Chapter 4

Spectral Applications of Jacobic Matrices

We prove that a trace class of operators is continuous in the unit disc and give
a prove of a result concerned to the commutator of two operators, with a prove
of a result of a gap and a trace of a gab [71,72,81,113,117].

Section (4-1): Determinates and Jost Function Perturbation

We shall look at the spectral theory of Jacobi matrices that is infinite

tridiagonal matrices,

Ebl a 0 O
_[m b, a 0

=g
0 a, b, b

i:

With <= and »"= we suppose that the entries of ' are bounded that is

(D

M

sup,la,| =urlel —= g0 that = defines a bounded self-adjoint operator on
2(z.) =r2(12...3) . Let be the obvious vector in =(z) , that is with
components * whichare = if -~ andOif -~ .
The spectral measure was associated to = is one given by the spectral

theorem for the vector . That is the measure defined by
m, (E)=(&a,(1 —E)"g) :Jﬂ%

2)
There is a one-to-one correspondence between bounded Jacobi matrices and

unit measures. Applying the Gram-Schmidt process to 3¥= one gets

orthonormal polynomials ~.¢)=<.x"+.  with = and

_gP. p,de&) ==

3)

These polynomials obey three-terms recurrence
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NP () =1, a1y D b, G et Py ()
4)
Where <+ are the Jacobi matrix coefficients of the Jacobi matrix with
spectral measure  (and ~ =0 )[23,43,85].

We made our choice to start numbering of * at -— so that we could
have - for the free Jost function , (well known with -=+ ) and arrange for
the Jost function to be regular at = .

An alternate way of recovering from is the continued fraction
expansion for the function =4 near infinity,

1

m,(E) = ()

- —E+b —(a?/(-E+b+..))

One is especially interested in J’s “close” to the free matrix @ with <=

and »-=° thatis

M 100 [
3 0 1 0 -
o= 4 o 1 ..C
% 01 0 E

(6)
Lemma (4.1.1) [128]:
Let = be a Jacobic matrix and  the corresponding spectral measure.
The operator -~ is Hilbert-Schmidt that is
> S, —1) +S5: —e (7)

If and only if ~ has the following four properties

(i) (Blumenthal-Weyl  Griterion)  the  support  of is
[—=.21o{=1o{e1 . where ' are each zero finite or infinite and
Br=e;=.=2 and & =s:—=-—==2 and if ' is infinite, then

Lim, _E*—

(i)  (Quasi-Szego Condition) ,Let 4« =r=¥=  where » is the

Lebesque absolutely continuous component of . Then
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}Log[ f(E)V4 —E*dE >—co

(8)
(iii)  ( Lieb-Thirring Bound) .
S| =2 + 38 2 <eo 9)

(iv)  (Normalization) o<e)>=
It is natural to approximate the true perturbation by one of finite rank. We

define ' as the semi-infinite matrix

A
RS~
S o

3

<
I
MOOoOOOO0OOcy
o
,_I\
Q
1
maininininininininis

(10)
Thatis = has *»= for -~ and <= for ~=—— .
Notice that - hasrank at most ' . We write the "~ matrix obtained by
taking the first * rows and columnsof ( © or ' )as - .The r= matrix
formed from will be called -~ . The semi-infinite matrices

obtained from = by dropping the first * rows and columns of -, thatis

®.., a. 0 ..C
C
J(n) — %’n+l bn+2 an+2 |:
SO a,., b, E
- L
(11)
We need some facts about ' the free Jacobi matrix. Fax @ with =— .
Look for solutions of
u,, u, =(z +z_1)un,n =2 (12)
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As sequences with out any conditions at infinite or -= . The solutions of

(12) a linear combination of the two “obvious” solutions = given by

u(z) =z
is + at infinity since '~ — . The linear combination that obeys

u, =z +z"Ju.  as required by matrix ending at zero is

ugn)(z) =z " —z" (13)
The Wronskion of » and : is - — , we see that (.2(=)" has the matrix
elements.

—+& 7 =) uRem G ) either by a direct calculation or standard
Green’s function formula. We have thus proven that
(J0 —E(z)):n =—(za1 —z)ﬂ [z‘"'ﬂ" —z"’*’“’]

(14)

min(m,n)™
Zlﬂmm‘+2 J

(15)

Where the second comes from

(Z"’ —ZXZ"" —= 2T e —l-z"‘k):z‘" —=" by
‘z‘ = I:*(JO —E‘(z ::,) gilil)(n,m}z“+71_" (16)

And that while the operator (. —2(=)" becomes singular as - * , the

matrix elements do not; indeed they are polynomials in ' [80,25]. We need
an additional fact about
Proposition (4.1.2) [128]:

The characteristic polynomial of 7« is

det(E ()=o) =(e 77 =2 )/(o7 =) =u, B E()E

(17)
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Where v.(cos @=inltn +)epsin(9 g the Chebyshev polynomial of the second
kind. In particular

detlE z) = Jypr
n e detlE z)=Jomnr

(18)
Proposition (4-1-3) [128]:
Let * be Chebushev polynomial ( of the first kind):

T, (cos &@==<os(m & (19)

(20)

In particular for * fixed, once n>3;m-1 the trace is independent of

Proof:

As noted above the characteristic polynomial of e+ is detEcos(6)

VB sinfth+) &Asin[€ | This implies that the eigenvalues of -~ are

given by
k) — k77 —
E:,(1 ) —ZCOSB:Ek =1,..., n (21)

