
Chapter 4

Spectral Applications of Jacobic Matrices

We prove that a trace class of operators is continuous in the unit disc and give 

a prove of a result concerned to the commutator of two operators, with a prove 

of a result of a gap and a trace of a gab [71,72,81,113,117]. 

Section (4-1): Determinates and Jost Function Perturbation

We shall look at the spectral theory of Jacobi matrices that is infinite 

tridiagonal matrices, 
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With 0>ja  and Rb j ∈  we suppose that the entries of J  are bounded that is 

∞<+ nnn ba supsup  so  that  J  defines  a  bounded  self-adjoint  operator  on 

( ) { }( ),...2,122 LZL =+ .  Let  jδ  be  the  obvious  vector  in  ( )+ZL2 ,  that  is  with 

components jnδ  which are 1  if jn =  and 0 if jn ≠ .

The  spectral  measure  was  associated  to  J  is  one  given  by  the  spectral 

theorem for the vector 1δ  . That is the measure µ  defined by 

( ) ( ) ( )
∫ −

=−≡ −
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1,  

(2)

There is a one-to-one correspondence between bounded Jacobi matrices and 

unit  measures.  Applying  the  Gram-Schmidt  process  to  { }∞=0n
nx  one  gets 

orthonormal polynomials ( ) ...+= n
nn xkxp   with 0>nk  and 

( ) ( ) nmmn xdpxp δµ =∫  

(3)

These polynomials obey three-terms recurrence
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( ) ( ) ( ) ( )xpaxpbxpaxxp nnnnnnn 1111 −+++ ++=  

(4) 

Where  nn ba ,  are  the  Jacobi  matrix  coefficients  of  the  Jacobi  matrix  with 

spectral measure µ  ( and 01 ≡−p ) [23,43,85].

We made our choice to start numbering of J  at  1=n  so that we could 

have nz  for the free Jost function , (well known with ikez =  ) and arrange for 

the Jost function to be regular at 0=z .

An  alternate  way  of  recovering  J  from  µ  is  the  continued  fraction 

expansion for the function ( )zmµ  near infinity,

( ) ( )( )....

1
2
11 ++−−+−

=
bEabE

Emµ                                                           (5)

One is especially interested in J’s “close” to the free matrix  0J  with  1=na  

and 0=nb  that is 
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Lemma (4.1.1) [128]:

Let J  be a Jacobic matrix and µ  the corresponding spectral measure. 

The operator 0JJ −  is Hilbert-Schmidt that is 

( )∑ ∑ ∞<+− 2212 nn ba                                                                             (7)

If and only if µ  has the following four properties 

(i) (Blumenthal-Weyl  Griterion)  the  support  of  µ  is 

[ ] { } { } −

=
−+

=
+− N

jj

N

jj EE
11

2,2   where  N ±  are  each zero finite  or  infinite  and 

2...121 >>> ++ EE  and  2...121 −<<< −− EE  and  if  N ±  is  infinite,  then 

2±=±
∞→ jj ELim .

(ii) (Quasi-Szego  Condition)  ,Let  ( ) ( )dEEfEac =µ  where  acµ  is  the 

Lebesque absolutely continuous component of µ . Then 
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     ( )[ ] −∞>−∫
−
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(iii)  ( Lieb-Thirring Bound) .
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(iv) (Normalization) ( ) 1=∫ Edµ

It is natural to approximate the true perturbation by one of finite rank. We 

define nJ  as the semi-infinite matrix 
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That is nj  has 0=mb  for nm >  and 1=ma  for 1−>nm . 

Notice that 0JJ n −  has rank at most n . We write the nn×  matrix obtained by 

taking the first n  rows and columns of ( J  or nJ ) as FnJ ; . The nn×  matrix 

formed  from  0J  will  be  called  FnoJ ;; .  The  semi-infinite  matrices  ( )nJ  

obtained from J  by dropping the first n  rows and columns of J , that is 
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We need some facts about  0J  the free Jacobi matrix. Fax  z  with  1<z . 

Look for solutions of 

( )1
1 1 , 2n n nu u z z u n−

+ −+ = + ≥                                                                     (12)
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As sequences with out any conditions at infinite or  1=n  . The solutions of 

(12) a linear combination of the two “obvious” solutions u ±  given by 

( ) n
n zzu ±± =                                                                             

±u  is  2L  at  infinity  since  1<z .  The  linear  combination  that  obeys 

( ) 1
1 uzzuu

−+=  as required by matrix ending at zero is 

( ) ( ) nn
n zzzu −= −0                                                                                      (13)

The Wronskion of ( )0u  and +u is zz −−1 , we see that ( )( ) 1
0

−zEJ  has the matrix 

elements.

( ) ( )
( ) ( ) ( )( )zuzuzz mnmn

+−− −− ,max
0

,min

11  either  by  a  direct  calculation  or  standard 

Green’s function formula. We have thus proven that 

( )( ) ( ) [ ]nmnm

nm zzzzzEJ +−−−− −−−=−
111

0  

(14)

                   
( )

∑
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+−+−=
1,min
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21
nm

j

jnmz  

(15)

Where the second comes from 

( )( ) nnnnn zzzzzzz −=+++− −−−−− 1311 ...  by 

( )( ) ( ) nm

nm zmnzEJz
−+− ≤−⇒≤ 11

0 ,min1                                                (16)

And  that  while  the  operator  ( )( ) 1
0

−− zEJ  becomes  singular  as  1→z ,  the 

matrix elements do not; indeed they are polynomials in  z [80,25]. We need 

an additional fact about 0J . 

Proposition (4.1.2) [128]:

The characteristic polynomial of FnJ ;;0  is 

( )( ) ( ) ( ) ( )




=−−=− −+−− zEUzzzzJzE n

nn
Fn 2

1
det 111

;;0  

(17)
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Where ( ) ( )[ ] ( )θθθ sin1sincos += nU n  is the Chebyshev polynomial  of the second 

kind. In particular 

( )[ ]
( )[ ]
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;;0

;;0
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(18)

Proposition (4-1-3) [128]:

Let mT  be Chebushev polynomial ( of the first kind):

( ) ( )θθ mTm coscos =                                                                                 (19)

Then 
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In particular for m  fixed, once 1
2

1 −> mn  the trace is independent of n . 

Proof:

As noted above the characteristic  polynomial  of  FnJ ;;0  is  ( )det 2cos θ  

0; ;n FJ − =  ( ) [ ]sin 1 sinn θ θ +  . This implies that the eigenvalues of  FnJ ;;0  are 

given by 

( ) nk
n

k
E k

n ,...,1,
1
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                                                                   (21)
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The final sum is 22 +n  if m a multiple of is ( )12 +n  and 0  if it is not. Let pI  

denote the Schatten classes of operator with norm ( )p

rp
ATA = . In particular 
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1T  and 2T  are the trace class and Hilbert-Schmidt operators respectively. For 

each 1TA∈  one can define a complex-valued function ( )A+1det  , so that 

( ) ( )
1

exp1det AA ≤+  

(22)

And ( )aA +1det  is continuous.

( ) ( ) ( )1exp1det1det
111
++−≤+−+ BABABA  

(23)

We will also use the following properties:

( ) ( ) ( )ABABATBA ++=++⇒∈ 1det1det1det, 1  

(24)

( ) ( )BAABTBAAB +=+⇒∈ 1det1det, 1                                                      (25)

( )A+1  is  invertible  if  and  only  if   ( ) 01det ≠+A  

(26) 

( )zAz   analytic  ( )( )zA+⇒ 1det  analytic 

(27) 

If A  is finite rank and p  is a finite-dimensional self-adjoint projection

( ) ( )det 1 det 1p pPAP A A PAP= ⇒ + = +H H                                                  (28)

Where det pH  is the standard finite-dimensional determinate.

For ( ) 12 11, TeATA A ∈−+∈ −  , so one define 

( ) ( )( )AeAA −+=+ 1det1det 2  

(29)

Then 

( ) ( )2

22 exp1det AA ≤+  

(30)

 ( ) ( ) ( )( )2

22222 1exp1det1det ++−≤+−+ BABABA  

(31)

and, if 1TA∈
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( ) ( ) ( )ATreAA −+=+ 1det1det 2  

(32)

or 

( ) ( ) ( )ATreAA +=+ 1det1det 2  

(33)

To estimate the pT  norms we use 

Lemma (4-1-4) [128]:

If A  is a matrix and p
.  the Schatten pT  norm, then 

(i)
2

,

2

2 ∑=
mn

nmaA  

(34)

(ii) ∑=
mn

nmaA
,

1  

(35)

(iii) For  any  j  and  p   
p

p
n

p

jnn Aa ≤∑ +,  

(36)

Theorem (4-1-5) [128]:

Let ( )1,,1max 1 −−= − nnnn abaC . For any [ )∞∈,1p .
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Proof:

The right side is immediate Holder’s inequality , for trace ideals. The 

left most inequality follows from 
1 1

2 2J C Cδ = U  and 

p

n

p
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n abC
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12 
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

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

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
 ∑∑∑ .

