
Chapter 3

Homogenous Shifts Operators and Holomorphic 

Functions

We prove that a homogenous operator is unitary and a reducible 

homogenous weighted shift is unweighted bilateral shift, also a projective rep-

resentation is irreducible, if the unitary operator have non common non-trivial 

reducing subspace. We prove an irreducible projective representation with 

multiplier and especial multipliers of Mobius. We prove that a group law is 

determined by a group homomorphism. We give a computation of a 

normalized representation, that a unitary representation is equivalent to its 

quasi-invariant is proved and an image under the operator is a multiplier 

representation is considered and proved [16,18,19,20].   

Section (3-1): Homogeneous Operators and Weighted Shift 

                        with Multipliers

Lemma (3-1-1) [5]:

           If  T  is a homogenous operator such that  kT  is unitary for some 

positive integer k then T  is unitary [120, 122].

Proof:

Let  ∈ϕ  Mobs since  ( )Tϕ  is unitary, it follow that  ( )( ) kTφ  is unitary 

equivalent to kT and hence is unitary nI  particular by taking βϕϕ= we find 

that the inverse and the adjoint of ( ) ( ) 1−−− TIT k ββ are equal ( ) ( )kk TIIT ββ −− − . 

Since  kT  is unitary implies that  ( ) ( ) ( ) ( )kkkk TIITTIIT ββββ −−=−− − *  and we 

get ( ) ( ) kk
TIIT

−
−− ** ββ  and hence ITT =*  we have 

( ) ( ) ( )* kk k
I T I T T Iβ β β− − = −  ( )* k

T Iβ− .
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For all  D∈β  the two side of this equation is expanding binomially and the 

binomial rule is ( ) rrn
n

r

n ba
r

n
ba −

=
∑ 





=+

0

. By applying this rule we get 

              ( ) ( ) ( ) ( )* *

0 0 0 0

1 1 1 1
k k k k

m n m nm m n n m n m n

m n m n

k k k k
T T T T

m n m n
β β β β− −

= = = =

        
− − = − − ÷ ÷ ÷  ÷  ÷ ÷

        
∑ ∑ ∑∑

                                                         ( )∑
=

−+












−=

k

nm

nmnmnm TT
n

k

m

k

0,

1 ββ
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                                                         ( )∑
=

−−−+












−=

k

nm

nknknmnm TT
n

k

m

k

0,

*1 ββ
by  equaling  the  coefficients  of  powers  weight  nknkmn TTTT −−= **  for 

knm ≤≤ ,0 . Noting that our hypothesis on T  implies that T  is invertible, we 

find  n

mk

mk

m

T

T

T

T
*

* −

− =   implies  nmkknm TT −−−+ = *   for  all  nm,  in this  range,  in 

particular taking 1−=+ knm  we have *1 TT =−  a T  is unitary.

Theorem (3-1-2) [5]: 

Up to unitary equivalence, the only reducible homogenous weighted shift 

(with non-zero weights) is the un weighted bilateral shift B.

Proof:

         Any such operator  T  is a bilateral shifts and its weight sequence 

znWn ∈,  is periodic say with period, we may assume 0>nW  for all n in z

The spectral radius ( )Tr of T  is given by the following 

( )
1

0

...lim 1 1

n

n
j

r Sup j j n jω ω ω+

→∞
=

 
 = + + − 
 

, ( ) ( )+rrTr ,max  where  
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( )
1

0

...1 1lim
0

n

n

j

Supr j j n j
j

ω ω ω+

→∞
=

 
 

= + + − 
≥ 

 

 and ( )
1

...1 2lim
0

0

n

n

Supr j j j n
j

j

ω ω ω
→∞

 
 

=  − − −
 <
 = 

In  our  case  since  the  weight  sequence  nω  is  periodic  with  period  k  this 

formula for the spectral radius reduces to 

( ) ( ) kkTr
1

110 .... −= ωωω

Now assume that T  is also homogenous, then ( ) 1=Tr . Thus 110 ... −kωωω  by 

the periodicity of the weight sequence, it then follows that 1... 11 =−++ knnn ωωω  

Zn ∈∀  therefor it znxn ∈,  is the orthogonal basis such that n
k

knn xBxTx == + for 

all n and hence kk BT = , since B is unitary show that  kT  is unitary therefore 

T  is unitary. Hence  nnn xTTx ==ω since  1=T implies  1=nx  for all 

n . Thus BT = . 

Definitions (3-1-3) [17]:

If  T  is  an  operator  on  a  Hilbert  space  H  then  a  projective 

representation π of Mob on H  is said to be associated with T  if the spectrum 

of T  is contained in D and 

( ) ( ) ( )*
T Tφ π φ π φ=                                                                           (1)

For all elements ϕ  of Mob 

Theorem (3-1-4) [17]:

If  T  is an irreducible homogenous operator, then  T  has a projective 

representation  of  Mob associated  with  it-  Further  this  representation  is 

uniquely determined by T .

 For any projective representation  π of  Mobs let  #π  denote the projective 

representation of Mobs obtained by composing with the automorphism * of 

Mobs so [73,48]

( ) ( )# *π φ π φ=                                                                                  (2)

We note. 
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Proposition (3-1-5) [17]: 

If  the  projective  representation  π is  associated  with  a  homogenous 

operator T  then #π  is associated with the adjoint *T  of T .  Further T  is 

invertible then #π  is associated with 1−T  also it is follows that T  and 1*−T

have the same associated representation. 

Theorem (3-1-6) [17]: 

Let H  be a Hilbert space of function on Ω  such that the operator T  on 

H  giver by ( )( ) ( )xxfxTf = , Ω∈x , H∈f  is bounded. Suppose this is a multiplier 

representationπ of Mob on H  . Then T  is homogenous and π  is associated 

with T .

Definition (3-1-7) [17]:

 Let T  be a bounded operator on a Hilbert space H  then T is called a 

block shift is  an orthogonal decomposition nw∈=⊕n IH  of H  in to non-trivial 

subspace ,nw n I∈  such  that  ( ) 1n nT w w +⊆  the  following  is  due  to  Mark 

Ordower. 

Lemma (3-1-8) [17]:

         If  T  is an irreducible block shift then the blocks of  T are uniquely 

determined by T .

Proof:

Fix an element  T∈α of infinite order and let  nV , In∈  be blocks of  T  

then define a unitary 1S operator S  by xSx nα=   for nVx∈ , In∈ . Notice that 

by  our  assumption on α the eigenvalue  Inn ∈,α of  S  are  distinct  and the 

blocks  nV of  T are precisely the eigenspaces of  S .  If  ,nw n J∈  are also 

blocks of   T  then define unitary  1S  replacing the blocks  nV  , nω by the 

definition of  S .

A  simple  computation  shows  that  we  have  * *
1 1STS T S TSα= = hence 

SS *
1    commutes  with  T  since  SS *

1  is  unitary  and  T  is 
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irreducible  and  SS *
1  is  a scalar.  That  is SS β=1  for  T∈β  therefore  S  has 

same eigenspaces as  S  thus the blocks of  T  are uniquely determined as 

eigenspaces of S .