Soby (19), 7.5 ENHeesBmIE Thus

Ch+1C

T, E‘m %JO;H;F %: ZCOSMH

1 1 i kmrT
_5 E +* z expgiE

On+1(C

The final sumis =+ if ' amultipleofis =¢+ and ' ifitisnot. Let

denote the Schatten classes of operator with norm /2. == (~”) _ In particular
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+ and ' are the trace class and Hilbert-Schmidt operators respectively. For
each ~== one can define a complex-valued function <<¢—->> so that
jdet@ —+a) ==xp (A, )
(22)
And ~© e=e¢—> g continuous.
det@ —a) —dec@ —+2) =a —a|, exp (A, —3], —)
(23)
We will also use the following properties:

A, B [, et +A)det(Q +B) =det(1 +A +AB)

(24)
AB, BA [T, [det( +AB) —<let(l +BA) (2 5)
@) is invertible if and only if det@ ) =
(26)
£0 AG analytic dee(t (=) analytic
(27)

If  isfiniterank and ' is a finite-dimensional self-adjoint projection
PAP =A [ldet (1+A) =det ,, (1,,, +PAP) (28)
Where <+ is the standard finite-dimensional determinate.

For Acrm.@—+a)" —cx g0 one define

det, (1 +A) =det((1 +A)e ™)

(29)
Then
det., @ +A) =exp(A|2)
(30)
[det,, (1 +A) —det, (L +B) =|a —5], exp((a], + 5], +))
(31)
and, if -~
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det, (1 +A) =det(1 +A)e "
(32)
or

det(1 +A) =det, (1 +A)e™
(33)
To estimate the * norms we use

Lemma (4-1-4) [128]:

If + isamatrixand " the Schatten * norm, then
(i) Al =STa,.,|
(34)
(ii) Al =m2anm\
(35)
(iif) For any and Slann|” Al
(36)

Theorem (4-1-5) [128]:

Let <. —max(a.. —hlp.lla. =) Forany »~-== .

e, =i, =t (37)

Proof:

The right side is immediate Holder’s inequality , for trace ideals. The

left most inequality follows from sy=c:uc: and

@cx@s bn\"é+2§ﬂ”—l\yg?.
] (] (]

With these preliminaries out of the way we can begin discussing the
perterbution determinate . For any =~ with == ( By (37) this is

equivalent to == =l =),

L(z; 7) Zdetl_J —E(z)(J, —E(z))“] (38)
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For all

- — _ Since

=), —E)" =S, —E()” (39)

The determinant in (39) is of the form '+ with 2=

Theorem (4-1-6) [128]:

Suppose <=

()

(ii)

(iii)

Proof:

(i)
(ii)

So

Define

«¢: js analytic in =~ =€/ =3 |

«¢:> has a zero in ° only at points where ) is an
eigenvalue of ', and it has zero at all such points. All zero are
simple.
If  is finite range then +*&» is a polynomial and so has an

analytic continuation to all of

follows from (28)

If ==£) is not an eigenvalue of , then ==%) since

and <=O®=—=21 | Thus © —=.)/U.—£,) has an

ED. (1)

inverse (namely ©.—#.)/( —=£) and so by (27), +¢->= . Finally,
if == is an eigenvalue of are simple by a Wronskian a
requirement, Simon. That + has a simple zero under these
circumstances comes from the following [103.104]. If ' is the

project on to the eigenvector at = ==£(=) [ then ¢ —=>'¢—> hasa

removable singularity at * . Define
CEY= —EITC—P)r (40)
( —E)C(B) = —p (B, —#)P (41)
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D(E)=(J, -E)C(E)
=-C(E)+(J —E)C(E)
=1-P+(E, —E)P-&C(E) (42)
=1+trace class
Moreover
D(E)|(J —E)/(J, —E)| =(J, —E)1—P +(E, —E)P|(J, —E) ™ =
1+(J, —E)[=P +(E, —=E)P] (J,—E)"
Thus by (25) first and then (26),
det(D(E(2))) = detl1 +(J, —E)[- P +(E, —E)P|(J, —E)7)
=det(1- p +(E, —E)P)
=E, —E(z)
Where we used (29) in the last step. Since +¢»> has a zero at and
E, —E(z) =(z —ZO)E—;O E has a simple zero, ¢ has a simple zero.
(iii) Suppose * has range = that is ~ =max{rie. e, —=e} and let

» be the projection on to the span of /. | As rvo=5 |
3, —E)? =PWMPMI(1, —E)" | By (26)
L(z;J) =det(t +PM I (7, —E) P™)

Thus by (16), +¢» isa polynomial if * is finite range.
Lemma (4-1-7) [128]:

Let * be diagonal positive trace class matrix. For - — , define

| =
N

(43)

N

Alz) =c?(J, —E(z))"C

Then, as Hilbert-Schmidt operator-valued function ~» extends continuously

to Di-1]

If 271G =e (44)
It has a Hilbert-Schmidt continuation to
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Proof:
Let #-® be the matrix elements of ~«» . It follows from ~— and (14),

(15) that

1 1
|A,.(z) =2cz2cz|z —| |z w1

(45)
‘Anm( )‘ <rn1n(m n)C%CE
(46)
and each ~-® has a continuous extension to ' . It follows from (46) the

dominated convergence theorem and

Sterer ) —Fe. b

stays a way from =*{2..C}.. | is continuous in the

That so long as

space @ <=>».=» 5o ~» is Hilbert-Schmidt and continuous on D\“- I,Jl

= 1o _
Moreover >n"G. <= | and Z%mn(m" c;C 5%52’"”6‘"@" =§“Cn§ imply

that ~» is Hilbert-Schmidt on * if (45) holds.
Lemma (4-1-8) [5]:

Let * be trace class. Then
(47)

t(z) =1r(F )7, —E(2))7)
Has a continuous in B\{ Lf JIf

S nlp, 1+, |Feeo

holds, * can be continued to

Proof:
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(@) =) . (). (=)  where «&)=>5.(0,—=).. t,(z) =>Ta, —1)

b

(JD —E (Z));+l,n
t,(z) =Ha, ), £ .
Since by (15), (17) |Co —=EMi[==l= =71z =" =mine.>  The result is

imm-ediate.
Theorem (4-1-9) [128]:

If » istrace class. ¢+ can be extended to a continuous function on

DI-1| with
|25 ) =explc|| ), I} )2 —1 72 17}
(48)
For universal constant - . If :Zln Hi, —1+b,|E<e>  holds, and - can be
extended to all of * with
1zs9) =exo & e S, 1o 1

(49)
For a universal constant
Lemma (4-1-10) [128]:

Let - be a positive diagonal trace class operator.