With  these  preliminaries  out  of  the  way  we  can  begin  discussing  the 

perterbution  determinate  L  .  For  any  J  with  1TJ ∈δ  (  By  (37)  this  is 

equivalent to ∑∑ ∞<+− nn ba 1 ).

( ) ( ) ( )( )[ ]1
0det; −−−= zEJzEJJzL                                                             (38)
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For all 1<z . Since 

( )( ) ( )( ) 1
0

1
0 1 −− −+=−− zEJJEJEJ δ                                                        (39)

The determinant in (39) is of the form A+1  with 1TA∈ . 

Theorem (4-1-6) [128]:

Suppose 1TJ ∈δ .

(i) ( )JzL ;  is analytic in { }1<≡ zzD . 

(ii) ( )JzL ;  has  a  zero  in  D  only  at  points  jz  where  ( )jzE  is  an 

eigenvalue of  J ,  and it  has zero at all  such points.  All zero are 

simple.

(iii) If  J  is  finite  range then  ( )JzL ;  is  a  polynomial  and so has  an 

analytic continuation to all of C .

Proof:

(i) follows from (28) 

(ii) If  ( )00 zEE =  is  not  an  eigenvalue  of  J ,  then  ( )JE δ∉0  since 

[ ]2,2\: −→ CDE  and  ( ) [ ]2,2−=Jessδ .  Thus  ( ) ( )000 EJEJ −−  has  an 

inverse (namely ( ) ( )000 EJEJ −− , and so by (27), ( ) 0; ≠JzL . Finally, 

if  ( )0zE  is  an  eigenvalue  of  J  are  simple  by  a  Wronskian  a 

requirement,  Simon.  That  L  has  a  simple  zero  under  these 

circumstances  comes  from the  following  [103.104].  If  p  is  the 

project on to the eigenvector at ( )00 zEE = , then ( ) ( )pEJ −− − 11  has a 

removable singularity at 0E . Define 

   ( ) ( ) ( ) ppEJEC +−−= − 11                                                                     (40)

So 

( ) ( ) ( )PEEpECEJ −+−=− 01                                                                (41)

Define 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( )
classtrace

EJCPEEP

ECEJEJC

ECEJED

+≡
−−+−≡

−+−≡
−≡

1

1 0

0

δ
δ

                                                             (42)

Moreover 

( ) ( ) ( )[ ] ( ) ( )[ ]( )
( ) ( )[ ] ( ) 1
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1
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1

1
−

−

−−+−−+

=−−+−−=−−

EJPEEPEJ

EJPEEPEJEJEJED

Thus by (25) first and then (26), 

 
( )( )( ) ( ) ( )[ ]( )( )

( )( )
( )zEE

PEEp

EJPEEPEJzED

−=
−+−=

−−+−−+= −

0

0

1
000

1det

1detdet

Where  we  used (29)  in  the  last  step.  Since  ( )JzL ;  has  a  zero  at  0z  and 

( ) ( ) 







−−=−

0
00

1
1

zz
zzzEE  has a simple zero, ( )JzL ;  has a simple zero.

(iii) Suppose  Jδ  has range  N  that  is  { }01max 1 >−+= −nn abnN  and let 

( )NP  be  the  projection  on  to  the  span  of  { }N

jj 1=
δ .  As  ( ) JJP N δδ = , 

( ) ( ) ( ) ( ) 1
0

1
0

−− −=− EJJPPEJJ NN δδ .  By  (26) 

( ) ( ) ( ) ( )( )NN PEJJPJzL 1
01det; −−+= δ

Thus by (16), ( )JzL ,  is a polynomial if Jδ  is finite range.

Lemma (4-1-7) [128]:

Let C  be diagonal positive trace class matrix. For 1<z , define 

( ) ( )( ) 2

1
1

0
2

1

CzEJCzA −−=                                                                        (43)

Then, as Hilbert-Schmidt operator-valued function ( )zA  extends continuously 

to { }1,1\ −D .

If ∞<∑
n

nnC                                                                                                   (44)

It has a Hilbert-Schmidt continuation to D .
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Proof:

Let ( )zAnm  be the matrix elements of  ( )zA . It follows from 1<z  and (14), 

(15) that 

( ) 112

1

2

1

112
−− +−≤ zzCCzA mnnm  

(45)

( ) ( ) 2

1

2

1

,min mnnm CCnmzA ≤  

(46)

and each ( )zA mn,  has a continuous extension to  D . It follows from (46) the 

dominated convergence theorem and 

( )
2

,

2121 




= ∑∑

n
n

mn
mn CCC

That so long as  z  stays a  way from  ( ){ }
mnmn zA

,,,1± ,  is  continuous in the 

space ( ) ( )( )∞×∞ ,1,12L  so ( )zA  is Hilbert-Schmidt and continuous on { }1,1\ −D . 

Moreover  nn Cα <∞∑ ,  and  ( ) ∑ ∑∑ 




=≤









mn n
nmn

mn
mn nCCmnCCCnm

2

,

2

1

2

1

,min  imply 

that ( )zA  is Hilbert-Schmidt on D  if (45) holds.

Lemma (4-1-8) [5]:

Let Jδ  be trace class. Then 

( ) ( ) ( )( )( )1
0

−−= zEJJTrzt δ                                                                      (47)

Has a continuous in { }1,1\ −D . If 

1

1n n
n

n a b
∞

=

 − + <∞ ∑

holds, ( )zt  can be continued to D .

Proof:
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( ) ( ) ( ) ( )ztztztzt 321 ++=  where  ( ) ( )( ) 1
01

−−=∑ nnn zEJbzt  ,  ( ) ( )2 1nt z a= −∑  

( )( ) 1

0 1,n n
J E z

−

+
−

         ( ) ( ) ( )( ) 1

1,03 1 −
+−−=∑ nnn zEJazt

Since  by  (15),  (17)  ( )( ) 111
0 11

−−− +−≤− zzzzEJ nm
( )mn,min≤ .  The  result  is 

imm-ediate.

Theorem (4-1-9) [128]:

If Jδ  is trace class. ( )JzL ;  can be extended to a continuous function on 

{ }1,1\ −D  with 

( ) [ ]{ }222

11
11exp;

−− +−+≤ zzJJCJzL δδ  

(48) 

For  universal  constant  C .  If  
1

1n n
n

n a b
∞

=

 − + <∞ ∑  holds,  and  C
~  can  be 

extended to all of D  with 

( ) [ ]
















 +−+≤ ∑

∞

=

2

1

11
~

exp;
n

nn banCJzL  

(49)

For a universal constant C
~ . 

Lemma (4-1-10) [128]:

Let C  be a positive diagonal trace class operator.

Then  ( ) ( )( ) 01lim
1

2

1
1

0
2

1

,1
=−− −

→
CxEJCx

realxx  

(50)

Proof:

For ( ) 2,0 −<< xEx  and ( ) 00 >− xEJ , while for ( ) 2,0 >> xEx  so ( ) 00 <− xEJ . It 

follows that 
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( )( ) ( )( )

( )( )∑ −

−−

−≤







−=−

n
nnn xEJC

CxEJCTrCxEJC

1
0

2

1
1

0
2

1

1

2

1
1

0
2

1

                                        (51)

By (15) ( ) ( )( ) 01 1
0 =−− −

nnxEJx  and by (16) for each fixed n , 

( ) ( )( ) 01lim 1
0

,1
=−− −

→ nnrealxx
xEJx

The dominated convergence theorem proves (51).

Theorem (4-1-11) [128]:

( ) ( ) 0;log1lim
,1

≤−
→

JxLxSup
realxx  

(52)

Proof:

Use 
1 1

2 2J C Cδ = U  and (25) to write

( ) ( )( ) 





−+= − 2

1
1

0
2

1

1det; CxEJUCJxL  and then (23) and (37) to obtain 

( ) ( )( ) ( )( )
1 1 1 1

1 1
2 2 2 2

0 0

1 1

log ; 3L x J UC J E x C C J E x C
− −

≤ − ≤ −

The  result  now  follows  from  the  lemma  (4-1-10).  We  find  the  Taylor 

coefficients for ( )JzL ;  at 0=z .