To define  the  projective  representation  and  multipliers,  let  G to  be  a 

locally  compact  second  countable  to  topological  group  then  a  measurable 

function.

π : ( )G u→ H         

is called a projective representation of G  on the Hilbert space H  if there is 

function TGGm →×:  such that

( )1 1π = , ( ) ( ) ( ) ( )1 mπ π π=1 2 1 2 2gg gg g g                                                       (3) 

for all ( ) 1 2g ,g G . Two projective representation π  , 2 π  in the Hilbert spaces

1H  , 2H will  be  called  the  equivalent  if  there  exists  a  unitary  operator 

21 HH →:u , and function :G Tγ → . Such that ( ) ( ) ( )2 1Uπ α πg g g . For all ( ) G∈g  

We shall identify two projective representation they are equivalent.

Recall that a projective representation π of G is called irreducible if the 

unitary operator ( )π g , Gg∈  have no common non-trivial reducing subspace. 

Clearly  TGGm →×:  is  a  Borel  map.  In  view of  equation  (3)  m  satisfies 
( ) ( )gg ,111, mm ==

( ) ( ) ( ) ( )m m m m=1 2 1 2 3 1 2 3 2 3g g g ,g ,g g ,g ,g g ,g                                                (4)

Proof equation (4) [5]:

From equation (3) ( ) ( ) ( ) ( )mπ π π=1 2 1 2 1 2g ,g g ,g g g which implies that 

( ) ( ) ( ) ( )m π π π=1 2 1 2 1 2g ,g g ,g g g  

then ( ) ( ) ( ) ( )/ 1m π π π= =g,1 g g 1 ,  ( ) ( ) ( ) ( )/ 1m π π π= =1,g g 1 g  , and        

( ) ( ) ( ) ( )/m π π π=1 2 3 1 2 3 1 2 3g,g ,g g ,g ,g g ,g g  

the left hand side of equation. (4)

 ( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( ).m m

π π π
π π π π π π

= =1 2 1 2 3 1 2 3
1 2 1 2 3

1 2 1 2 3 1 2 3

gg gg g gg g
g,g g ,g ,g

g g gg g g g g
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and the right hand side 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( ).m m

π π π
π π π π π π π

= =1 2 3 2 3 1 2 3
1 2 3 2 3

1 2 3 2 3 1 2 3

gg g g g gg g
g ,g g g ,g

g g g g g g g g    

                                ( ) ( ) ( ) ( )m m π π=1 2 1 2 3 1 2 3 2 3g ,g gg ,g g ,g g g ,g

for all group of elements  321 g,g,gg,  any Borel function m into  T  satisfying 

(4) is called a multiplier  in the group.    

Definition (3-1-9) [17]:

Two multipliers m and on the group G are called equivalent if there is 

Borel function :G Tγ →  such that ( ) ( ) ( ) ( ) ( )m mγ γ γ=%1 2 1 2 1 2 1 2g,g g g,g g g g ,g  for all

G∈21 g,g and clearly equivalent projective reorientation have multipliers, the 

multipliers  equivalent  to  the  trivial  multiplier  are  called  exact.  The  exact 

multipliers form a subgroup of the multiplier group, the quotient is called the 

second co homology group ( )TGH ,2  we shall need. 

Theorem (3-1-10) [17]:

Let  G  be  a  connected  semi-simple  Lie  group  then  every  projective 

representation  of  G  is  a  direct.  Integral  of  irreducible  projective 

representations of  G .

Proof:

Let π  be a projective representation of G  let G  be the universal cover 

of  G  and let  GGP →:  be the covering homomorphism. Define projective 

representation 0π  of  G  by ( ) ( )0 x xπ π=%  where ( )xPx ~=  a trivial computation 

of  G  and its multiplier  0m  is given by  ( ) ( )yxmyxm ,~,~
0 =  where  ( ) ,x P x= %  

( )y P y= % .

However since G  is a connected Lie group ( )TGH ,
~2  is trivial therefore 

0m  is exact that is a Borel function :G Tγ →%  such that 

( ) ( ) ( ) ( ) ( )0, , /m x y m x y x y xyγ γ γ= =%% % % %%                                                   (5)

For all Gyx
~~~ ∈ , and ( ) ( )yPyxPx ~,~ ==
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Now we define the ordinary representation π)  of G
~  by ( ) ( ) ( )0x x xπ α π=) % % %  for 

Gx
~~∈  the  ordinary  representation  tπ~  of  ( ) ( ) ( ): ,tG x Pi x dp tπ

⊕

= = ∫)% %% % Gx
~~∈  repl-

acing  π %  its  definition in term of  π ,  we get  that  for  each  Gx∈ ,  ( )xπ =  

( ) ( )1

tx dp tγ π
⊕

−∫ )%  for any  x~  such that  ( )xPx ~= .  So we would like to define 

( ):t G uπ → H  by  ( ) ( ) ( )1

t tx x xπ γ π−= % % %  for  any  π % as above and verify that  tπ  

thus defined is an irreducible projective representation of  G  with multiplier 

m. But first we must show that tπ  is well defined, that is if yx ~,~  are elements 

of mapping in the same element x   of G   under P then we need to show 

( ) ( ) ( ) ( )1 1

t t
x x y yγ π γ π− −=% % % % % %                                                               (6)

Let  Z
~  be  the  kernel  of  the  covering map P .  Since  Z

~  is  a  discrete 

normal  subgroup  of  the  connected  topological  group  ZG
~

,
~  is  a  central 

subgroup of  G
~ . Since for each  tt π~,  is irreducible it follows that there is a 

Borel function [44].  :t Z Tγ →% . Such that  ( ) ( )tZ Z Iπ γ=% %%  for all  Zz
~~ ∈  we have 

( ) ( ) ( )0Z Z Z Zπ π=% % %%  ( ) ( ) ( )1Z Z Iγ π γ= =% %  for all Zz
~~ ∈ . 

Therefore evaluating  ( )zπ%%  using its  t  all in a set of full  P  

measure and all  Zz
~~ ∈ . Replacing the domain of integration by this subset if 

need be we may assume that tγ γ=  for all t . Thus 

( ) ( )z z Iπ γ=%% %                                                                                              (7) 

for all Zz
~~ ∈ and for all t . Also for Gx

~~∈  and Zz
~~ ∈  we have 

( ) ( ) ( ) ( ) ( )/ , ,1 1x r Z r xZ m x Z m xγ = = =% % %% % %               

 where ( )xPx ~=  and hence 

( ) ( ) ( )xZ x Zγ γ γ=% %% %                                                                              (8)
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Now we come back to prove equation (6) [5]:  

Since ( ) ( )yPxP ~~ = , there is Zz
~~ ∈  such that Zxy