(1, —E()C*

Then im0 —ix) =0
(50)
Proof:

For ~—e=&—=and -/ —+W=  whilefor ~=es&= g0 7 +&0= |t

follows that
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c% (7, —E(x))™ c% =

By (15) @ -+0¢. —=6M0 = and by (16) for each fixed -,

Tr%%(fo _E(X))AC% E (51)
SHZCH‘(JO —E(x)),.]

1

im (L —x)(7, —E();| =0

Hlx

The dominated convergence theorem proves (51).
Theorem (4-1-11) [128]:

lim , Sup(l —’-x‘)log‘L(x; J)‘ =0

| x| —%.x rea

(52)
Proof:

Use o7=ciuc: and (25) to write
Lx 1) =aetfisuc® (7, —£())"¢* F - and then (23) and (37) to obtain

log|L (x;J)| SUC;(JO —E (x ))_lc%

. 1
2

C%(JO —E(x)) C

<3

1

The result now follows from the lemma (4-1-10). We find the Taylor
coefficients for +«» at -= .

Theorem (4-1-12) [128]:

If » istrace class, then for each ~7.0¢/2)—=.0./2) js trace class. Moreover,

near --°

Log[L(z; J)] Z:;ZCH (7)z"

(53)

Where CH(J)=—%TrE’n%J§—TH%J0% (54)

In particular  ©.(7) =—7r(s —1,) =—>b, (55)
C.(0) =2 1r(s* —12) ==L Sbi +2(az, ) (56)
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Proof:

To prove 7.(/2)-7.(;./2) s trace class, we need only show that

I =21 s trace class and that’s obvious. Let = be -

extended to ©(z) by setting it equal to zero matrix on ~u=» . Let . be

with - set equal to zero. Then <=..G.. =) —<=. —=>" _ In trace

norm, this means that
e CISalel )
The convergence is uniform on a small circle at -= so the Taylor series
coefficient converges imply (54) and (55).
Section (4-2): Data and Spectral
Theorem (4-2-1) [128]:

Suppose *~¢> is meromorphic in a neighborhood of  [25]. Then

and  have finitely many eigenvalues out =2 and if

1 %7 sin @
C,(J)=— —51
() a7r) %mM(e )% zog"B

(58)
With ' , then

G (1) =—STa,) +c, (4 )
(59)

In particular, if * is finite rank, then the ¢ sum rule holds:
6y() ==S08(a,)

(60)
Proof:
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The eigenvalues, ° of ' outside == are precisely the poles of ~¢:»

and so the ©poles of M) under B, =, ey By
—M(z,J)71 =—(z +zfl) +b, +ale(z,J(l))
the poles of M(=s®) are exactly the zeros of ¢« | Thus {80)"} are the

poles of ~¢ and {8(")} are its zeros. Since ¢©->= by equation (5),
1 2 . m m m m
and log‘f(O)‘=§J10g‘f(ee)‘d9+glog‘zj‘ and jleog‘zj‘ . ;log‘zj‘—;log‘g‘

becomes

)

’[%(J(l))

1 og(‘g(e"e;J)‘)d@:—jZlog(‘,B;(J)‘) +JZlog(

27T

this formula implies (59). By

(1) o 0t a2 (4.1°)

if ~&»  is meromorphic in a neighborhood of ', sois ™) | So we
can iterate (59). The free function is
M(z;0,) ==
(61)
By equation (15) with ~——= [ so <=0 and thus if ' is finite rank the
remainder is zero after finitely many steps.
To get the higher-order sum rules we need to compute the power series for
tes(e(=7)  about ‘= . For low-order, we can do this by hand. Indeed by (1)
and (5) for » ,
olz7)=(d[z+27]~b,~aiz+ o[z’
=(1-bz~(a>-1)22 +02)]"
=1+bz+ ((af —1) +b12)z2 + O(z3)

So since  log(t +w) =w — w* +0(w*)
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log(g(z: 7)) =bz +E b7 +ay 11 +of2') (62)

Therefore by mimicking the proof of theorem (4-2-1) we have

Lemma (4-2-2)[128]:

Suppose ~¢> is meromorphic in a neighborhood of - . Let
J'l EPIZ/I%B)—COS n@ do+— ?B E

(63)
Then <c.(v)=b +c (") (64)

C.(7) =gt +ar —1)+G, (1) (65)
If

J'l D—Sln(e )—sm @10+ ZF( )) (66)

With  given by

Fle)=4(# —B*) -log| A’
then writing <@ =" —+—=1os@ |

B,(1) =3¢ +5Gla) +R, (1)
(67)
In particular, if ° is finite rank, we have the sum rules < , <, * .To go

to order large than two we expand ‘'°=¢(:7) systematically as follows:
We begin by noting that ( Cramer’s rule)
g(zJ) =limg,(z;J)
(68)
Where
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z™ det(z +z7' - J,(,l_)l;F)

g,\z1) = detlz+z7"— 7, .
(69)

_ 1 detfi—E(2)77,.,,)

C1+2° detltl —E(2) 7T, .,
(70)

Where we used +=»=-+= and the fact that because the numerator is a

matrix of order one less than the denominator we get an extra factor of -
Writing = for -[r)—7(v2)]

log g,(z: ) =—og(l +=2) +I°°Z"[Tr(Fj (W, —r(F,(7,..))]