Theorem (4-1-12) [128]:

If Jδ  is trace class, then for each ( ) ( )22, 0JTJTn nn −  is trace class. Moreover, 

near 0=z

( )[ ] ( ) n

n
n zJCJzLLog ∑

∞

=
=

1

;  

(53)

Where ( ) 












−





−= 02

1

2

12
JTJTTr

n
JC nnn                                                         (54)

In particular ( ) ( ) ∑
∞

=

−=−−=
1

01
m

mbJJTrJC                                                         (55)

( ) ( ) ( )[ ]∑
∞

=

−+−=−−=
1

222
0

2
2 12

2

1

2

1

m
mm abJJTrJC                                           (56)
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Proof:

To  prove  ( ) ( )22 0JTJT nn −  is  trace  class,  we  need  only  show  that 

jmj

j

mmm JJJJ −−

=

−∑=− 1

1

1
0 δ  is trace class and that’s obvious. Let FnJ ;

~δ  be FnJ ;δ  

extended to ( )+ZL2  by setting it equal to zero matrix on ( )njL ≥2 . Let nJ ;0

~  be 

0J  with  1+na  set equal to zero. Then  ( ) ( ) 1
0

1

;0;

~~ −−
−→− EJJEJJ nFn δδ . In trace 

norm, this means that 

( )
( ) ( )JzL
zEJ

zEJ

Fn

Fn ;det
;,0

; →





−
−

                                                                    (57)

The convergence is uniform on a small circle at  0=z  so the Taylor series 

coefficient converges imply (54) and (55).

Section (4-2): Data and Spectral

Theorem (4-2-1) [128]:

Suppose  ( )JzM ;  is meromorphic in a neighborhood of  D  [25]. Then 

J  and ( )1J  have finitely many eigenvalues out [ ]2,2−  and if

( ) ( ) ( )∑∫
=

−





=

N

j
ji
Jd

JeM
JC

1

2

0

0 log
;Im

sin
log

4

1 βθθ
π

π

θ  

(58)

With jβ , then

( ) ( ) ( )( )∑
∞

=

+−=
1

1
010

n

JCaJC  

(59)

In particular, if Jδ  is finite rank, then the 0C  sum rule holds:

( ) ( )∑
∞

=

−=
1

0 log
n

naJC  

(60)

Proof:
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The eigenvalues, jE  of J  out side [ ]2,2−  are precisely the poles of ( )JEm ;  

and  so  the  poles  of  ( )JzM ;  under  1−+= jjj zzE   By 

( ) ( ) ( )( )1 11 2
1 1, ,M z J z z b a M z J

− −− =− + + +

the poles of ( )( )1; JzM  are exactly the zeros of ( )JzM ; . Thus ( ){ }1−Jjβ are the 

poles of ( )JzM ;  and ( )( ){ }11 −
Jjβ  are its zeros. Since ( ) 1;0 =Jg  by equation (5), 

and ( ) ( )
2

10

1
log 0 log log

2

m
i

j
j

f f e d z
π

θ θ
π =

= +∑∫  and  
1 1 1

log log log
m m m

j j j
j j j

z z P
= = =

→ −∑ ∑ ∑  

becomes  

( )( ) ( )( ) ( )( )( )11
log ; log log

2
i

j j
j j

g e J d J Jθ θ β β
π

=− +∑ ∑∫

this formula implies (59). By

( ) ( )( )1 12
1 1, cos ,i iM e J b a M e Jθ θθ

−
− =− + +

if  ( )JzM ;  is meromorphic in a neighborhood of  D , so is  ( )( )1; JzM . So we 

can iterate (59). The free function is 

( ) zJzM =0;  

(61)

By equation (15) with 1==nm , so ( ) 000 =JC  and thus if Jδ  is finite rank the 

remainder is zero after finitely many steps.

To get the higher-order sum rules we need to compute the power series for 

( )( )Jzg ;log  about 0=z . For low-order, we can do this by hand. Indeed by (1) 

and (5) for ( )1J , 

( ) ( ) ( )[ ]( )
( ) ( )( )
( )( ) ( )322

1
2
11

1322
11

122
11

1

11

11

;

zOzbazb

zOzazb

zOzabzzzJzg

++−++=

+−−−=

+−−+=
−

−−

So since ( ) ( )32

2

1
1log wOwww +−=+  .
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( )( ) ( )322
1

2
11 1

2

1
;log zOzabzbJzg +





 −++=                                                 (62)

 Therefore by mimicking the proof  of theorem (4-2-1) we have 

Lemma (4-2-2)[128]:

Suppose ( )JzM ;  is meromorphic in a neighborhood of D . Let

( ) ( ) ( ) ( ) ( )
2

0

1 sin 1
log cos

2

n n

n j ji
j

C J n d J J
nInM e

π

θ

θ θ θ β β
π

−   
 ÷=− + −  ÷   

∑∫  

(63)

Then  ( ) ( )( )1
111 JCbJC +=                                                                                  (64)

( ) ( ) ( )( )



 +−+= 1

2
2
1

2
12 1

2

1
JCabJC                                                               (65)

If 

( ) ( ) ( )( )
2

2
2

0

1 sin
log sin

2 ji
j

P J d F e J
ImM e

π

θ

θ θ θ
π

 
 ÷= +
 ÷ 

∑∫                               (66)

With F  given by 

( ) ( ) 42 21
log

4
F e β β β−= − −

then writing ( ) ( )aaaG log212 −−= .

( ) ( ) ( )( )1
21

2
12 2

1

4

1
JPaGbJP ++=  

(67)

In particular, if Jδ  is finite rank, we have the sum rules 1C , 2C , 2P  . To go 

to order large than two we expand ( )( )Jzg :log  systematically as follows:

We begin by noting that ( Cramer’s rule)

( ) ( )JzgJzg n
n

;lim;
∞→

=  

(68)

Where 
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( )
( )( )

( )Fn

Fn
n Jzz

Jzzz
Jzg

;
1

1
;1

11

det

det
;

−+
−+

= −
−

−−

 

(69)

( )( )
( )( )Fn

Fn

JzE

JzE

z ;1
1

;1
1

2 1det

1det

1

1

−
−

−
−

−
−

+
=  

(70)

Where we used  ( )( ) 21 zzEz +=  and the fact that because the numerator is a 

matrix of order one less than the denominator we get an extra factor of ( )zE . 

Writing ( )xFj  for ( ) ( )[ ]20
2

xTT
j jj − , 

( ) ( ) ( )( )( ) ( )( )[ ]∑
∞

=
− −++−=

1
;

1
;1

21log:log
j

FnjFnj
j

n JFTrJFTrzzJzg  

(71)

      ( ) ( ) ( )∑∑
∞

=
−

∞

=



















−










+−−−−=

1

1
;1;

1

2
2

2

1

2

12
11log

j
FnjFnj

j

j

j
j

JTTrJTTr
j

z

j

z
z  

(72)

Where we picked in the first sum because ;n FJ  has dimension one greater than 

( )1
;1 FnJ −  so  the  ( )0jT  terms  in  ( )Fnj JF ,  and  ( )1

;1 FnJ −  contribute  differently. 

Notice 

( ) ( )2

1

2

1log1 z
j

z j

j

j

+−=−∑
∞

=

So the first two terms and ( )Jzgn ;  converges to ( )Jzg ;  in a neighborhood of 

0=z  it’s Taylor coefficients converge. Thus
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Proposition (4-2-3) [128]:

( )( ) ( )



















−










= −∞→

1
;1;

1

2

1

2

1
lim, FnFn
n

j JTjTrJTjTrJJα  

(73)

exists and for z  small 

( ) ( )( )1

1

,
2

;log JJ
j

z
Jzg j

j

j

α∑
∞

=

=  

(74)

Theorem (4-2-4) [128]:

Suppose ( )JzM ;  is meromorphic in a neighborhood of D . Let ( )JCn  be given 

by ( ) ( )aaaG log212 −−= and α  by ( ) ( ) 42 21
log

4
F e β β β−= − − .Then

( ) ( )( ) ( )( )11,
2

JCJJ
n

JC nnn += α                                                                    (75)

In particular, if Jδ  is finite rank, we have the sum rule nC  of (63)

Proof:

The only remaining point is why if  Jδ  finite rank, we have recovered the 

same sum rule is in (63). Iterating (75) when J  has rank in gives 

( ) ( ) ( )( ) 




















−





== −∞→=

−∑ FmLFL
L

m

j

jJ
nn JTnJTnTr

n
JJ

n
JC ;,0;

1

1

2

1

2

12
lim,

2 α            (76)

While (63) reads 

( ) 




















−













=













−





= −∞→ FmLuFLu

L
uun JTTrJTTr

n
JTJTTr

n
JC ;,0;0 2

1

2

12
lim

2

1

2

12
       (77)

That (76) and (77) are the same is a consequence of proposition (4-1-3).