~~~ =  using equation (6) we get   

( ) ( ) ( ) ( ) ( ) ( )11 1

t t ty y x Z x Zγ π γ γ π π
−−= % %% % % % % % %  from equation (8) we have  ( ) ( )1

ty yγ π =% % %  

( ) ( )1

tx xγ π−% % %  this proves equation (6) and hence tπ   is well defined. Now for 

( ) ( ) ( ), t tx y G xy xy xyπ γ π∈ = %% % %%

we apply               ( ) ( ) ( )t t txy x yπ π π=% %% % % % %

we get                   ( ) ( ) ( ) ( )t t txy xy x yπ γ π π= %% % %

we use                    ( ) ( ) ( )1

t tx x xπ γ π−= % %        

and                          ( ) ( ) ( )1

t tx y xπ γ π−= % % %  

this implies             ( ) ( ) ( ) 1
/t tx x xπ π γ −=% % %   

                               ( ) ( ) ( ) 1
/t ty y yπ π γ −=% % %  

by applying eq. (8) we get  

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )1 1

.t t t t
t t t

xy xy y r y x y x r y
xy xy x y

x y xyx y

π π γ π π γ
π γ π π

γ γ γγ γ− −= = =
% % % %

%%
% % %%% %  

form eq. (8) we get  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )0 ,t t t t

x y
x y m x y x y

xy

γ γ
π π π π

γ
=

% %
%%

%%

Since  ( ) ( )yxmyxm ,~,~
0 =  then  ( ) ( ) ( ) ( ),t t txy m x y x yπ π π=  where  Gyx

~~,~ ∈  are 

such  that  ( ) ( )yPyxPx ~,~ ==  this  shows  that tπ is  indeed  projective 

representation of G  with multiplier m . Since from the definition of tπ  it is 

clear that tπ  and tπ %  have the same invariant subspaces and since the latter is 

irreducible it follows that each tπ  is irreducible. Thus we have the required 

decomposition  of  π  as  a  direct  integral  of  irreducible  projective 

representation  tπ  with  the  same  multiplier  as  ( ): tdp tπ π π
⊕

= ∫ .  As  a 
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consequence  of  theorem (3-1-10)  we have the following corollary,  here  as 

above  G
~  in the universal cover of  GGPG →~

:,  is the covering map. Fix a 

Borel section GGS
~

: →  for P  such that ( ) 11 =S . Notice that the kernel Z
~  of 

P  is naturally identified with the fundamental  group  ( )G1π  of  G . Define 

the map.

ZGG
~

: →×α  by ( ) ( ) ( ) ( )1 1
, , ,x y S xy S y S x x y Gα − −= ∈                     (9) 

For any character (i.e., continuous homomorphism into the circle group 

T ) of  ( )1 Gπ define  TGGmx →×: ( ) ( )( ) Gyxyxxyxmx ∈= ,,,, α . Since  Z
~  is a 

central  subgroup of  G
~  it  is  easy to  verity  that  α  satisfies  the multiplier 

identity (7). Hence xm  is a multiplier on G for each character x  of Z
~ .

Corollary (3-1-11) [17]:

Let  G  be a connected semi-simple Lie group, then the multipliers  xm  

are mutually in equivalent and every multiplier on G  is equivalent to xm  for 

a unique character  x . In other words [ ]xmx →  defines a group isomorphism 

( ) ( )TGHomHTGH ,,,2 ≡ ,  for  MÓb∈ϕ ,  ϕ  is  non-vanishing  analytic  on  D . 

Hence there is an analytic branch of log 1ϕ  on D ′  Fix such a branch for each 

ϕ   such that

(a) For ,1=ϕ  log 0=′ϕ

(b) The map  ( ) ( )zz ϕϕ ′→log,  from  DMÓb×  into  £  is  a Borel function 

with such a determination of the logarithm we define the function ( ) 2

N

ϕ ′   and 

0>N  and ϕ′arg  on D ′ by ( ) ( ) 




 ′=′ z
NN

ϕϕϕ log
2

exp2 , and ( ) ( )zz ϕϕ ′=′ logImarg  

for zn∈  let TTf n →: defined by ( ) n
n Zzf = in the following all the Hilbert space 

H  is spanned by orthogonal  set { }Inf n ∈: . Where is s subsets of  Z  thus the 
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Hilbert space of functions  specified by the set I and { }Inf n ∈,  for  MÓb∈ϕ  

and complex parameters N  and µ  define the operator ( )1−ϕλµR on H  by

( ) ( ) ( ) ( ) ( )( )( ) MÓb,2
11 ∈∈∈′= −− ϕϕϕϕϕ µ

λµ H,fTzzfzZZfR
N

We obtain a complete result of the irreducible projective representations 

of Mob is follows that [10,11] Holomorphic discrete series representations +
λD  

here  +==> ZI,0,0 µλ  and  
( ) ( )

( )λ
λ

+Γ
Γ+Γ=

n

n
f n

12

 if  0=n  we  get  0
2 =nf  for 

0≥n  for  each  f  in  the  representation  space  there  is  an 

f
~

 analytic  in  D  such  that  f  is  the  non-

tangential  bounding  value  of  f
~ ,  by  the  identification  the   representation 

space may be identified with the function Hilbert space  ( )( )NH  of analytic 

functions on D with reproducing kernel 

( ) Nw −−21 , Dwz ∈, . 

Principal series representation sC ,11, ≤<− λδλ  purely imaginary. 

equation [5]:

( ) ( )
( )

( ) ( )
( ) ( )2 1

1n

n n n
f

n n n

λ λ
λ

λ
Γ + Γ Γ Γ

= = = Γ =
Γ + Γ  where  1≤λ  so  1

2 =nf ,  here 

1
, ,

2
s

λλ λ µ −= = +  , 1nI Z f= =  for  all  n  and  the  complementary  series 

representation  ( )λδλδλ −<<<<− 1
2

1
0,11,,C ,  here  ZI =+





 −== ,

2
1

2

1
, δλµλλ  

and

 
1

2

0

1

2 2 ,
1

2 2

n

n
k

k
f n Z

k

λ δ

λ δ

−

=

± + −
= ∈

± + +
C  

where one takes the upper or lower sign according as n is positive or negative. 

Theorem (3-1-12) [17]:
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 (i)  ωm  is a multiplier of Mobs for each T∈ω  up to equivalent ωm , T∈ω  are 

all the multipliers in other words,  2H (Mob)  is naturally  isomorphic to 

T  via the map ωω m .

(ii)  For each of the representations of Mob result above.