(71)
=— —2?)=S 2 (L) 522 Ijr r (v
log(l ) 121] ( 1) +jZ1 T, %%}%Lﬂ?%’jﬂ E‘j%"n—l;F%
(72)
Where we picked in the first sum because * has dimension one greater than

72 so the ©© terms in ~#¢..) and 2. contribute differently.
Notice

ZZZ,J (1) =—og(1 +2?)

= J

<.

So the first two terms and ¢*:») converges to <>~ in a neighborhood of

= it’s Taylor coefficients converge. Thus
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Proposition (4-2-3) [128]:

-t B

(73)

exists and for © small

a (s, 50)

log g(z J =°.Z
(74)
Theorem (4-2-4) [128]:

Suppose *~¢> is meromorphic in a neighborhood of ' . Let <V be given
by ©@—= ——=wse> and by F(e)=7(F~F*)-l0sld' Then

(1) =2a(r.79)+c, (1) (75)

In particular, if * is finite rank, we have the sum rule < of (63)
Proof:
The only remaining point is why if * finite rank, we have recovered the

same sum rule is in (63). Iterating (75) when = has rank in gives

c,(7) =3"Zan(1“‘”, Ju) =lim = @"réL E]LFB—TnEJOL_mF% (76)

Loen 5

S

While (63) reads

=%Tr E %J E—Tu %JO %h{gn gr%‘ %JL;F %Tr E’ %JO,L%F % (77)

That (76) and (77) are the same is a consequence of proposition (4-1-3).
In the sum rules < and * of most interest to us there appear two terms

involving integrals of logarithms:

T e (78)

and
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1z sin @ .
Q(J)—;T_Oljog%—(_mM eiS’J)Elnale (79)

One should think of + as related to the original spectral measure on

) r—=.2] as

ImM (eig) = g e
dE

(2cos6) (80)

In which case (78), (79) can be rewritten

1 3 HVa—E> H dE

Z(J) ZZT-_IZ]Og@nI/,{,C/dE B/4 —E? (81)
and

Q(7) =417Tj;10g%m— %54—152&5
(82)

Our main equation is to view * and ° as function prove if # -+ weakly,
then 44} (resp. <«) ) obeys

2 (£ Siminf 2 (£4); @ (£) Sliminf Q (£4) (83)
That is, that * and ' are weakly lower semi continuous. This will let us
prove sum rule-type inequalities in great generality.
Theorem (4-2-5) [128]:

If /-» is compact and

0 Se; —2f + 37 3 <o (84)

(]i) limsup N —oo a,,...,a, =0 ,

then Szego condition holds.
Is equivalent to the
Theorem (4-2-6) [128]:

Let be a Jacobic matrix with <.(7)=1—=2] and

Yeal)): <o (85)
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}lig}osup Ii log(a].) >—o0 (86)

=

Then

(i) a.(0) H-22]

(i) The Szego condition holds that is z(v)<= with

(iii) 2.(7)={-=22] ;indeed, the essential support of = is [22 .
Proof:

Pick ~.nN.-- (tending to ) so that
. L U
inf %log(aj)a> —oo (87)
And let * be given by (11). By theorem (4-1-24)
z(71,,) S—Zlog(aj)+21og(‘[i(JN,‘)‘) (88)

<—inf jvz"llog+21og(,@ (JN)D +2log(|B(7)+2)

Where in G, *Trﬁ 548 =, 5 & and the fact at ' solving

e, (7) +1 =/ (ier+g+aA" =A~p°) has A=a()+2 | For later purposes

we note that if [p.(4)|+a. (/)| —0  Now use (88) to see that

Z(J) <liminf Z (J, ) <eo

du

This proves (ii). But (ii) implies ;>0 ae.On *#™=2  thatis [22 Iis
the essential support of - . That proves (iii). (i) is then immediate.
Theorem (4-2-7) [128]:
If ’-» isin trace class, that is
HZ\an -1 +nz\bn —1| <oo (89)

Then the Szego condition holds.
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Proof:
The prove of Szego condition holds under the slightly stronger hypothesis
"zlogn)\a” — +nzlogn)\bn\ o<

We need only check that - trace class implies (85) and (86). The

finiteness of (85) follows from abound of Hundertmark—Simon,
S B (9)]es () +4F = b +2la, -1
Where (/) =lE* =2 s0 lelle+4|=(E*)"~4 |
Condition (86) is immediate for as is well-known <¢>° and >{la)|-1)<e

implies ™ is absolutely convergent that is >llog(a,)|<c
Theorem (4-2-8) [128]:

If = isaJacobi matrix with <= and Zn\en(f)ﬁq,o then <.(v)=-—=2]

Is equivalent to the
Corollary (4-2-9) [128]:

A discrete half-line Schrodinger operator (i.e., «=' )with < (s)=—=2]

and e (s)i<e has & =27
Lemma (4-2-10) [128]:
If o()c—=2] and

(i) limsup, Nzlog(an) >—o then the Szego condition holds. If (V) c{—=.2]

and either (i) or the Szego condition holds , then

oo

) Sla,-1) +3b <o

n=L
N . . . .
(iii) Imy b exists (and is finite).
n=1
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In particular if &(v)=—=2.2] | then (i) implies (ii)-(iv). Next, we deduce some

additional aspects of lemma.