In the sum rules  0C  and  2P  of most interest to us there appear two terms 

involving integrals of logarithms:

( ) ( ) θθ
π

π

θ d
JeM

Jz
i∫ 





=

2

0 ,Im

sin
log

4

1
                                                              (78)

and 
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( ) ( ) θθθ
π

π

θ d
JeM

JQ
i

sin
,Im

sin
log

2

1 2

0
∫ 




=                                                        (79)

One  should  think  of  M  as  related  to  the  original  spectral  measure  on 

( ) [ ]2,2−⊃Jδ  as 

( ) ( )θµπθ cos2Im
dE

d
eM aci =                                                                       (80)

In which case (78), (79) can be rewritten

( ) ∫
− −









 −=
2

2
2

2

42

4
log

2

1

E

dE

dEd

E
Jz

acµππ                                                        (81)

and 

( ) ∫
−

−








 −=
2

2

2
2

4
2

4
log

4

1
dEE

dEd

E
JQ

acµππ  

(82)

Our main equation is to view z  and Q  as function prove if µµ →n  weakly, 

then ( )nz µ  (resp. ( )nQ µ ) obeys 

( ) ( ) ( ) ( )liminf ; liminfn nz z Q Qµ µ µ µ≤ ≤                                                (83)

That is, that  z  and  Q  are weakly lower semi continuous. This will let us 

prove sum rule-type inequalities in great generality.

Theorem (4-2-5) [128]:

If 0J J−  is compact and 

(i)
1 1

2 22 2j j
j j

E E+ −− + − <∞∑ ∑                                                         (84) 

(ii) 1limsup ,..., 0NN a a→∞ >  , 

then Szego condition holds.

Is equivalent to the 

Theorem (4-2-6) [128]:

Let J  be a Jacobic matrix with ( ) [ ]2, 2ess Jδ ⊂ −  and  

( )
1

2
k

k

e J < ∞∑                                                                                        (85)
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( )
1

lim sup log
N

jN
j

a
→∞ =

>−∞∑                                                                           (86)

Then 

(i) ( ) [ ]2,2ess Jδ = −

(ii) The Szego condition holds that is ( )Z J <∞  with z .

(iii) ( ) [ ]2,2ac Jδ = − ; indeed, the essential support of acδ  is [ ]2,2− .

Proof:

Pick 1 2, ,....N N  (tending to ∞ ) so that 

( )
1

inf log
LN

j
j

a
=

 
> −∞ ÷

 
∑                                                                             (87)

And let LNJ  be given by (11). By theorem (4-1-24) 

( ) ( ) ( )( )
1

log log
L

L L

N

N j k N
j

Z J a Jβ
=

≤− +∑ ∑                                                  (88)

           ( )( ) ( )( )1
1

inf log log 2log 2
L

L

N

k NL
j

J Jβ β
=

≤− + + +∑ ∑

Where  in   ( ) 2 1 1
,

2 2n n nC A B Tr T A T B
n

    =− − ÷  ÷     
and  the  fact  at  β%  solving 

( ) 1
1 1e J β β−+ = +% %  ( )1 1

1 1. .1i e β β β β− −+ + = +% %  has  ( )1 2Jβ β≤ +% .  For later purposes 

we note that if ( ) ( ) 1 0n nb J a J+ − → . Now use (88) to see that 

( ) ( )liminf
LNZ J Z J≤ <∞

This proves (ii). But (ii) implies 0acd

dE

µ >  a.e . On [ ]2, 2E ∈ − , that is  [ ]2, 2−  is 

the essential support of acµ . That proves (iii). (i) is then immediate.

Theorem (4-2-7) [128]:

If 0J J−  is in trace class, that is 

1 1n n
n n

a b− + − <∞∑ ∑                                                                           (89)

Then the Szego condition holds.
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Proof:

The prove of Szego condition holds under the slightly stronger hypothesis 

( ) ( ) ∞<+−∑ ∑
n n

nn bnan log1log .

We  need  only  check  that  0J J−  trace  class  implies  (85)  and  (86).  The 

finiteness of (85) follows from abound of Hundertmark–Simon,

( ) ( )
1

24 2 1k k n n
n

e J e J b a + ≤ + − ∑ ∑

Where ( ) 2ke J E±= −  so ( ) 2
4 4e e E±+ = − .

Condition (86) is immediate for  as is  well-known  0ja >  and  ( )1ja − <∞∑  

implies jaΠ  is absolutely convergent that is ( )log ja <∞∑  .

Theorem (4-2-8) [128]:

If J  is a Jacobi matrix with 1na ≡  and ( )
1

2
nn

e J <∞∑  then ( ) [ ]2, 2ac Jδ = −

.

Is equivalent to the

Corollary (4-2-9) [128]:

A discrete half-line Schrodinger operator (i.e., 1na ≡  ) with ( ) [ ]2, 2ess Jδ ⊂ −  

and ( )
1

2
ne J <∞∑  has [ ]2,2acδ = −

Lemma (4-2-10) [128]:

If ( ) [ ]2, 2Jδ ⊂ −  and 

(i) ( )
1

limsup log
N

N n
n

a
=

>−∞∑  then the Szego condition holds. If  ( ) [ ]2, 2Jδ ⊂ −  

and either (i) or the Szego condition holds , then

(ii) ( ) 2 2

1 1

1n n
n n

a b
∞ ∞

= =

− + <∞∑ ∑ ,

(iii)
1

lim
N

n
N

n

b
→ ∞ =

∑  exists ( and is finite).
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In particular if ( ) [ ]2,2Jδ ⊂ − , then (i) implies (ii)-(iv). Next, we deduce some 

additional aspects of lemma.

Corollary (4-2-11) [128]:

If ( ) [ ]2,2ess Jδ ⊂ −  and (85), (86) holds, then 0 2J J τ− ∈ , that is 

( )22 1n nb a+ − <∞∑ ∑                                                                             (90)

Proof (4-2-12) [128]:

(90) holds if  ( )
3

2
kk

e J <∞∑  and  ( )Q J  (given by (24)) is finite. By (85) 

and ( ) ( ) ( )
3 1

2 2
1k ke J e J e J≤ , we have that ( )

3

2
ke J <∞∑ . 

Moreover, ( )Z J <∞  (i.e., theorem (4-2-6) implies ( )Q J <∞ .

For in any event Im .M dθ <∞∫  implies 

Thus 

( )

( )

2
2

0

2
2

0

sin
log sin

Im

sin
log sin

Im

d
M

d
M

Q J

π

π

θ θ θ

θ θ θ

−

+

  < ∞ ÷ 

 ⇒ < ∞ ÷ 
⇒ < ∞

∫

∫ .

We will  start  with  ( )1na −∑ .  Because  ( ) 2
1na − <∞∑ ,  it  is  easy to  see  that 

( )1na −∑  is conditionally convergent it and only if ( )log na∑  is conditionally 

convergent. By (88) and the fact that 0J J−  is compact, we have:

Proposition (4-2-13) [128]:

If (86) holds and ( ) [ ]2, 2Jδ ⊂ − , that is no eigenvalues out side [ ]2, 2− , then 

( ) ( )
1

limsup log
N

j
j

Z J a
=

 
≤ −  

 
∑                                                                    (91)

We are heading towards a proof that 
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( ) ( )
1

limsup log
N

j
j

Z J a
=

 
≥ −  

 
∑                                                                    (92)

From which it follows that the limit exists and equals ( )Z J .

Lemma (4-2-14) [128]:

If ( ) [ ]2,2Jδ ⊂ − , then ( )1log ;z M z J−    lie in every ( )pH D  space p <∞ . In 

particular ( )1 ;Z M z J−  is a Nevanlinna function with no singular inner part 

Proposition (4-2-15) [128]:

Let  ( ) [ ]2, 2Jδ ⊂ − . Suppose  ( )Z J <∞ . Let  0C  by given by (61) and (66) 

(where the ( )Jβ  terms are absent). Sum rules in particular .