The associated multiplier is ωm where i Nwe e π=  in each case except for the 

auti-holomorphic  discrete  series,  from the  definition  of  µλ,R one calculates 

that the associated multiplier m is given by 

( )
( ) ( )

( ) ( )( )( )

2

2 1
1 1

1 2

22
1 1 1

, ,
z

m z T

z z

λ

λλ

φ φ
φ φ

φ φ κ

− −

′  ÷ = ∈
 ′ ′ ÷ 

For any two elements 21 ,ϕϕ  of Mob to show this we have [5]:

( ) 11 =π  from  equation  (3) ( ) ( ) ( ) ( )222 ggg,gg,g 111 πππ m=  by  applying  (3)  if 

πµλ =,R  then ( )( ) ( ) ( ) ( )1
2

1
1

1
2

1
1

1
2

1
1 ,,, −−−−−− = ϕϕπϕϕϕϕπ mzf  implies that

( ) ( )( )
( ) ( )1

2
1

1

1
2

1
11

2
1

1 ,

,
, −−

−−
−− =

ϕϕπ
ϕϕπϕϕ zf

m  

substituted          

πµλ =,R , ( ) ( )( )
( ) ( )1

2
1

1,

1
2

1
1,1

2
1

1 ,

,
, −−

−−
−− =

ϕϕ
ϕϕ

ϕϕ
µλ

µλ

R

zfR
m   

but since                   

( )( ) ( ) ( ) ( )( )1 2
,R f z z z f z

λ λ
λ µ φ φ φ φ− ′ ′=

 Implies            

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 12 2
1 2 1 2 2 21 1

1 2 1 1
, 1 , 2

z z z f z
m

R R

λ λ µ

λ µ λ µ

φ φ φφ φ φ
φ φ

φ φ

− −
− −

− −=

                      
( ) ( ) ( ) ( ) ( )( )

( )( ) ( )

1 12 2
1 2 1 2 2 2

1 1
, 1 2

z z z f z

R f z

λ λ µ

λ µ

φ φ φφ φ φ

φ φ
=

Then                         
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 ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )( )
2 2 2

1 2 1 2 2 1 1 21 1
1 2

1 12 22 2
1 2 1 1 2 2 1 1 2 1

z z z f z z
m

z z z f z z z

λ λ λµ

λ λλ λµ

φ φ φφ φ φ φφ
φ φ

φ φ φ φφ φ φ φ φ φ

− −
′−

= =
′ ′

 

       Notice that the right hand side of this equation is an analytic function of z 

in  D  and  it  is  of  constant  modulus1  in  view  of  the  chain  rule  for 

differentiation there fore by the maximum modulus principle, this formula is 

independent of  z for  Dinz . Hence we may take z = 0 in this formula and 

thus  ωmm =  with i Nw e π=  so  m is  the multiplier  associated  with  #π  is  m  

since #+= NDDλ  it follows that if λπ D=  is the anti-holomorphic discrete series, 

then multiplier is ωm  where i Nwe e π= . The multiplier ωm , Tw∈  are naturally 

equivalent (since [ ]ωmw→  ) is clearly a group homomorphism from T  onto 

( )TMÓb,2H  this amounts to verifying that  ωm  is never exact for  1≠w  this 

fact may be deduced from corollary (3-1-11) as follows [40,132]. Identify Mob 

with  ( )βαϕβα ,, viaDT×  the  group  law  on  DT×  is  given  by

( ) ( ) 2 1 2 1 2 2
1 1 2 2 1 2

2 1 2 2 1 2

1
, , . ,

1

α β β β α βα β α β αα
α β β α β β

 + += ÷+ + 
,  the identity in  DT×   is (1,0) and 

inverse map is ( ) ( )αβαβα −=−1,  then the universal cover is naturally identified 

with  DR×  taking  covering  map.  DTDR ×→×  to  be  ( ) ( )ββ π ,, 2 itetP = ,  the 

group low on  DR×  is determined by the requirement that  P  be a group 

homomorphism as follows

               ( ) ( ) ( )
2

2

2
2 1 2

1 1 2 2 1 2 1 2 2
1 2

1
, , log` 1

it
it

it

e
t t t t Im e h

e

π
π

π
β ββ β β β

π ββ
− +

= + + +
+  

to show this we have [5]:

 Let 12
1

ite πα = ,  22
2

ite πα = . Substitute 1α  and 2α  in the following equation 

( )( ) 





′+

+
′+

′+
=

212

221

212

212
212211 ,

1

1
.,,

ββα
βαβ

ββα
ββαααβαβα

we get                  
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( ) ( ) 










+
+

+
+

=
−

21
2

2
2

1

21
2

2122
2211

2

2

2

22

21 ,
1

1
..,

ββ
ββ

ββ
ββ

βαβα π

π

π
ππ

π

it

it

it
itit

e

e

e

e
ee

it

                 















+

+
−













+











 −
+

+
=








21
22

2
22

1,

1

21
2

2
1

21
2

2
1.212

ββ
π

β
π

β
ββ

π
ββ

ππ
it

e

it
eit

e
it

e
tti

e

                        

               















+

+











 −
+











 −
+

+
=








21
22

2
22

1,
21

2
2

1
21

2
2

1.212

ββ
π

β
π

β
ββ

π
ββ

ππ
it

e

it
eit

e
it

e
tti

e

                ,

21
22

2
22

1,

2

21
2

2
1.212

















+

+












′

−
+

+ 






=
ββ

π
β

π
β

ββ
ππ

it
e

it
eit

e
tti

e

and this gives                                                     

                 ( )( )


















+

+−
−++=

21
2

2
2

2
2

1,
21

2
2

1logIm
1

212
,

22
,

1
ββ

π
βπβ

ββπ
π

ββ
it

e

it
eit

eTTtt   

where (log) denote the principle branch of the logarithm on right halt plane. 

The identity in  DR×  is (0,0) and the inverse map is  ( ) ( )itett πβ 21, −−=−  

and the kernel Z
~  of the covering map P  is identified with additive group Z  

via  ( )0,nn→   so we choose a Borel branch of the argument function satis-

fying ( ) ( ) TzZZ ∈= ,argarg  we make   an explicit choice of the Borel function 

( ) ( )( )zz ϕϕ ′→arg,  as  follows  ( ) ( ) ( )zz βαϕβα −−=′ 1logIm2argarg ,  let’s  also 

choose  function  DRDTs ×→×:  as  follows  ( ) ( )( )βαβα π ,, 2
1=S  and  easy 

computation  shows  that  for  these  choices  we  have  ( ) ( ) ( )1 1
1 2 2 1S S Sφφ φ φ− − =  

( )1 2n φφ−  for 21 ,ϕϕ  in Mob.  Hence we get that for χmmTw w =∈, where wχχ=  

is the character n  maps to nw− of Z . Thus the map [ ]wmw→  is but a special 

case  of  the  isomorphism  χχ m→ of  corollary  (3-1-11)  to  show  the  simple 

representation of the Moby’s group let k  be the maximal compact subgroup of 
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Mob given by { }T∈αϕα :0,  of course k  is isomorphic to the circle group T  

via 0,αϕα→via .

Definition (3-1-13) [17]:

Let  π  be  a  projective representation  of  Mob and we shall  say π   is 

normalized if k/π  is an ordinary representation of k . 
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Lemma (3-1-14) [17]:

For any projective representation δ of Mob then k/δ  is projective repress-

entation of k say with multiplier m. But ( )kH 2  so there exists a Borel function 

Tkf →:  such that  ( ) ( ) ( )
( ) kyx
xyf

yfxf
yxm ∈= ,,, . Extend f  to a Borel function

TMÓb: →g . Define π  by ( ) ( ) ( )xxgx δπ = , MÓb∈x  then π  is normalized and 

equivalent to δ  for Zn∈ , let nχ  be the character of  T  given by ( ) n
n xx −=χ ,

Tx∈  for any normalized projective representation  π  of  Mob  and Zn∈  let 

( ) ( ){ }1: ,n nV v x v x v x Tπ π χ= ∈ = ∀ ∈H  then  πnzn V∈⊕=H .  The  subspace  ( )πnV  

are usually called the  k -isotopic subspaces of  H  put  ( ) ππ nn Vd dim=  and 

( ) ( ){ }0: ≠∈= ππ ndZnT .