Corollary (4-2-11) [128]:
If «.()d—=2] and (85), (86) holds, then 7.0z | thatis
Sb? +S(a, —1)° <eo (90)
Proof (4-2-12) [128]:

(90) holds if S, (s):< and <’ (given by (24)) is finite. By (85)

and e, (7): =e(s)e (7): , we have that Se (J): <eo .
Moreover, 2(7)<= (i.e., theorem (4-2-6) implies <(/)<=
For in any event [mM.dé<e jmplies

Thus

2

DSin@ . 2
log_ =sin*(6)d 8 <
o G280 B

2

Dsin9 D 2 .
O llongBIm—Mﬁsm 6d 6 <
0Q(J)<e

We will start with >(a.-1) | Because >(a.—1) < | it is easy to see that

>(a,-1) s conditionally convergent it and only if >'s(s) is conditionally

convergent. By (88) and the fact that ’-» is compact, we have:
Proposition (4-2-13) [128]:

If (86) holds and (v) ={—=22] _that is no eigenvalues out side (22 | then
. C
Z(J) <-limsup %log(aj)g (91)

We are heading towards a proof that
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Z(J)=-limsup ilog(aj)g (92)

From which it follows that the limit exists and equals 2/’ .
Lemma (4-2-14) [128]:

If &)ci—=2] " then lsHE™M(zJ)E lie in every #H'(P) space = .In
particular Z™™(z7) is a Nevanlinna function with no singular inner part
Proposition (4-2-15) [128]:

Let <o(/)Hi—=2] | Suppose 2(/)<= | Let by given by (61) and (66)
(where the #UI terms are absent). Sum rules in particular .

z(1) =—log(a,) +z ()" (93)
C,(J) =b, +C, (J)" (94)
Theorem (4-2-16) [128]:

If ' issuchthat #(V)<e and &(V)=1—=22] | then

) }viif;ilog(a,-) exists.

(ii) The limit in (i) is -2U) .

(iif) limz (1) =0 (-2 (7)) (95)
Proof:
By (93) #(7)+3los(a,) =2(s"] (96)

Since 7 /o[L:#i —#4, weakly

limitinf Z(J”) =0  or by (96)
limit in img(a]) o=~z (J) (97)

O

But (87) says
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. . C D
limit sup ilog(a,»)zﬁ—z(f)

O

Thus the limit exists and equal </ , proving (i) and (ii).
Moreover, by (96) (i) and (ii) imply (iii).
Lemma (4-2-17) [128]:

Let * be a probability measure and suppose =0 , [f.dus<t and

lim [log ( £, )d p£=0 (98)
Then
fhog(r.) drevflf, —1|dre—0 (99)
Proof:
Let H(y)=—tog(y) 1+ (100)
Then
(i) H(y)=0 for all
(ii) inf, . H(y) =0
(iii) Hy)z5y if
(i) is concavity of sly) | (ii) is strict concavity, and
(ii) holds because —logy—1+§y is monotone on (2°/ and  at

»= gsince &8 js slightly more than
Since [f(f.—1)du=o _ (i) implies that
S, ) drfx) —1 (101)
and
lim [H (£, (x))ds{x) —0 (102)
Since +~= and the above imply *-! in measure.
H{x/| 1, (x) =1 =) —0 (103)
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By (i), (iii), and (102)
fﬂé;e\fn(X)\dﬂﬂo (104)
Now (103), (104) imply that
Jif (x) —d gz —0
And this together with (102) implies filos(f.)|ds=0
Proposition (4-2-18) [128]:
Suppose (/)<= and <(v)t1=22]  Then

'1115130 jflog

=T

O .
0 sin @ %“9:0 (105)

Ell[mM(ei‘g,J("))
Proof:

By (95) the result is true it | is dropped. Thus it suffices to show

g o sin @ -
lim J'log_ >~ _“46=0
"o InM(e‘E’,J(”))TD

Or equivalently

. i0 1(n)
tim [log, mm (e ) o (106)

U sin @
O O

Now, let du(6)=—sin*@i and f.(&) =(sin@ mm (e, 1)

By (102)

s

[ (6 dm <1 (107)

-

corollary (4-2-11), which implies [/ =7, =0 | froe(£.(8)ds(8 —o | so by

lemma (4-2-16), we control ¥ andso  ;

That is
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1

log, %gs log, (a) +log_(b) =2log, E@Z =+log_(b)

O--d

1

S2a5+log_(b)

sin @

SmM(eis,J(”)) ? ,
hrn J'log+ ~sin 6do =0 (108)
O

Thus, to prove (106) we need only prove

gmM( ) 0
lim lim sup J' log, de=0

£-0n—w o< O sin @
or‘l_l—ﬂ<£ D |:|

(109)
To do this use

With a=sinémm(e?,s") apnd »=se , The contribution of 'e(v) in (108)

is integrable and - -independent, and so goes to zero as = . The
contribution of the , term is, by the Schwartz inequality bounded by
YA PMPL
DIN D

Also goes to zero as = . Thus (108) is proven
Corollary (4-2-19) [128]:
If «~ is finite rank, then €@—")>x¢&w> is a polynomial and in
particular, +=¢»> is arational function.
Theorem (4-2-20) [128]:

If = is finite rank, then
1 °Z ie —N(W)
Co 15 Jlogllesw)do= 3 1085 (W)
(110)
277 . N(w)
Gty fosltlemwleostng = S )2 Bw [ w [

for - .

127



The final element of our proof is an inequality for =e<w) that depends on
what a physicist would call conservation of probability.
Proposition (4-2-21) [128]:

Let ~ be trace class. Then for all <

‘L(e“g;WX Zjl_flooaj

(111)
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Proof:
As above we can suppose that ~ is finite range. Choose ' so that all
non zero matrix elements of ~ have indices lying with in == . By (111),
is equivalent to
|t =
Where  is given by
lim 2z " (2;w) =1 (112)
Since w«@&w) isreal for ' real we have
ur W) = Gw) |
Thus for = , <= and ~—= ,

Ll:‘(e"e;w) =q(ei 6)61',79_'_@(6.'6%—#16

uile W) = (T A e
Computing the Wronskian of the left-hand sides for -~ , where == and
then the Wronskian of the right-hand sides for ~—= , we find

i(sin & =i(sin S art” —+77]
Or since - - | t” e
(113)
Form which —M (¢, 7)" =—=2cos @+b, +a’Mm (e2,7") {5 obvious.