( ) ( ) ( ) ( )1

1logZ J a Z J=− +                                                                        (93)

( ) ( ) ( )1

1 1 1C J b C J= +                                                                                (94)

Theorem (4-2-16) [128]:

If J  is such that ( )Z J <∞  and ( ) [ ]2, 2Jδ ⊂ − , then 

(i) ( )
1

lim log
N

jN
j

a
→∞ =

∑  exists.

(ii) The limit in (i) is ( )Z J− .

(iii) ( ) ( ) ( )( )1
lim 0
n

Z J Z J
→∞

= −                                                              (95)

Proof:

By (93) ( ) ( ) ( )( )
1

log
n

n
j

j

Z J a Z J
=

+ =∑                                                                  (96)

Since ( ) 00 2 , n jj
J J L µ µ− ∈ →  weakly

( )( )limit inf 0nZ J ≥ , or by (96)

( ) ( )
1

limit inf log
n

j
j

a Z J
=

 
≥ − 

 
∑                                                                  (97)

But (87) says 
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( ) ( )
1

limit sup log
n

j
j

a Z J
=

 
≤ − 

 
∑

Thus the limit exists and equal ( )z J , proving (i) and (ii).

Moreover, by (96) (i) and (ii) imply (iii).

Lemma (4-2-17) [128]:

Let d µ  be a probability measure and suppose 0nf ≥ , 1nf dµ ≤∫ and 

( )lim log 0n
n

f dµ
→∞

=∫                                                                                  (98)

Then 

( )log 1 0n nf d f dµ µ+ − →∫ ∫                                                                 (99)

Proof:

Let ( ) ( )log 1H y y y=− − +                                                                              (100)

Then 

(i) ( ) 0H y ≥  for all y .

(ii) ( )1inf 0y H yε− ≥ >

(iii) ( ) 1

2
H y y≥  if 8> .

(i) is concavity of  ( )log y , (ii) is strict concavity, and 

(ii) holds  because  
1

log 1
2

y y− − +  is  monotone on  ( )2,∞  and  0>  at 

8y =  since ( )log 8  is slightly more than 2 .

Since ( )1 0nf dµ− ≤∫ ,  (i) implies that 

  ( ) ( )1 1nf d xµ− →∫                                                                                   (101)

and

( )( ) ( )lim 0n
n

H f x d xµ
→∞

→∫                                                                      (102)

Since 0H ≥  and the above imply 1nf →  in measure.

( ){ }( )1 0nx f xµ ε− > →                                                                      (103)
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By (i), (iii), and (102)

( )
( ) 8

0
n

n

f x

f x dµ
>

→∫                                                                              (104)

Now (103), (104) imply that 

( ) 1 0nf x dµ− →∫

And this together with (102) implies ( )log 0nf dµ=∫ .

Proposition (4-2-18) [128]:

Suppose ( )Z J <∞  and ( ) [ ]2, 2Jδ ⊂ − . Then 

( )( )
sin

lim log 0
Im , nin

d
M e J

π

θ
π

θ θ
→∞

−

 
 ÷ =
 ÷
 

∫                                                          (105)

Proof:

By (95) the result is true it .  is dropped. Thus it suffices to show 

( )( )
sin

lim log 0
Im , nin

d
M e J

π

θ
π

θ θ−→∞
−

 
 ÷ =
 ÷
 

∫

Or equivalently 

( )( )Im ,
lim log 0

sin

ni

n

M e J
d

θπ

π

θ
θ+→∞

−

 
 ÷ =
 ÷
 

∫                                                          (106)

Now, let ( ) 2
0

1
sind dµ θ θ θ

π
=  and ( ) ( ) ( )( )1

sin Im , ni
nf M e Jθθ θ −= .

By (102) 

( ) 0 1nf d
π

π

θ µ
−

≤∫                                                                                     (107)

corollary (4-2-11), which implies ( ) 2

0
2

0nJ J− → , ( )( ) ( )0log 0nf dθ µ θ →∫ , so by 

lemma (4-2-16), we control log  and so log + ;

That is  
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( )( ) 2
Im ,

lim log sin 0
sin

ni

n

M e J
d

θπ

π

θ θ
θ+→∞

−

 
 ÷ =
 ÷
 

∫                                                  (108)

Thus, to prove (106) we need only prove

 
( )( )

0

Im ,
lim limsup log 0

sin

ni

n

or

M e J
d

θ

ε
θ ε

θ ε

θ
θ+→ →∞

<
Π− <

 
 ÷ =
 ÷
 

∫  

(109)

To do this use 

With ( )( )sin Im , nia M e Jθθ=  and 2sinb θ= . The contribution of ( )log b−  in (108) 

is  integrable  and  n -independent,  and  so  goes  to  zero  as  0ε → .  The 

contribution of the 
1

22a  term is, by the Schwartz inequality bounded by 

( ) ( ) ( )
1

21

2
04 4 nf d

π

π

ε θ µ θ
−

 
 ÷
 

∫

Also goes to zero as 0ε → . Thus (108) is proven 

Corollary (4-2-19) [128]:

If  Wδ  is  finite  rank,  then  ( ) ( )WzLz ;1 2−  is  a  polynomial  and  in 

particular, ( )WzL ,  is a rational function.

Theorem (4-2-20) [128]:

If Wδ  is finite rank, then 

( ) ( )
( )

∫ ∑
=

=
π

θ βθ
π

2

0 1
0 log;log

2

1
:

WN

j
j

i WdWeC  

(110)

( ) ( ) [ ]( )

∑∫
=

−











−





−−=

WN

j
nn

n
j

n
j

i WTWTTr
nn

nWeLC
1

0

2

0

1 2

1

2

121
cos;log

1
: ββθ
π

π
θ

for 1≥ .

127

( ) ( ) ( )

( )

1

2

1

2

log log log 2log log

2 log

a
a b a b

b

a b

+ + − + −

−

   ≤ + = + ÷ ÷   

≤ +



The final element of our proof is an inequality for  ( )WeL i ;θ  that depends on 

what a physicist would call conservation of probability.

Proposition (4-2-21) [128]:

Let Wδ  be trace class. Then for all 0=θ , π

( ) j
j

i aWeL
∞

−∞=
Π≥;θ  

(111)
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Proof:

As above we can suppose that Wδ  is finite range. Choose R  so that all 

non zero matrix elements of Wδ  have indices lying with in ( )RR,− . By (111), 

is equivalent to

1≥Lα                                                                                              

Where Lα  is given by 

( )lim ; 1n
nn

z u z w− +

→∞
=                                                                       (112)

Since ( )Wzun ;+  is real for z  real we have 

( ) ( )WzuWzu nn ;; ++ = .

Thus for θiez = , Π≠,0θ  and Rn −< ,

( ) ( ) ( ) θθθθθ βα ini
L

ini
L

i
n eeeeWeu −+ +=;

( ) ( ) ( ) θθθθθ βα ini
L

ini
L

i
n eeeeWeu +−−+ +=;

Computing the Wronskian of the left-hand sides for Rn > , where n
n zu =+  and 

then the Wronskian of the right-hand sides for Rn −< , we find 

( ) ( )[ ]22
sinsin LLii βαθθ −=

Or  since  πθ ,0≠ ,  22
1 LL βα ++  

(113)

Form which ( ) ( )( )1 12
1 1, 2cos ,i iM e J b a M e Jθ θθ

−
− =− + +   is obvious.

Theorem (4-2-22) [128]

Let  W  be  a  whole-line  operator  with  1≡na  and  ( ) [ ]2,2−⊂Wδ .  Then 

0WW = , that is, 0≡nb . The proof works if ( ) 0logsuplim ≥







∑

−=∞→
∞→

m

nj
j

n
a

m

Proof:

Let 

( )( )∫ =
∞→

π
θ θ

π

2

0

0;log
2

1
lim dWe ni

n  

(114)
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Since 1≡na , (110) implies ( )( ) 0;log ≥ni WeL θ , and so (113) implies 

( ) ( )( ) 0,log2cos
2

1
lim

2

0

=∫∞→
θθ

π

π
θ dWeL ni

n  

(115)

By  ( ) ( )
1

log ; n
n

n

L z w C w Z
∞

=

=∑  , 2C ,  1ma = , we see 

∑
<∞→

=
nj

j
n

b 0lim 2

Which implies 0b = .

Commutation of Certain Operators and Pertaining Estimates

Section (4-3): 

Let { }ka a= , 0>ka , Rbk ∈  and 

( )















==

..0

.