Definition (3-1-15) [17]:

(a) A subset  A  of  Z  is  said to be connected if  for any three elements 

Ca <<δ  in  ACaZ ∈,, implies Ab∈ .  If  B  is  any  subset  of  Z .  a 

connected subset of  B .  Since the union of two intersecting connected 

sets is clearly connected, the connected components of a set partition the 

set.

(b) let π  be a normalized projective representations of Mob we shall say that

π is  connected ( )πT  is  connected  π  will  be  called  simple  if  π  is 

connected and further  ( ) 1≤πnd  for all  Zn∈ . More generally projective 

representation is connected simple if it’s equivalent to a connected simple 

(normalized) representation. 

Remark (3-1-16) [17]: 

If π  and δ  are equivalent normalized representations then there is an 

integer  h  such that  ( ) ( )πδ hnn vv +=  for  all  Zn∈   consequently  ( )δT  is  an 

additive translate of ( )πT . Hence δ   is connected simple if and only if π  is 

thus the definitions given above are constant and we need this 

Lemma (3-1-17) [17]:
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Let  π  be  normalized  projective  representation  of  Mob then  each 

connected component of ( )πT  is unbounded.

Theorem (3-1-18) [17]:

Up to equivalent the only simple projective representations of Mob are the 

irreducible projective representations of Mob and the representations  

20,2 <<⊕ −
+ λλλ DD  

Theorem (3-1-19) [17]: 

If T  is an irreducible homogenous operator the T  is a block shift. If π  

is  a normalized representation associated with T then the blocks of  T  are 

precisely the k -isotopic subspaces.

  ( ) ( )ππ TnVn ∈, .

Proof:

If  T  is an irreducible block shift  then the blocks of  T  are uniquely 

determined by T . Then 

( )( ) ( )ππ 1+⊆ nn VVT  for ( )πTn∈                            (10)

indeed since  T  is irreducible then equation (10) show that  π  is connected 

and  ( )πTb∉  then (10)  would imply that  ( )πnbn V<⊕  is  a  non-trivial.  Since 

unbounded by theorem (3-1-21) it follows that be re-indexing, the index can 

be taken to be either all integer or the non-positive integers, therefore T  is a 

block shift. So it only remains to prove (10). To do this, fix ( )πTn∈      and 

( )πnv∈  for kx∈  we have ( ) ( )vxvx nχπ = . Consequently 

                       ( ) ( ) TvxTvx
*1−=ππ

                                 ( ) ( ) ( )( )vxxTx ππ 1*1 −−=

                                 ( ) ( ) ( )( )* 11 nNx T T x v x Tv− +− −= =

So ( ).1 π+∈nVTv , this proves (10) 
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Lemma (3-1-20) [17]: 

Let  T  be any homogenous weighted shift, let be the projective Repre-

sentation  of  associated  with  T .  Then  up  to  equivalent π   is  one  of  the 

representations further 

(a) If  T  is  a  forward  shift  then  the  associated  representation  is 

holomorphic discrete series.

(b) If T  is a back word shift then the associated representation is auti-

holomorphic discrete series.

(c) If  T  is a bilateral shift then the associated representation is either 

principle series or complementary series.

Theorem (3-1-21) [17]: 

Up to  unitary  equivalence  the  only  homogenous  weighted  shifts  are 

reducible.

Proof: 

Let T  be homogenous weighted shift. If  T  is reducible we are done 

by theorem (3-1-2). So assume T  is irreducible then by theorem (3-1-4) there 

is a projective, representation π of Mob associated with T . By lemma (3-1-3) 

π  is one of the representation. Further replacing T  by *T  if necessary, we 

may assume that T is either a foreword or bi-lateral shift. 

According π is either a homomorphic discrete series representation or a 

principal  complementary  series  representation.  Hence  µλπ ,R=  for  some 

parameters λ µ  recall that the representation space πH  is the closed span  of 

the function Inf n ∈,  where ( ) InZzf n
n ∈= ,  and +∈ZI  in the former case and 

ZI =  in the a case the element’s Inf n ∈,    form a complete orthogonal set of 

vectors in πH  ,  but these vectors are not unit  vectors .  Their norms are as 

given before .Since T  is a weighted shift with respect to the orthogonal basis 

of obtained πH  by normalizing sf n  where are scalar Inan ∈> ,0  such that 

InanfTf nn ∈= + ,1
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Notice that since the sf n  are not normalized the numbers an are not the 

weights of the weighted shift T . These weights are given by follows there the 

adjoint *T acts by Inffaw nn ∈= + ,/1

Its follows that the adjoint act by Infan
f

f
fT n

n

n
n ∈−= −

−

,1 12

1

2

*  where one puts 

01 =−a  in  case  +=ZI  let  M  be  multiplication  operator  on πH  define  by 

InfMf nn ∈= + ,1 .

Notice that for each representation is corresponding operator M . Also in 

case M is invertible 1*−

M is also exist. Let B be a fixed but arbitrary element 

of  D and let  ∈= − ββ ϕϕ ,1  Mob.   Notice that  βϕ  is an involution and this 

simplifies the following computation of  ( )βϕπ  a little bit  indeed a straight 

foreword calculation shows that for µλπ ,R= we have

( ) ( )
( )

( ) 10,,1,
2 ≤≤−= ∑

+−≥

− rrnmCfBCff k

nmk
kn

mnn
nmBϕπ                  (11) 

where  we  have  put  2β=r ,  ( ) m

N

C += 2
1 0βϕ  and  ( ) 




 +−






−+

−−−
=

k

m

nk

mN
nmCk

µ
µ

µ
,  since  π  is 
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associated  with  T  from  the  following  equation  (4)  we  have 

( )( ) ( )( )TITIT −=− βϕπβϕπ ββ  to show this [5]:

 we analysis the two sides of the above equation we get

( )( ) ( ) ( ) ( )TTTT ββββ ϕπβϕπβϕπϕπ −=−   

implies ( ) ( ) ( ) ( )TTTT ββββ ϕπββϕπϕπϕπ +=+  and 

( ) ( ) ( ) ( )TTTTTT ββββ ϕπϕπϕπϕπβ +=+

where nm,   fix in I, we evaluate each side of the above equation at  and take 

the inner product of the resulting  vectors with   we have for the instance

( ) ( ) nmnm fTTffTfT *,, ββ ϕπϕπ =  ( ) 112

1

2

1 , −+
−

−= nm

n

nm ff
f

f
aa n

βϕπ   

and similarly for the other three terms . Now substituting from equation (11)

we get ( ) ( ) ( )
( )

k

nmk
kn

mnn
nm rnmCfBCff ∑

+−≥

−
++ −+−=

2

2

11 1,11,βϕπ , by 

applying equation (11) in the main equation we have

( ) ( ) ( )
( )

k

nmk
kn

mnn

n

n
nmnm rnmChBC

f

f
aafTTf ∑

+−≥
−

−

−
− −+−=

2

2

12

1

2

1
* 1,11,βϕπ

by comparing with the equation (11) we get 

( ) ( )
( )

