilbert space there

exists a self-adjoint extension * of  such that

"o ; M.,
Proof:

It easily follows from the spectral theorem that M., : 0,

for suitabley chosen <~ rtii.m@ =0 dx—ae On ‘‘/»t*  Since ' can be

decomposed into infinitely sets the operator ' can be decomposed as

H=0H"
n=1 b

where for every - operator « is the orthogonal sum of two operators
with infinite deficiency numbers. For every -= there exists a self-adjoint

extension ' of # suchthat #%: <.

Then # 0#% is a self-adjoint extension of © and ®%=0#8%; 0Q, ; M.,

Proposition (5-3-10) [133]:

Let ' be a symmetric operator in some Hilbert space ' . Suppose that
the operator ' has some gap ' and its deficiency number is infinite. Let
be an open subset of ' . Then ' has a self-adjoint extension ' such that

a (@Y s=7,1

Corollary (5-3-11) [133]:

Let * be a symmetric operator in the Hilbert space ' . Suppose
has a gap ' and the deficiency number of ' is infinite. Let ' be anon-
empty open subset of ' . Then there exists self-adjoint extensions ' and
and © anon-empty compact subset ' of = with lebesque measure zero

such that ' and ' have a purely singular continuous spectrum in the gap
of

(@ s=s17 and a(HJ=c
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We shall combine studying the point singular continuous and absolutely
continuous spectra.
Theorem (5-3-12) [133]:
Let ' be a symmetric operator in the Hilbert space . Suppose that
hasagap ' and its deficiency number is infinite. Then for every open subset
of ' and every finite or infinite sequence {4}, in ' there exists a self-
adjoint extension ' of - with the following properties.

(i) (M s HA:n.n=nN} and for every eigenvalue  of ' in
the multiplicity of equals the number of times it occurs in the
sequence (4],

(i) <@ =51y

(iii) o (H4r 7=o0

Proof:
Let  beanypointin ' andif ~=- ,let 4=A forall r~=~.n=2~

Since for every regular point ~ of ° and in particular for *=» | the

dimension of ~(# -4 equals the deficiency number of * , we can choose
by induction an orthogonal system (<}.. such that e W (# —A).ntN  and

e, CN (H™=A), s =2n—ntw  agin the proof of proposition (5-3-3) we can

show that there exist self-adjoint operators ' and ' in the Hilbert space

H, :[ez”:” C¥,n SN] I—'|0 =[en:n I:I¥]
’

Respectively such that
e,, LN (M —A),n[¥.,n=N , eZHIIIN(M —/\l),nEIN

e. [N (M —4),] =2n —,n [ ¥

J

and ' and ' are restrictions of the adjoint * of ' .Obviously ' isalsoa

restriction of the operator ' and therefore, .. #. =,
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Where the operators * and " are defined by (66). Moreover the self-
adjoint operator ' has a pure point spectrum < (M)=A:n¥.n=N} and
for every eigenvalue  of ' the multiplicity of = equals the number of
times it occurs in the sequence (4. . By lemma (5-3-11) the operator *
can be decomposed as #+ =M =G, Where = isa symmetric operator in the
Hilbert space ' and = is alsoagap of ' . We have only to show that the
deficiency number of * is infinite. In fact, then corollary (5-3-18) yields that
there exists a self-adjoint operator * in * suchthat ‘ isan extension of

and

(i) a(G) I=I11 | &G I =& (G)l J =0

Then obviously the operator # = is a self-adjoint extension of

with the required spectral properties. By lemma (5-3-1) the operator * can

be decomposed as #: =M & Where @ is a symmetric operator in the

Hilbert space ' and ' isalsoagap of ' . Since the symmetric operator
has a gap it has a self-adjoint extension ' .Let #=wé | Since =4
we have #.=# _Since ' is a self-adjoint operatorin ' and &M)o7 it

follows from lemma (5-3-1) that

P
for some self-adjoint operator * in the Hilbert space * . Since
H,=M,=Gj=Ae,,  i==n—ntx thepoint inthegap ' of ' isan
eigenvalue of * with infinite multiplicity. Since obviously  is a self-
adjoint extension of * this implies, by Krein's theorem, i.e., that the

deficiency number of * is infinite.
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