0

0,1 10

00

ba

ab

JJ                                                                        (116)

Be a Jacobi matrix . The free ( or chebyshev) Jacobi matrix is given by 

( )















==

..0

.01

010

0,1 0JJ

The scalar spectral measure ( )Jδδ=  of J  is defined by the relation 

( )( ) ( )
∫ −

=− −

R zx

xd
eeZJ

δ
00

1 ,  

(117)

Where \z C∈ ¡ . The density of the absolutely continuous component of δ  is 

denoted by δ ′ [3,6,99]

we  consider  J  which  are  compact  perturbations  of  J .  In  this  case  the 

absolutely continuous spectrum ( )Jacδ  coincides with [ ]2,2− , and the discrete 

spectrum  lies  on  two  sequences  { }±
jx  with  properties  [ ]2,2−  or 

2,2,2,2 >→−<−→ ++−−
jjjj xxxx .

The results we obtain so called sum rules [127].

130



Theorem (4-3-1) [134]:

Let ( )baJJ ,=  be a Jacobi matrix. Then 0JJ −  is Hilbert-Schmidt if and 

only if 

(i) ( )( )∫
−

∞>−′
2

2

2

1
24log dxxxδ  (ii) ( )∑ ∑ ∞<+−

j j
jj ba 221  .

Theorem (4-3-2) [134]:

Let  ( )baJJ ,=  is  a Jacobi  matrix and  30 δ∈−JJ .  Then far  a fixed  m , 

( ) ( ) ∞<+++++ ∑∑ −+−+
2

1

2

1 ......
j

mjj
j

mij bbαα .

The  space  ( ) 1, ≥+ pZLp  are  denoted  by  pL .  We  also  set  D  and 

Π to be the unit disk { }1: <ζζ  and the unit 

circle { }1: =ζζ  correspondingly.

Some fact on one-sided Jacobi matrices, let ( )baJJ ,=  be a Jacobi matrix 

defined in (116) and acting on ( )+ZL2 . Let { }
+∈Zkke  be the standard basis in the 

space. It is easy to see the so-called Weyl function.

( ) ( )( )00
1 ,eezJzM −−=                            

associated to J  and admit representation (117) with a measure ( )Jδ δ= . The 

measure is called a spectral measure of J  and is unique up to normalization. 

We have

( )iyweak
Oy

+−=
+→

.Imlim
1

π
δ  

and moreover ( ) ( )iyxMx
Oy

+=′
+→
Imlim

1

π
δ   for almost all x ∈¡ .

Suppose that rank ( ) ∞<− 0JJ .

The  function  M  is  meromorphic  on  [ ]\ 2,2− −£ .  It  is  often  convenient  to 

uniformize the domain with the help of maps ( ) ( )4
2

1 2 −−= zzzζ , [ ]2, 2z −∈ −£  

and ( )
ζ

ζζ 1+=z , D∈ζ . It is clear that 
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[ ]: \ 2, 2 Dζ − − →£ , [ ]: \ 2, 2z D −→ −£  and the maps are mutually inverse if and 

only if 

(i) ( ) ( )∫
−

−∞>′
2

2

log dxxwx mδ  (ii) ( ) ∞<−∑ ±

j
jx 2

3
2 4

Where ( ) ( ) ( )( )214 2
2

1

xTxxw mm −−= −  and T  is the m-th chebyshev polynomial. 

First it turns out that computations pertaining to sum rules  are much simpler 

on the domain [ ]\ 2, 2− −£  than on the unit disk [ ]1: <ζζ .

The  second  commutations  of  operators  and  bounds  coming from relations 

between  classes  of  compact  operators  [136].  We  set  { }kk aaa −= +1δ  and 

( ) ( )( ){ }jkk aa γγ =

Where  ( )( ) ( )11... −++−= kjjj
k
jjk a ααααγ  

(118)

Corollary (4-3-3) [134]:

Let  ( )baJJ ,= . Then if  1+∈mLb  and  2Lb∈∂  the relation (i) hold true 

[132]. And let us consider a generalized eigenvector ( ) ( ){ }ζζ juu =  of J  ( that 

is, ( ) ( )ζ
ζ

ζζ uJu 



 += 1

 ) with the property

( ) 1lim =−

+∞→
ζζ j

j

j
u

The  vector  u  and  the  function  0u  are  called  the  Jost  solution  and  Jost 

function respectively, we have the following lemma.

Lemma (4-3-4) [134]:

Let  rank  ( ) ∞<− 0JJ .  Then  ( ) ( )( ) ( ) 1
0

0
00 det

1 −−
′

== zJ
A

zuzu ζ ,  where 

jjaA Π=′0 , and [ ]\ 2, 2z −∈ −£ . Furthermore ( ) ( )x

x
xu

δ′
−=

2
2

0

4  .

Almost every where on [ ]2,2− .

Lemma (4-3-5) [134]:
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Let ( )baJJ ,=  and 1, +∈mLba . Then 

( ) 





+−≤− ∑ ∑∑ +++±

j j

mmm

j
j baCx

11

0
2

1
2 14  

With a constant 0C  depending on m .

Let  { } zkkaa ∈= ,  { }k k z
b b

∈
= ,  and  ( )baJJ ,=  be a Jacobi matrix,  acting on 

( )ZL2 .  We define a  22× - matrix-valued function  M  with the help of the 

formula ( ) ( ) 1 *M z J zζ ζ−= − , and consequently, it can be represented as 

( ) ( )
∫ ∑

−
=

R zx

xd
zM ,  where  ∑ is  a  22× -matrix-valued  measure  ∑ .  The 

density of it’s absolutely continuous component is denoted by ′∑ , [100,150]. 

Let  ( )0.10 JJ =  where  1  and  0  are  two-sided  sequences  of  1’s  is  and  o’s 

Assume that rank  ( ) ∞<− 0JJ  .  In this case absolutely continuous spectrum 

( )Jacδ  of  J  coincides  with  [ ]2,2− .  The  discrete  spectrum of  J  lies  on 

sequences { }±
jx  with properties 2,2 >→ ++

jj xx ,  and 2,2 −<−→ −− xx j .

Consider the Jost solution ±u  satisfying the relations

( ) ( )ζ
ζ

ζζ ±± 



 += uJu

1
, ( ) 1lim =±

±

∞→
ζζ uj

J

Where  [ ]1,1\ −∈ Dζ .  It  is  not difficult  to see that vectors  ( )ζ1±u ,  T∈ζ ,  are 

linearly independent and we have for some functions ±ss,  that 

( ) ( ) ( ) ( ) ( )ζζζζζ ±±±± += ususu 1 . Where [ ]\ 1,1ζ∈Π − . 

Lemma (4-3-6) [134]:

Let ( ) 1,, 0 == abaJJ ,  and s  be the transmission coefficient of J . Then 

( ) ( )( ) 2
det 2 x s xπ ζ ′ = ÷ ∑

For almost all  [ ]2,2−∈x . The theorem suggests that the Jost function  0u  for 

one-side Jacobi matrices is a right counterpart of transmission coefficient for 

two-sided  Jacobi  matrices.  Let  A  be  a  compact  operator  on  a  separable 
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Hilbert  space  H .  The  singular  values  ( ){ } ( ) 0, →AsAs kk  ,  are  defined  as 

( ) ( ) 2

1
*AAAs kk λ= , where ( )AAk

*λ  is the k-th eigen value of operator AA*  .The 

Schatten-von Neumann classes are given by the relation 

( )






 ∞<=−= ∑

k
k

p

spp AAcompactAS ρδ:

Where 1≥p . In particular 1s  and 2s  describe classes of nuclear and Hilbert-

Schmidt operator, respectively. The sets pS  are ideals, that is 

cABABC
spSp

≤

For any bounded operators  B ,  C ,  on  H  and  pSA∈ .  We also  have  the 

Holder inequality for sS p′ , i.e., 

spnnSpSn AAAA ......
11

11 ≤

Where jpj SA ∈ ,  nj ,...,1= and 11 =∑j jP . Suppose now that BA,  are some 

operators on H . We suppose A  to be of finite rank. Let, { }ie  be a fixed in the 

space. By TrA  we mean ( )∑=
j

jj eAetrA , , and clearly 1s
AtrA ≤ . We define 

the commutator [ ]BA,  of A  and B  by 

[ ] BAABbA −=,

Lemma (4-3-7) [5]:

Let BA,  be some operators. Then 

[ ] [ ] jk

j

jkk ABAAbA ∑−

=
−−= 1

0

1 ,,  

(119)

Proof:

The  proof  of  the  lemma  immediately  follow  by  induction  from  the 

equality

[ ] [ ] [ ]BCACBACAB ,,, +=

Or by the induction of the equation (119), we assume the equation (119) true 

for 1,,1 += kkj  we get 

Since 1=j  we have in right-hand side
134



[ ] [ ] [ ]BAAABAAABAA kkj
k

j

jk ;,, 12
1

0

1 −−
−

=

−− ==∑  

(1)`

And kj =  implies that 

[ ] [ ] [ ]BAAABAAABAA kkkkj
k

j

jk ,,, 11
1

0

1 −−−
−

=

−− ==∑  

(2)`

also 1+=kj  we get

[ ] [ ] [ ]BAAABAAABAA kkj
k

j

jk ,,, 112
1

0

1 −+−
−

=

−− ==∑  

(3)`

From (1)`, (2)`, and (3)` the induction is true so the proof is complete.