=−+− ∑
+−≥

−
−

k

nmk
kn

nmn
nm rnmCfBCaa

2

2

1 1,11     

( ) ( )
( )

2

2

1 ,
n n m k

n k
k m n

C B f C m n r−

≥ − +

− ∑

where 10 ≤≤r , 

( )
( )

( )
( )
∑∑

+−≥+−≥
− =−+

22
1 ,1,1

nmk

k
k

k

nmk
knm rnmCrnmCaa

we canceling the common factor ( ) mn
n

n BfC −−− 211   we have the following 

identity in the indeterminate r  which is obtained from the above

( )
( )

( )
( )
∑∑

+−≥+−≥
− +=−

22
1 ,11,

nmk

k
km

k

nmk
kn rnmCarnmCa  

(12)

taking nm =  in equation (12) and equating the coefficients of  r ′  we obtain
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( ) ( ) 11 1 +−=−+ −nn anan µµ                      In∈                                          (13) 

Homogeneous Operators and Mobius Group

Section (3-2):

Definition (3-2-1) [15]:

 An operator  T  is called homogenous if  ( )Tϕ  is unitary equivalent to 

T  for all ϕ in Mobs which are analytic on the spectrum of T  .
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Lemma (3-2-2) [15]:

Let ( )k.LB→D:θ  be a pure contraction valued inner analytic function. Let 

denote the invariant subspace ( ) LH ⊗D2 corresponding to θ  in the sense of 

Beur’s theorem. That is ( ) ( ) ( ){ }2:z z f z f H kµ θ= ∈ ⊗a D  then θ  coincides with 

the characteristic function of the compression of multiplication by z  to the 

subspace ⊥µ  [14,45]. 

Lemma (3-2-3) [15]:

Let T  be contraction in the class 0C  with characteristic function θ  let 

µ  be a scalar in the range 10 <<M  and put 21 µδ −= . Then with respect to 

the decomposion 2
kHMM ⊕⊕⊥ of its domain the operator [ ]µT

2222
LLLL HHHH →⊕⊕

has the block matrix representation.

[ ]















=

*

2221

11

00

00

N

MEMM

M

T δµ .

Theorem (3-2-4) [15]: 

Let θ  be the characteristic function of a homogenous Cnu  contraction. 

If θ  is a compact operator then θ  must be constant function. 

Proof 

Let ( )Lk,B→D:θ  be  the  characteristic  function  of  a  homogeneous 

operator.  Assume  ( )0θ=C  compact.  Replacing  θ  by a coincident analytic 

function if necessary we may assume without loss of generality that Lk =  and 

0≥C .  By  lemma(3-2-3)  there  exists  unitaries  zz VU ,  such  that 

( ) D.∈= zCVUz zz ,θ let  ...21 >>λλ  be  the  non-zero  eigenvalues  of  compact 

positive operator  C at this point shows the eigenspace  corresponding to the 
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eigenvalue 1λ   a common reducing subspace for  D∈zVU zz ,,  and hence for 

( ) D∈zz ,θ  we can write ( ) ( ) ( )zzz 21 θθθ ⊕=  where 1θ  is an analytic function into 

( )1kB . Since 1θ must be a constant Replacing the same argument with θ  one 

concludes  by induction  on  n  that  the eigenspace nk corresponding to  the 

eigenvalue nλ  is reducing for ( ) D∈zz ,θ  and the projection of θ  to each  nk  

is a constant function. Since the same is obviously true of the zero eigenvalue 

we are done.

Definition (3-2-5) [15]:

Two projective representation 1π , 2π  of G  on the Hilbert spaces 21 HH ,  

(respectively)  will  be  called  equivalent  it  there  exists  a  unitary  operator 

HH1 →:U  and  a  function  (necessarily  Borel),  TGf →:  such  that 

( ) ( ) ϕπϕϕπ 12 UfU =  for all G∈ϕ .

If  T  is  an  operator  on  a  Hilbert  space  H  then  the  projective 

representation  π  of  Mob on  H  is  said  to  be  associated  with  T  if  the 

spectrum of  T  is contained in D  and

( ) ( ) ( )ϕπϕπϕ TT *=                                                                                  (15) 

for all elements ϕ  of  Mob clearly if T  has an associated representation then 

T  is homogeneous. In the converse direct we have.

Theorem (3-2-6) [15]: 

If  T  is an irreducible homogeneous operator then  T  has a projective 

representation  of  Mob  associated  with  it.  This  projective  representation  is 

unique up to equivalence. 

Theorem (3-2-7) [15]:

If  T  is an irreducible homogeneous contraction then its characteristic 

function ( )lk,B→D:θ  is given by ( ) ( ) ( ) D∈= zCz zz ,* ϕϕπθ σ  where π   and σ  

are two projective representation of Mob with a common multiplier. Further 

LkC →:  is  a pure contraction which intertwines  k/σ  and  k/π  conversely 

whenever  σπ,  are  projective  representation  of  Mob  with  a  common 
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multiplier and C  is a purely contractive intertwine between k/σ   and  k/π  

such that the function  θ   defined by 

( ) ( ) ( )zz Cz ϕϕπθ σ
*=  

is  analytic  on D  then  θ  is  the  characteristic  function  of  a  homogeneous 

contraction. Here zϕ  is the involution in Mob which interchanges 0   and z  

also ( ){ }00:MÓb =∈= ϕϕk  is the standard maximal compact subgroup of Mob).

Lemma (3-2-8) [15]:

The only Cnu contractions with a constant characteristic function are the 

direct  integrals  of  the  operators )*1(M  and 0, >λλB .  The  examples  of 

homogeneous operator given so a are all weighted shifts. 

Lemma (3-2-9) [15]: 

Up to unitary equivalence the only irreducible homogeneous operators in 

the  ( )D2BDouglasCowen−  are the adjoin of the operators  ( )1 2, ,W λ λ  1 20, 0λ λ> >  

Wilk’s operator *
,ρλT is unitary equivalent to the operator ( )21 ,

2
λλW   

Theorem (3-2-10) [15]:

For  ,....2,1=k  and real number  k>λ  the characteristic function of the 

operator  ( )k
kW

−λ,1  coincides  with  the  inner  analytic  faction 

( ) ( ) ( )k-k HHD λλλθ ,: +→Bk  given  by  ( ) ( ) ( ) D∈= + zDCz zkk ,, ϕθ λλ
λ .  Here  *k∂  is  the 

adjoin  of  the  k-times  differentiation  operator  ( ) ( )kk- HH +→∂ λλ:k and

( ) ( ) 2

1

1,
−

−−= −= eC k
kek λπλ .