Theorem (4-2-22) [128]

Let * be a whole-line operator with <= and -®><#==1 | Then

. . . u U
w=w_thatis, »=° .The proof works if limsup ézlog(a,-)%? 0

m-oo

Proof:

Let

1 2

lim — j'lrog‘(eie;w(”)) dB=0
[0

n—e22 7T.

(114)
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Since «= ,(110) implies ‘'esr¢e w)=o "and so (113) implies

hmiyf:os(zalog,\L(e“9 w)ae=o
n aw2rr-0r ’

(115)

o

By loglL(zw)[=%C,(w)z" | | =1 we see

n=l

lim 7 =0

hm, >
Which implies ¢= .
Commutation of Certain Operators and Pertaining Estimates

Section (4-3):

Let a=fa} | = — ne= gpnd
b, a, OC
J=(10)=H, b ¢ (116)
= U =

Be a Jacobi matrix . The free ( or chebyshev) Jacobi matrix is given by

1
J(o)=s,=H o
£2]

The scalar spectral measure =*> of = is defined by the relation

((J _Z)_leo’eo)z %
(117)
Where -=='i | The density of the absolutely continuous component of is
denoted by  [3,6,99]
we consider - which are compact perturbations of ' . In this case the

absolutely continuous spectrum =) coincides with == | and the discrete

spectrum lies on two sequences I with properties ==  or

The results we obtain so called sum rules [127].
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Theorem (4-3-1) [134]:
Let -—«» be a Jacobi matrix. Then '~ is Hilbert-Schmidt if and

only if
(1) j10g J(X)(4 —XZ)% dx =oo (i) jﬂa,» ) _._jz)? —

Theorem (4-3-2) [134]:

Let ~-—@» s a Jacobi matrix and ~—-“= . Then far a fixed ',
Sty o) o )
The space t"(z.).rp= are denoted by <+ . We also set and

to be the unit disk == and the unit
circle === correspondingly.

Some fact on one-sided Jacobi matrices, let ~—«= be a Jacobi matrix
defined in (116) and acting on (=) . Let felw. be the standard basis in the
space. It is easy to see the so-called Weyl function.

M(z) (1 —2)"eq.e,)
associated to = and admit representation (117) with a measure 2=2(/) . The
measure is called a spectral measure of = and is unique up to normalization.

We have

5=l weak — lim, Im(. +iy)
7T y—0

1 .. .
and moreover J(x)=— lim ImM(x+iy)  for almost all -

Suppose that rank ¢ =) =es |

The function * is meromorphic on £[=22 | It is often convenient to

uniformize the domain with the help of maps <(2) =%( i = X

and #9)=¢+z | <+ _Itis clear that
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<:£\[=22] —-p  2:D —£7\[-2.2] and the maps are mutually inverse if and

only if

(i) j‘log S(x)w,, (x)dx =—ec (ii) jz(xjﬂ _4)3 <oo

Where w,(x)=(4—x)(1-T?(x/2)) and = is the m-th chebyshev polynomial.
First it turns out that computations pertaining to sum rules are much simpler
on the domain £ ‘(22 than on the unit disk === |

The second commutations of operators and bounds coming from relations

between classes of compact operators [136]. We set <& =a..—} and

Where OAa)), = —FFru- Fra
(118)
Corollary (4-3-3) [134]:

Let s=@=» _ Then if ~r=»~ and e+ the relation (i) hold true

[132]. And let us consider a generalized eigenvector «)=-,(<} of ' ( that

is, Jul¢) =§”§E(Z ) ) with the property

lim Zf"ul.(() =1

j —too

The vector © and the function : are called the Jost solution and Jost
function respectively, we have the following lemma.

Lemma (4-3-4) [134]:

Let rank ©¢—.)== _ Then uo(2)=uo(5(z))=édet(% —z)"  where

A=, and = “E7\[22] | Furthermore |u,(x)" =

Almost every where on == .
Lemma (4-3-5) [134]:
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Let ~=«» and «~== . Then

S{x® =)™ =c, F5la -1 + ST E
J

J V)

With a constant © depending on
Let e=ale. | b¢={bl,, [ and =« be a Jacobi matrix, acting on

v(2) . We define a >~ - matrix-valued function +* with the help of the

formula M™(2)=<(s—)"< | and consequently, it can be represented as
d X . .
M(z) = j%(z) , where 1 is a := -matrix-valued measure : . The

density of it’s absolutely continuous component is denoted by =" , [100,150].
Let 7.=0o where 1 and 0 are two-sided sequences of 1’s is and 0’s
Assume that rank ¢ —.)==< _ In this case absolutely continuous spectrum

) of ' coincides with =2 . The discrete spectrum of ' lies on

sequences ¥ with properties ~ === | and »~ ——=x ==

Consider the Jost solution - satisfying the relations

Q)= Zile) | im&Tu(d) =1

Where ( H D\’Ld . It is not difficult to see that vectors «&< | <+ | are
linearly independent and we have for some functions == that
u (D =(Du. ) D+ (u(  Where <OM[—1]
Lemma (4-3-6) [134]:
Let 7=@&»a= ~agnd ' be the transmission coefficient of ' . Then
det@nz (x)%z‘s(z(x))‘2