Of course, the lemma also implies that 

[ ] [ ] j
k

j

jkk BBABBA ,,
1

0

1∑
−

=

−−=  

(120)

We suppose first that rank ( ) ∞<− 0JJ . We have the following proposition.

Proposition (4-3-8) [134]:

Let 0u  be the Jost function of J  and p  be a real entire function. Then 

( ) ( ) ( )








−
=∫

+

−
∞ zu

z

zp
sdxx

x

x

02
log

4
Re

1

1

λ                                                         (121)

Where λ  is a function defined by relations

        ( )

( ) ( ) [ ]

( )
( ) [ ]










−∈
′
−

−
−

−∉
−

=
2,2,

4
log

42

2,2,
4

2

2

02

x
x

x

x

xp

xx
x

xp

x

δπ

λ

λ
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and  ( )
{ }
{ }

[ ]








−∈

−<<

>>

= ++

++

2,2,0

2,:#

2,:#

x

xxxx

xxxx

x jj

jj

λ

Proof:

Let ( ) ( ) ( )zu
z

zp
zF 02

log
4−

= .

We choose the branch of 42 −z  with the properties 042 >−z , when 2−<z , 

2 4z i +− ∈ ¡  when [ ]2,2−∈z , and 042 <−z , when 2>z  we readily see that 

the function also has well defined boundary values on the upper and lower 

edges of [ ]+−
11 , xx . We denote them by ±F , respectively.

For a sufficiently big 0>r , we have by definition of the residue at ∞=z  that 

( ) ( )zFsdzzF
i rzz
∫
=

∞=−
:

Re
2

1

π

We have at the left-hand side of the equality 

( ) ( ) ( )∫ ∫ ∫
=

−+ 









+=−

+

−

+

−rzz

x

x

x

x

dxxFdxxF
i

dzzF
i :

1

1

1

1
2

1

2

1

ππ

Since ( ) ( )+−= xFxF , [ ]+−∈ 11 , xxx we continue as 

( ) ( )( ) ( )∫∫
+

−

+

−
+−+ =−

1

1

1

1

Im
1

2

1
x

x

x

x

dxxFdxxFxF
i ππ  

(122)

We note that ( ) 22 44 xiz −=− +  for [ ]2,2−∈x , and by lemma (4-3-4).

( ) ( ) ( )x

x
xuxu

δ′
−==+

4
log

2

1
loglogRe 00

Furthermore ( )( )
{ }
{ }





−<<

>>−
Π=

−−

++

+
2,:#

2,:#
logIm 0

xxxx

xxxx
xu

jj

jj
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Consequently

( ) ( )

( )
( ) [ ]

( ) ( ) [ ]

2

2

02

02

4
log , 2, 2

2 4Im log
4

2,2
4

p x x
x

xp z xu z
p xz

x x
x

δ
π

λ+

 −− ∈ −
′   −=  ÷

−   ∉ − −

Plugging this expression in (7), we obtain 

( ) ( )
( )

( ) ( )dxx
x

xp
dx

x

x

x

xp
zFs

x

x

0

2

2
2

2

2

1

1
4

4
log

42

1
Re λ

δπ ∫ ∫
−

∞

+

− −
+

′′
−

−
−=

The proposition is proved.

We are particular concerned with the case (A special sum rule),

( ) ( ) ( ) ( )mm
m zzPzP 41 2

2

1

−−== − , where Nm∈ . We have 

( )
( ) ( ) [ ]

( ) ( ) ( ) [ ]








−∉−−

−∈
′
−−

=
−+

−

2,2,41

2,2,
4

log4
2

1

0
2

1
21

2

2

1
2

xxx

x
x

x
x

x
mm

m

m

λ

δπλ

We put  00 jx xµ δ δ±= ±∑ being Dirac’s  delta  centered  at  0x .  We notice  that 

( ) ( )∫ +=
x

sdx
2

00 µλ  for 2>x , and we get integrating by parts 

( ) ( ) ( ) ( )∑∫∫ +−
++

==−
j

jm

x

m

x
m

xGdxGdxxx
11

2

0

2

0
2

1
2 4 µλ

Where  ( ) ( )∫
−−=

x
m

m dsSxG
2

2

1
2 4  

(123)

We extend mG  to  2−<x  in even way and carrying out similar computation 

for 0µ . We see that ( ) ( ) ( ) ( )∑∫ ∫ ±+
−

−=+
−

+

j
jm

m

x

x

mm xGdxxdxx 1
2

2

1
1

1

λλ .
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Furthermore  the  inequality  ( ) ( ) ( ) 2

1

2
2

1
2

2

1

1 242 −−− ±≤−≤± mmm xCxxC  for  x  in 

[ ]2,1 −−x  or ( ]+
1,2 x  respectively and some constants 21,CC  implies that

( ) ( ) ( ) 



 −+−= −−

2

3
22

1
2

3 44
mm

m xOxCxG  

(124)

Summing up we obtain that the left-hand side of (6) is given by the formula

     ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∫ ±+

−

−
−+

′
−−=Φ+Φ=Φ

j
jm

mm

mmm xGdx
x

x
x 1

2

2

2

2

1
2

2,1, 1
4

log4
2

1

δπ
δδδ  

(125)

Observe that ( ) 02, ≥Φ δm  when m  is odd and ( ) 02, ≤Φ δm  when m  is even. 

Let us compute the right-hand side of equality (6) now. In a neighborhood of 

∞=z , we have 

( ) ( ) ( )( ) 000 loglogloglog AJzJztrzu ′−−−−=

            ( ) ( )( ) 00 logloglog AzJIzJItr ′−−−−=

           ( )






 −+′− ∑

∞

=
k

kk

k
k z

JJtrA
1

log 0
1

0 α

It  is  convenient  to  set  0A  ,  and  so  00 loglog AtrA =′ .  Furthermore 

( ) ( ) ( ) 2

1
212 414

−+ −−=− mm
m zzzP  in the Laurrant series centered at ∞=z .

That is, we have 

( ) ( ) ( ) ( )
( ) ( )1

1

0

2
122

1

!!2

!!12
1

~
11 +

−

=
−

− +−−+−=− ∑ mm
m

k

mkk
m

km xOx
m

m
xCx                             (126)

For small  x ,  
( )

( ) ( ) !!2!!212

!!12~2
12 kkm

m
C k

m −−
−=− , and !!k  refers to “even” or “odd” 

factorials.

Consequently ( ) ( )( ) 2

1
2122

1
2 414

−−−
−=−

mmm
zzz  and making use of (126) together 

with 22
12

222
12

~~ +
−

−−
− = k

m
km

m CC  we see that
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( ) ( ) ( )
( )

( )
( ) 





+







 −−

−
−=−− ∑

−

=

++
−

−+
3

1

02

1212
12

22

1
21 11

!!2

!!12~

12

1
241

z
O

zm

m
zC

k
z

m

k

kk
m

k
mmm

For the sake of brevity we put

( ) ( ) ∑∑
−

−=

+
+

∞

=

−





+=−=

1

1
3

12
12

0

2

1
2

0

1
4,

1
log

m

k

k
k

k

m

kk z
Ozdz

Z
Czu

Then 
( ) ( ) ∑

=
−∞ −=






−

m

k
kk

m Cdzu
z

zP
s

0
21202

log
4

Re

An elementary computation shows that 

( ) ( ) ( ) 






−
= ∞ zu

z

zP
sJ m

m 02
log

4
Reψ  

                   
( ) ( ) ( )

( ) 





 −+−−−= ∑

=

−
−+

m

k

kkk
mk

k

Atr
m

m
JJtrC

kz1
0

2
0

212
1212

log
!!2

!!12~1

Comparing (102), (125) and the latter relation we obtain 

( ) ( ) ( ) ( ) ( )∑∫ =−+
′
−− ±+

−

−

j
mjm

mm
JxGdx

x

x
x ψ

δπ
1

22

2

2

1
2 1

4
log.4

2

1

This is precisely the sum rule we are interested in.