Proof: 

It is easy to check that *
,

k
kcC ∂= λ  is a pure contraction intertwining the 

restrictions to k of  +
+kDλ  and  +

−kDλ  since we already know that  λθ k   is an 

inner analytic function  1=k  the recurrence formula  ( ) ( ) ( ) ( )k
k

k
k

+
−

−
+ = λλλλ θθθθ 1111  for 

1,1 +>≥ kk λ  with the interpretation that  ( )λθ 0  denotes the constant function) 
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shows that  ( )λθ k  is an inner analytic function on D  for  ,...2,1, =>kkλ a . .c n u  

contraction  T  in  the  class  C  and  T  is  the  compression  to  ⊥M  of  the 

multiplication  operator  ( ) k-Hλ⊗1H  where  M  is  the  invariant  subspace 

corresponding  to  this  inner  function.  But  one  can  verity  that  µ  is  the 

subspace consisting of the functions vanishing to order  K  on the diagonal 

therefore ( )k
kWT −= λ,1 .

Lemma (3-2-11) [15]:

Every  normal  homogeneous  operator  is  direct  sum  (countable  many) 

copies of B  and N .

Let  us  define  an  atomic  homogeneous  operator  to  be  a  homogeneous 

operator  which can not  be written as  the direct  sum of  two homogeneous 

operators. We have 

Corollary (3-2-12) [15]:

B  and  N  are atomic ( but reducible) homogeneous operators  N  is a 

Cnu  contraction. 

Lemma (3-2-13) [15]:

The characteristic function  ( )( )DD 2LB→:Nθ  of the operator  N  is given 

by the formula.

Lemma (3-2-14) [15]:

Up  to  unitary  equivalence  we  have  CBN ⊗=  where  the  positive 

contraction C  is given on a Hilbert space with orthogonal basis       { }0: ≥nf n  

the  formula  ,...2,1,0,11 =++= +− nabnfanfCf nnnn  where ( )01 =−f  and  the 

constants an, bn are given by 

( ) ( )
( )( ) 0,

3212

12
,

24

1 2

≥
++

−=
+
+

= n
nn

n
bn

n

nn
an

Theorem (3-2-15) [15]:

If T  is a bounded operator then ( ) ∞→= masmT m 0
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Proof:

Say  ( )T Cϕ ≤  for  ∈ϕ  Mob for any  MÓb∈ϕ  we have an expansion 

( ) m

m
m zaz ∑

∞

=
=

0

ϕ  valid  in  the  closed  unit  disc.  Hence  ( ) ααϕ daTTa
T

m
m

1−∫=  

where  the  integral  is  with  respect  to  the  normalized  Haar  measure  on  T

therefore we get the estimate CTa m
m ≤     for all  m  choosing βϕϕ ,1=  we 

see that for  1≥m  , ( ) 121 −−= m
m rra  where β=r . The choice ( ) ( )1/1 +−= mmr  

gives ( )mam /10=    and hence ( )mT m 0=  . 

Section (3-3): Homogeneous operators of Holomerphic Function

Proposition (3-3-1) [5]:

 Suppose  H  has  a  reproducing  kernel  k  then  U  is  unitary 

representation if and only if k  is quasi-invariant [67]. 

Proof:

Assume  that  k  is  quasi-invariant,  we  have  to  show  that  the  linear 

transformation U  is unitary. We note writing ( )ww 1−=g and 

              ( ) ( ) ( ) ( ) ( )ζζ 11111 .,,.,, wkUwkUww −−−= ggg

                            ( ) ()( ) ( ) ()( )ζζ wkJwkJ ,,, .gg,..gg,.=

                            ( ) ( ) ( ) ( ) 1*1 ~~.,,~~.,
−= 1-1* wg,wg, JwkJwk ζ

                            ( ) ( ) ( ) ζζ 1*1 ~,~~,~ −= 1--1* wg,wg, JJwwk

                            ( ) ( ) ( ) ηζ ,,~~,~~ 1*
11 −−= wg,wg, 1 JwwkJ

Since   ( ) ( ) ( ) ( ) ( ) ηζζζ ,,.,,., 1111 wwkwkUwkU =−− gg  and  it  follows  that 

( )1−gU  is  isomeric.  On  the  other  hand  U is  unitary  then  the  reproducing 

kernel k of the Hilbert space H  satisfies the transformation rule . It follows 

from uniqueness of the reproducing kernel that the expansion is independent 
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of  the  choice  of  the  orthogonal  basis.  Consequently  we  also  have 

( ) ( )( )*

0

, weUwzk
L

L∑
=

= 1-g .

We need a relation between ( )zg′′  and ( )zg′  the elements of 0G  are the 

matrices 1, 22 =−





ba

ab

ba
 acting  on  D  the  inequalities  2

1

2

1
1 <<− ba  determine  a 

simply connected neighborhood 0U o e  in 0C  under the natural projections 

it is dimorphic with a neighborhood of U%  of  e  in G , so we  may use ,a b  

satisfying  inequalities  parameterize  U
~  for  D∈∈ zU ,

~
g  we  have 

( ) ( ) 2−′+′=′ azbzg  by taking ( )zg
dz
d ′  we get ( ) ( ) 3

2
−+−=′′ azbbzg     

which gives a relation  

( ) ( ) 2

3

2 zgzg ′−=′′ c  

(16)

to proof (16) [5]:

We use the relation ( ) ( ) 2−+=′ azbzg where ( ) 2
bz a′ = +g z   ,  ( ) za /−̂′= zgb  and 

( ) ( )( ) ( )( ) ( )( )
( )( )

( )
22 32 3

3 2
3

2 / 2 2
2

a
a z c

 − ÷′′ ′ ′ ′′ ′= =− − =− =−
 ÷′ 

b g z g z g z g z g z
g z

where  ( )( ) 3

2

zg′
−=

z

a
C  the  prove  is  complete.  Where  depends  gCC =  on  real 

analytically and is independent of the meaning of ( ) 2

3

zg′  is as defined earlier 

since both sides are real analytic (16) remains true on all of D×G~ .  
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Definition (3-3-2) [4]:

Let :J G +× +× →% £ m 1 m 1D  be the function given by the formula for here is the 

constant  depending on the following lemma is  used for  showing that  is  a 

multiplier representation. 

Lemma (3-3-3) [4]:

For any we have the formula 

( ) ( ) ( ) ( )
2 2

m p L
p L z

C if p L

if p L

λ +− − +  ′− ≥ ÷=  
 <

p,L

p
g

J g,z L

0
                                       (17)

for Gg
~∈ . Here C  is the constant depending on g  as in (16). The following 

lemma is used for showing that U  is a multiplier representation.