For almost all ~t=21 | The theorem suggests that the Jost function : for
one-side Jacobi matrices is a right counterpart of transmission coefficient for

two-sided Jacobi matrices. Let = be a compact operator on a separable
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Hilbert space ' . The singular values {si(aks.(a) —o " are defined as

s(A)=a(a'a): , where A(a) s the k-th eigen value of operator ~+ .The
Schatten-von Neumann classes are given by the relation

C
S, =[A —< t:||All” :z A)”
» % ompac H Hsp - §( ) <ocE

Where ~-= . In particular and describe classes of nuclear and Hilbert-

Schmidt operator, respectively. The sets * are ideals, that is

las<],, =Bl ll<ll

For any bounded operators ', ,on * and ~* . We also have the
Holder inequality for = ,i.e.,

A---Anls, =l -2

Where ~©s, | s—=-» and =¥» — . Suppose now that ~* are some

operators on * . We suppose ' to be of finite rank. Let, « be a fixed in the

space. By = we mean “*=>e-<) and clearly =l . We define

the commutator ™=+ of © and ' by
[ p]—an —pa

Lemma (4-3-7) [5]:

Let ~* be some operators. Then
[a. 0] ==, a7 [a. BlaY

(119)
Proof:
The proof of the lemma immediately follow by induction from the
equality
Lars. 1 —als. < 1—fa. s
Or by the induction of the equation (119), we assume the equation (119) true
for s ==~ we get

Since ‘'~ we have in right-hand side
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k—

ZAk_l_j [A,B]lA’ =A*2[A, B]A =A""[A; B]
(1)
And '~ implies that

kiA“*f' [A,B]A’ =A™ [ A, Bl]A® =A*[A, B]
(2)
also == we get

ErAH_j [A, B]A’ =A2[A, BJA*™ =A*?[A, B]
(3)

From (1), (2)", and (3)" the induction is true so the proof is complete.

Of course, the lemma also implies that

[a. 8] =>B""7[a B]B’
A, B¥|=SB"7[A,B|B
,—Z

(120)
We suppose first that rank ¢ —7.)==_ We have the following proposition.
Proposition (4-3-8) [134]:

Let be the Jost function of and be a real entire function. Then
o) 0 O
J’/\(x)dx =Res, E@loguo(Z)D (121)
Xf z _4 D

Where is a function defined by relations

0yl

”X): %MAO( ]’ D’ 2’2‘
Il LY
% M4~ ¥ 5(X]
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#{x; 0, 0l
D

and \X‘ #{X;; } x¢-2
0 sy

Proof:

Lot Fl2)=—2 togu,(z)

z? —4
We choose the branch of == with the properties === ,when -— |
—4tii . when -rt=21 'and v=—=- |, when - we readily see that
the function also has well defined boundary values on the upper and lower

edges of |x.x’| . We denote them by * , respectively.

For a sufficiently big = , we have by definition of the residue at -== that

—%iz;‘;g(z)dz =Res_F(z)

We have at the left-hand side of the equality

1

_E gl HB['F dx+1'F(x)_de

Since r&-=r&). | xdx.x| we continue as

_;TE(F(X)J'F(X)_)dX Z;}ImF(x)J,dx

(122)

We note that (/z>—).=va—=* for ~+t=21  and by lemma (4-3-4).

Reloguo(x)+ =log‘ (x)‘ flog ( )x

#x x 1ol
Furthermore U‘X‘ [ |
D#Mﬁ&<ﬁx<0
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Consequently

0 plx) | Naxt o
Dp(z) o 2\/4 leog 5'()() X D[ 2,2]

ImF—2logu,(z )=
Nz2?-4 of )51 O7p (x )

B\/: X X I:l[ _2, 2]
Plugging this expression in (7), we obtain

Res,, F 17_[} —x° ( )

e IF—M’

The proposition is proved.

Ay (x)dx

We are particular concerned with the case (A special sum rule),

P(z) =P, (z) =(—1)"(z> —4)" , where ==~ . We have

m

Hl 1
U
il

1

We put #*==>2 *2, being Dirac’s delta centered at

mt1

-4 (1

A (x) =jd,%+(s) for -= , and we get integrating by parts

+ x5
X1

155 —4)""2 A (x)dx —J‘G x)dp4 =>G. (x7)

2

Where

(123)

. We notice that

G, (x) =j'(S > 4)" ds
2

We extend ¢ to ~—= in even way and carrying out similar computation

for . We see that I/\ x)dx +_f)\ dx=(-1)""$G,[x;) .
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1

Furthermore the inequality ¢ (x+2)"% <(x* —4)"= <c,(x=2)"3 for = in

lx~—=| or x1 respectively and some constants <-<- implies that
G, (x) =c, (x> —4)"’% 4-0%(2 —4)"'% E

(124)
Summing up we obtain that the left-hand side of (6) is given by the formula

®, () =D, , () +b, ,( 5)— J’(4—x )" log VJ( )de+(—1 ) >6, (x7)

(125)
Observe that <=-(=>  when m isodd and <=-<= when is even.

Let us compute the right-hand side of equality (6) now. In a neighborhood of
:== we have
logu, (Z) =tr(log(z —J) —log(z —J, )) —dog A

=tr(log(I —J/z) —log(I —JO/Z)) —log A;

- @logA('ﬁ i aktr(l"-J )lk

=1

i
i
]
It is convenient to set +* , and so lesAs ==lesAa,  Furthermore

P, (2)/Nz" =4 =(—1)"(z> —4)"> in the Laurrant series centered at == .
That is, we have
o= § o B e (126)

2m —1)N!
For small » , < ~Gm 11_2,())”(2,{)” ,and ~ refers to “even” or “odd”

factorials.
Consequently (z> —a)"= =2>"(1—(4/z2))"> and making use of (126) together

with &= =2 we see that
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_q\mHaf_2 __ mL L, LS (_1)k 2Kk _ 2k+H _(2m 1 ” 10
( 1) (Z 4) 2 =2 =’ Z(k _1) C2m—12 (Zm)” ZDE'O%E