Theorem (4-3-9) [134]:

Let ( )baJJ ,=  be a Jacobi matrix if

(i) 21 ,,,1 LbaLba m ∈∂∂∈− +  

(127)

(ii) ( ) [ ]123,3, +=′∈ kLakγ  

(128)

then 

(i) ( ) ( )∫
−

= ∞>−′
2

2

2

1
24.log dxxx

mδ .

(ii) ( )∑ ∞<− +±
j

m

jx 2

1

4 .

Corollary (4-3-10)[5]:
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Let  ( )baJJ ,=  satisfy  assumptions  of  theorem (4-1-9)  and  m  is  odd then 

( )∑ ∞<− −±
j

m

jx 2

1
2 4 .

Let 0V J J= −  or ( )bJV ,α= , where 1−=aα  and 1 is a sequence consisting of 

units. Obviously 

( ) ∑ ∑
= −=++

=+=
k

p pkii

iiikk

p

pVJVJJVJJ
2

0 2....
00

2
0

2

0

10 ...

and consequently 

( ) ∑ ∑
= −=++

=−
k

p pkii

iikk

p

pVJVJtrJJtr
2

1 2....
00

2
0

2

0

1 ...

We  agree  to  write  ( )2~
AO  instead  of  ∑N

k kkk ADACB  with  some  bounded 

operators kB , kC , kD . Set ∑=
i ikk . The following lemmas hold.

Lemma (4-3-11) [134]:

[ ] [ ]( )2
000

,1
0,1000 ,

~
,... 3322111 JVOJVJVVJCJVVJVJ pLpL

Npp

Lp
p

Npkk p ++= ∑
==  

(129)
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Proof: 

We prove this  lemma by induction on p .  The claim of  the lemma is 

trivial when 1=p . We suppose that the lemma is valid for p  and we prove it 

for 1+p . We have ( )11,..., += pkkk  and ( ) ++= 111
0000 ... kpkkk JVVJVJVJ p

[ ] [ ]( )2
000

,1
0,1 ,

~
, 332211 JVOJVJVVJC pLpL

Npp

Lp
p +∑

′==  , where 12 ... +++=′ pkkN .

Furthermore

[ ]( ) [ ]( )
[ ] [ ] 111111

111111

000
1

0000
1

00000000

,,

,,
NpkNkpNpkNkp

NpkkpNpkkpNpk

JVJVJVJVJVJJV

JVJVJVVJVJJVVJVVJ

+=+=

+=+=
′+++

′′

Then taking 111 pkp +=′  we get

[ ] [ ] 33221113322111
000000 ,, PLPLLpkPLpLLpk JVJVVVJJVJVVVVJ +=

Put 111 pkp +=′  in the expression

[ ] [ ]( )[ ]
[ ] [ ]( )

[ ]( )[ ] [ ]( )2
0000

11
0

2
0000

1

0
2
000000

,
~

,,

,,
~

,

,,

33221111

332211

332111133221

JVOJVJVJVVJ

JVOJVJVJV

JVpVVJJVVJVJVVVJ

pLpLpLLp

pLpLpL

pLLLppLpLpLLp q

++=

+=

+=

++′

′+

′′′

[ ] [ ]( )2
000

1
0 ,

~
, 332211 JVOJVJVVJ PLPLLp += +′

Above we repeated used formulas to show [5]:

[ ] [ ] j
k

j

jkk ABAABA ,,
1

0

1∑
−

=

−−=  and  [ ] [ ] j
k

j

jkk BBABBA ,,
1

0

1∑
−

=

−−=  where  BA,  are 

operators with kVA = , 0JB =  and kJBVA 0, ==  respectively. Finally it is plain 

that 

[ ]( ) [ ]( )2
000 ,

~
,

~
1 JVOJVOvJ k = , the proof is complete.

Lemma (4-1-12) [134]:

Let Nk = . Then 

[ ] [ ]( )2
0

1
00

1
5000 ,

~
,...1 JVOtrJJVtrVCJtrVVJtrVJ NpNpkpk ++= −−  

(130)

Where 5C  is a constant depending on p  and N .
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Proof:

Employing  lemma (4-1-11)  we  immediately  get  the  first  and  the  last 

terms on the right-hand side of the latter inequality. As for the second term we 

see that, 

[ ] [ ]
[ ] 313221

3321332211

001

00000

,

,,...
PPLPLL

PLpLLpLpLLp

JVJVtrV

JVJVtrVJVJVVtrJ
+

′

=

=

Put ppP ′=+ 31  we get 

[ ]( )3 1 3 3 31 2 2 1 2 2 1 2 2 1
2

0 0 0 0 1 0 0 0, , , ,L P P L LL L p L L p L L P PPtrV V J V J trV V J V J trV V J V J TrO V J′′+     = = +     
% , and 

put 311 LLL +=′ , we get [ ] [ ]( )2
000 ,

~
1221 JVOtrJJVtrV ppLL +′′ .

Recalling (119) and (120) we obtain that 

[ ] [ ] 02211221
0

1
000 ,, p

j

jLPjLppLL JVJVVtrVJJVtrV ′−−′′′






= ∑

                          [ ] [ ]( )∑ ′−−−−′′ +=
j

pjLjLpL JVVJpVtrV 12211
0

11
0

2
0 ,,

Where 111 02121 −=−++=−′+′ pLLLLL . We obtain that 

[ ] [ ]( )2
000

1 ,
~

, 1121 JVOtrJJVV pp

j

LL +′−′+′∑

Transforming expression [ ]2
0, pJV  in the same way we finish the proof of the 

lemma. We identify a sequence { }kaa =  with diagonal operator diag { }ka . 

Lemma (4-3-13) [134]:

If  11 1 pmzjp −<−+  and  01 >p ,  then  ( ) ( )
( ) 0

!2

!
1

1

1
2

1 =
−

−−−∑
−

=
−

pm

jk

k
pm

k

jk

jpk
C  if 

0=p , the above expression equals  ( )12 −p !

Proof: 

Obviously ( ) ( )∑
−

=

−+
−

− −=−
1

1

1

11

0

11 11
pm

k

pkk
pm

kmpp xCxx , and consequently 

( )( ) ( ) ( )
( )∑

−

=

+
−

−−
−+

−−

−
−+−=−

1

1

11

1

1

2

211
12

12

!2

!1
11

pm

jk

jkk
pm

kpmp
jp

jp

x
jk

pk
Cxx

dx

d
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We set 1=x  and notice that, since 11 12 pmjp −<−+  the left-hand sided of the 

equality equals zero. This proves the first claim of the lemma.

Lemma (4-3-14) [134]:

If  21 LaLm ∈∂∈+α ,  and  ( ) ( )km
k LaA ,2∈ ,  where  ( ) ( ) ( )kmmkmq −++= 21, , 

than ( ) Lak ′∈γ  for 3=k , [ ]12+m .

Proof:

Let  { }i
j

i δδ =  where  jj
i
j ααδ −= +1  or  1,1, −=+=+ kii

jjij δαα  obviously 

2La∈∂  yields  2Li∈δ  we  also  have  ( )( ) ( )11... −++−= kjjj
k
jjk a ααααδ  since 

jjj δαα ′+=+1  and ( ) termsadditional
1

1

11
1 +





−=+= ∑

−

=

−−
−+

k

i

i
j

k
j

k
jjkj δδδαα . Furthermore 

we  have   ( )( ) ∑
−

=

=
1

1

k

i

i
jjk aA δ  and  ( ) ( )( )∑ ∑∑ ∂+≤

−

=

−

i j
j

k

i

i
j

k

jk aOa 2
1

1

1

1
δαγ  using 

inequality ( ) ( )1 1p qab p a p b≤ +  a with ( )kmpp ,= ( ) ( )11 −+= km  and ( ),q q m k= =  

( ) ( )1 2m m k+ + −

We obtain 

( ) ( ) ( ) ( ) ( )
( ) 2

25

,

,

1

11 ,

1
1

,

1
aGaA

kmq
a

kmp
a

kmp

kmqk

m

mk ∂++−≤ +

+
γ .

The  quantity  on  the  right  hand  side  of  the  inequality  is  finite  by  the 

assumptions  of  the  lemma,  it  is  easy  to  obtain  other  sufficient  conditions 

providing ( ) 1La ∈γ . 
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