Lemma (3-3-4) [4]:

For any Gg∈  we have the formula 

( ) ( ) ( ) ( ) ( ) ( ) ( )gfggg iociL
i

k
fo

ik
Lik

ik

k

L

kL
2

0

2
+

+−
−

=

′−+





=′ ∑        

Proof:

The proof is by induction using formula (17) for  0=k the formula is an 

identity assume the formula to be valid for some k  then
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 ( ) ( ) ( ) ( ) ( ) ( ) 1
2

0 2
2 −−+

−

−
=

+ ′




 ++−+





=′ ∑

ik
L

ik

ik

k

L

LkL ik
LciL

i

k
fo ggg

      ( )( ) ( ) ( )( )ggggfg i ′′=+′′ +
+

+ ofo i
Lp

L 1
2  

                    ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )gggg ofofcikLiL
i

k i
ik

LLki
ik

L
ik

k

L

1
2

2

2

1

0

22 +−++++−+++
−

=

′′−+++





= ∑

                    ( ) ( ) ( ) ( ) ( )( )gg ofcikLiL
i

k i
ik

Lik
ik

k

L

−+++−+
−

=

′−+++





= ∑ 2

1
1

0

22
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                       ( ) ( ) ( ) ( )( )gg ofciL
i

k i
ik

Lik
ik

k

L

−+++−+
−+

=

′−−+





−

+ ∑ 2

1
1

1
0

12
1

Now we observe that 

                 ( ) ( ) ( ) ikik iL
i

k
ikLiL

i

k
−+− −+





−

++++





112

1
22

                     ( ) ( )








−+





−

++++





+= − 12

1
22 iL

i

k
ikL

i

k
iL ik
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                   ( ) ( ) ( ) 





−

+−+





++





−

+





+ − 1

12
1

2
i

k
ki

i

k
ikL

i

k

i

k
iL ik

                      ( ) 




 +
+= −+ i

k
iL ik

1
2 1

.

Thus  ( ) ( ) ( ) ( ) ( ) 2

1
11 1

2
1

++
+−++ ′−




 +
+=′

−+

ik
LikkL c

i

k
iLfog

ik
gg  completing the induction step we can prove the 

following theorem. 
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Theorem (3-3-5) [5]: 

The image of  +⊕ λD
m
0  under  Γ  is a multiplier representation with the 

multiplier given by ( ),J zg  as in (17). 

Proof: 

It  will  be  enough  to  show  ( )( ) ( ) ( )( )gg,.g-1 ofJfD jj j
Γ=Γ +

λ .  For  each 

mjj ≥≤0,  we compute pth  the component on both sides. For jp <  both sides 

are  zero by definition of  jΓ  and  knowing that ( ) 0, , =LpzJ g  for  0>L  this 

comes for equation (17), for jp ≥ , we have using the lemma (3-3-4)

        ( ) ( )( ) ( ) ( ) ( )( )1 1

2
i j

i

p j

j
p

j p j

p
D f fo fo

i
λ λ

λ λ

−
+ −

−

  ′Γ = ÷
 

g g gg

                                   ( ) ( ) ( ) ijp

ijpj

jp

jjpj

Ci
i

jp

j

p −−
−−

−

=−

−+




 −






= ∑ λ

λ
2

2

1

0

                                       ( ) ( )( )gg of
ijp ij

2

+−+′ λ  
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                                  ( ) ( ) ( ) ( ) ( )ogfCjL
jL

jp

j

p jLLp

Lpi

p

jLjpj

Lpji

−−
−

=−

++−

′−−+




 −






= ∑ 22

2

1 λ

λ
λ

g

                                ( )
( )

( ) ( ) ( ) ( ) ep

jLj

m

jL

C
jLjLjp

jp

jjp

p −

−−

−
−+−−

−
−

=∑ λ2

1

!!

!

!!

!

                                     ( ) ( )gg of jL
Lp

jj −
+

+−′ 2
λ

                                ( )( ) ( ) ( ) ( ) ( )( )gg ofC
LpjLj

p jL
Lp

jLp

iej

m

jL

i −
+

+−−

−=

′−
−−

=∑ 2

2

1

!!

! λ

λ

                                = ( ) ( )( )
Lj

Lp

m

L

ofJ gΓ∑
= ,0

,.ϕ

 The  orthogonal  basis  on  the  operator  M  the  vector  ( ) ( )










Γ= nj
j

j
n z

n

n
ze

!

2λ

clearly form an orthogonal basis Hilbert space ( ) ( )DjA
λ  we have by definition 

of jΓ  

              ( )

( )
( )

( )













+≤≥
+−






+><
=

−−

−

jnjandLLz
n

jLn

n

j

L

jnjorLL

ze

jLn

jLi

j

L
j
n

λ

λ

2

2!

0

      (18)
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We compute the reproducing kernel ( )DjBλ  for the Hilbert space ( ) ( )DjA λ . We 

have                 ( ) ( )( ) ( )( )*

0

, wezewzB j
nj

n

j
nj

j ΓΓ=∑
∞

=

λ

                            
( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )

* *

0 0 0 0

,i

j j j j
j n j n j n j n

n n n n

z w
j j

e z e w e z e w

B z wλ

∞ ∞ ∞ ∞

= = = =
= Γ Γ = Γ Γ

= Γ Γ

∑ ∑ ∑ ∑
         (19) 

Since the series converges uniformly on compact subsets. Explicitly

  ( ) ( ) ( ) ( ) ( ) ( )
iPLif

otherwise

wzBjLjp
jLj

p

j

L

wzB
j

j

jpjjLp ≥







−∂−∂

−











= − ,

0

,
2

1

2

1

, ,

λ
λ λλ         (20)

  In particular it follows that ( )0,0jBλ  is diagonal and

                   ( ) ( ) ( )
( )







≥
−

−
<

=
iLif

jL

jL
L

jLif

B

j
j

LL
j

λ

λ

2

!

0

0,0 2,                                    (21)

Then                      ( ) ( )∑
=

=
m

j
jLL

jj BB
0

2
, 0,00,0 µλλ

                                                 (22)

a useful formula for ( )wzB ,,µλ  and D∈z  we get 
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set ( ) ( )1,1
1

1

1

1
2

SU
z

z

z
p z ∈






−
=  we also write zp  for the corresponding element of G

~  such 

that zp  depends continuously on D∈z  and ep =0   then ( ) zppzp zz −== −1,0 . 

By theorem (3-3-5) holds for µλ,B   and gives

( ) ( ) ( ) ( )zzBzJBzJ u
zp

u
zp ,0,0 ,*, λλ =−−  

(23)

 we have  ( )
( )

( ) ( ) 12

2

2

1,
1

1 −

−− −=′
−

−
=′ zzp

z

z
p zz ζ

ζ  the  − £  of (16) corresponding to 

( )2
1 z

z
isp z

−
−  so (10) gives 

( )








<

≥





−

=
−−−

−

Lp

Lpz
L

p
z

zJ
Lp

m

Lpzp

0

1 22

,

λ

  

which can be written in matrix forms as   

( ) ( ) ( )m

m

zp SzzDzzJ exp1
2

22 −−

− −=
λ  

(24)

where  ( ) ( )2 2
,

,
1

m L

p L
p L

D z z δ
−

= − is diagonal and  mS  is the foreward shift on 

1m+£  with  weight  sequence  { }m,...,1  that  is  ( )
Lp

LS pLm ,1, +
= δ , mLp ≤≤,0  
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substituting (24) in to (5) and polarizing we obtain  ( ) ( ) ( ) 2, , 1
m

B z w zw
λλµ − −= −  

( ) ( )exp mD zw wS  

( ) ( ) ( ) ( )wzDzSB m
*, exp0,0 =µλ  

(25)
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