For the sake of brevity we put

logu, (z ZC (22 —a)" —mZdeﬂ 21 +O[213E
k=

Then Reswg%loguo E:—Zdzkl 2k

An elementary computation shows that

L//m(J)=Resoo P”;(Z) loguo(z)E
z°—4

( 1)k G2k 2k __ (2m 1) C
T Cona tr(J JZ ) (2 )' tr IOgAOE

Comparing (102), (125) and the latter relation we obtain

1 2
27

4—x)"" log V;CSZ dx +(—1)™" JZGm (x2) =z, (9)

This is precisely the sum rule we are interested in.
Theorem (4-3-9) [134]:

Let ~-—@» be aJacobi matrix if

(l) a —=b L. <o <GP0 I
(127)
(ii) ye(a) CL” k =3,[3/2 ]
(128)
then

(i) jFog S(x){a—x)"Zdx =00

(i) > (x*—a)™ <eo .

Corollary (4-3-10)[5]:
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Let ~—«» gatisfy assumptions of theorem (4-1-9) and ' 1is odd then

1
z’(xl12 —4)m 2 <oco
Let v=/—% or v—¢&» _where <—— and 1 is a sequence consisting of

units. Obviously

k N
T2 =g, +v )" =ZZ STV VIS

PO ip*...H,=2k—p

and consequently

er(o2x —r2x) :tri Ik VTl
(o] 0 == (o]

P Iy ..., =2 k—p
We agree to write o) instead of . B.AC.AD.  with some bounded

operators * , ¢ , » .Set K== | The following lemmas hold.

Lemma (4-3-11) [134]:

VIk VIl =P g - C, Jovilve, g v g +6(v, 7,1°)

[1|=pTP

(129)
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Proof:
We prove this lemma by induction on ' . The claim of the lemma is
trivial when -= . We suppose that the lemma is valid for * and we prove it

for »~ .Wehave ~—%.--x..) and

vy b L 2 Ly a3 -~ 2
DRl Ve, g veae +6(v, 1,1) where ~c=x. o,

Furthermore

vigveay =vivess g ve |l =fvweag avispvels
=V +V’J§‘,V"]J(§V’ =g +V[J§1,VP]J(§V‘

Then taking »i=x+r.  we get
Vv ey |_‘sz LIS JV Ly =sVvJglrmy [VLZ ST ]VLB T

Put »ri=x+pr. in the expression

VIEVEV e, v = vivi s g vi v p
v, 12+ OV, ,)2)
= (J(f'lVLl” + VI g PV Py g P +5([v, 10]2)

VL3 Jé’s

=gpivieive, gk vieap +0(v, 1,]?)
Above we repeated used formulas to show [5]:
(4%, B]=>A""7 [, B]a’ [a. B ]=>B[a B]B/
A“,B|= AT 7A,B|IA A, B | = B 7|A,B|B AB
P and 2> where are

operators with ~=* | 5=+ and Aa=v.5=¢ respectively. Finally it is plain
that
v 6(v.s,) =6(v.s.J°) | the proof is complete.

Lemma (4-1-12) [134]:

Let == _Then

trvIl vk =rv e gl aCerv v, 7,100 wero(v, 1, 17)

(130)
Where ¢ is a constant depending on ' and
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Proof:
Employing lemma (4-1-11) we immediately get the first and the last
terms on the right-hand side of the latter inequality. As for the second term we

see that,

P VEVE g VIR =av v Jevig
= U"VLI "/1L2 , J(fz ]‘/L3 J§+P3

Put 7-r.=r" we get

Vi I BRI =V [ T B = vl B I By e SRV, 1)) and

put =r-+r. weget ovilvioglig+wd(v.o ) |
Recalling (119) and (120) we obtain that

v i ge g =yt @f V.sg e %ﬁ’ﬁ

=S uovily, pilgsveo Hv et )

Where #7-+i— = . 22, == — _ We obtain that

Svisstv,ae et e Sv, g, 1)
Transforming expression [v./*| in the same way we finish the proof of the
lemma. We identify a sequence <=l«} with diagonal operator diag "

Lemma (4-3-13) [134]:

o . " ek (k=P =il _ .
If p—o=—=+—==—+ and ~»= , then k;( 1) Ch,, c—z; —° if

»=  the above expression equals ¢~ !

Proof:

m—p,

Obviously x""(1—x)" = >{-1)"c],x*""  and consequently

dpr2i—

_ _ mp; k +p, —1)! .
[ p—1 1— m=p; | — —1 k k ( pl k42 j
dxP+i— (X ( X) ) k=2j( ) Cm_p] (k —2j)! X
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We set ~—= and notice that, since ». +2s—=—==— the left-hand sided of the

equality equals zero. This proves the first claim of the lemma.
Lemma (4-3-14) [134]:

If e and A, (a) 2 , Where G Gr. K) —Gn —a) G —e —4) ,
than s for += | w1
Proof:

Let =9} where <=9.-= or <~=5+'=x—= obviously

@ yields <+ we also have (F), =F—F=-F«w  since

-1
g.==a+F and Q) =q;+5 " == ﬂ@@ E*additional terms  Furthermore
=

we have (Al =58 and ()l =Sler|” >

+]ZO((61)§) using

lnequallty ab =(1/p)a” H1/p)b? g Wlth p =p(n.K) =6n =) < —) and q=q(m,k|=
(m +1)/(m +2—k)

We obtain

i

1 1 (m,k) 2
| yc(a)l, EWHG —|’ +mHAk (G)Hf;(m:) +G||ay|;

The quantity on the right hand side of the inequality is finite by the
assumptions of the lemma, it is easy to obtain other sufficient conditions

providing ).

143



