Chapter 3
Homogenous Shifts Operators and Holomorphic

Functions
We prove that a homogenous operator is unitary and a reducible
homogenous weighted shift is unweighted bilateral shift, also a projective rep-
resentation is irreducible, if the unitary operator have non common non-trivial
reducing subspace. We prove an irreducible projective representation with
multiplier and especial multipliers of Mobius. We prove that a group law is
determined by a group homomorphism. We give a computation of a
normalized representation, that a unitary representation is equivalent to its
quasi-invariant is proved and an image under the operator is a multiplier
representation is considered and proved [16,18,19,20].
Section (3-1): Homogeneous Operators and Weighted Shift
with Multipliers

Lemma (3-1-1) [5]:

If is a homogenous operator such that + is unitary for some
positive integer k then  is unitary [120, 122].

Proof:
Let 90 Mobs since «» is unitary, it follow that (e7)]' is unitary

equivalent to * and hence is unitary particular by taking <= we find
that the inverse and the adjoint of @ —=¢¢ —=>" areequal ¢ -—=*¢-—=r |

Since  is unitary implies that @ =+ ¢ ===y —& === ¢-—>==> and we
get ¢ —==¢-—-=> andhence -~~— we have

(r-pr) (1-@") =(r -a)"  (r"-p1]
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For all ~» the two side of this equation is expanding binomially and the

i

L
binomial rule is ﬂ'b ] a b . By applying this rule we get

|
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by equaling the coefficients of powers weight 777~ —=*—7>~  for

o—=~—=__Noting that our hypothesis on ' implies that ' is invertible, we

. Tm T*k*m . . . . .
find —==7= implies 7»=* —=——  for all ~" in this range, in

particular taking ~———+ wehave r = a ' isunitary.
Theorem (3-1-2) [5]:

Up to unitary equivalence, the only reducible homogenous weighted shift
(with non-zero weights) is the un weighted bilateral shift B.
Proof:

Any such operator - is a bilateral shifts and its weight sequence
w.. »tx s periodic say with period, we may assume = forallninz

The spectral radius @ of * is given by the following

|
r+ = hm %Up( (A)ij +1...0.)n +J_1)
tO

j=0

r(T) maX(F, r +) Where

OG-
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In our case since the weight sequence * is periodic with period k this

formula for the spectral radius reduces to

F(T) =(cqep.ca )r
Now assume that  is also homogenous, then -¢>= | Thus <= by
the periodicity of the weight sequence, it then follows that === <= —

o therefor it ~-~=* is the orthogonal basis such that 7. =~.. =s*~. for

all n and hence + =» |, since B is unitary show that ' is unitary therefore
©is unitary. Hence <~=+~.I ==~ since - implies ~I= for all
. Thus === .

Definitions (3-1-3) [17]:

If is an operator on a Hilbert space ‘ then a projective
representation Ttof Mob on ' is said to be associated with * if the spectrum
of ' is contained in D and

AT) =k TS (1)
For all elements = of Mob
Theorem (3-1-4) [17]:

If + is an irreducible homogenous operator, then * has a projective
representation of Mob associated with it- Further this representation is
uniquely determined by

For any projective representation Tt of Mobs let denote the projective
representation of Mobs obtained by composing with the automorphism * of
Mobs so [73,48]

7t (@ =4 P) (2)

We note.
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Proposition (3-1-5) [17]:

If the projective representation is associated with a homogenous
operator ' then is associated with the adjoint + of ' . Further - is
invertible then is associated with = also it is follows that *~ and =
have the same associated representation.

Theorem (3-1-6) [17]:
Let * be a Hilbert space of function on such that the operator ' on
© giver by ¢ro=rco> = = - = js bounded. Suppose this is a multiplier
representationTt of Mob on * . Then ' is homogenous and is associated
with
Definition (3-1-7) [17]:
Let ' be a bounded operator on a Hilbert space * then T is called a

block shift is an orthogonal decomposition *"=9.w. of ' in to non-trivial

subspace w. =¥ such that 7(v.)=w.. the following is due to Mark
Ordower.
Lemma (3-1-8) [17]:
If '+ is an irreducible block shift then the blocks of ' are uniquely
determined by
Proof:
Fix an element - of infinite order and let * , = be blocks of

then define a unitary ‘ operator ' by s—=~ for ~~ , - _ Notice that

by our assumption on the eigenvalue <--=— of are distinct and the
blocks * of ' are precisely the eigenspaces of If w..novare also
blocks of ' then define unitary ‘ replacing the blocks * , - by the

definition of

A simple computation shows that we have s7s”=a =srs’ hence

== commutes with + since s is unitary and = is
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irreducible and ss is a scalar. That is s=# for ~* therefore ' has
same eigenspaces as ' thus the blocks of are uniquely determined as
eigenspaces of

To define the projective representation and multipliers, let G to be a
locally compact second countable to topological group then a measurable

function.

mm: G —u(H)
is called a projective representation of on the Hilbert space * if there is

function =~:<=-= —= such that

M)=1 | 7t gg,) =m(99,) 7£9) 7£9,) (3

b

for all (9.9 . Two projective representation =,  in the Hilbert spaces
», * will be called the equivalent if there exists a unitary operator
«:ra —H.and function »< —7 . Such that 7z(9a(9u7z(9 | Forall @@=

We shall identify two projective representation they are equivalent.

Recall that a projective representation - of G is called irreducible if the

unitary operator "¢ , <= have no common non-trivial reducing subspace.

Clearly ~:-=== = is a Borel map. In view of equation (3) m satisfies

m@1) === G. 9)
m(9%)m(99%:9%:) =m(9,0.,9:)m(9,. ) 4)
Proof equation (4) [5]:
From equation (3) 7¢9-<) =m(a.2:) 7{a) 74%) which implies that
m(g9.9,) =749,..9,) 7¢9,) 7{9;)
then m(a) =7¢9)/ 74g)741) =1 = m(Lg)=7¢9)/ 7€) 7¢9) =1  and
m (9.0 0) =749,.0,.9,)/ 7£9,.9,) 743,)
the left hand side of equation. (4)

__199) 199%) _ 7999)
(9 %) m(%9%) = oy i 6) Hag) e a) (9) 74%)
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and the right hand side

_ 799%) 79%%) _  71990)
m(0:9:0)m(9:9%) = e ) ra,0) ) ) (G 7(g,) G)

m(9.%)m(99%.9) =749, 9%%) 749,.9)

for all group of elements ¢<-s--s= any Borel function m into ' satisfying
(4) is called a multiplier in the group.
Definition (3-1-9) [17]:

Two multipliers m and on the group G are called equivalent if there is
Borel function »< —7 suchthat Ma9:)of%a.9.) =1 Ka)£:)m(a.9.) for all

s.e: =% and clearly equivalent projective reorientation have multipliers, the
multipliers equivalent to the trivial multiplier are called exact. The exact
multipliers form a subgroup of the multiplier group, the quotient is called the
second co homology group ~*«-m we shall need.

Theorem (3-1-10) [17]:

Let be a connected semi-simple Lie group then every projective
representation of is a direct. Integral of irreducible projective
representations of
Proof:

Let ~ be a projective representation of * let ° be the universal cover

of - and let -:= < be the covering homomorphism. Define projective

representation of + by #z(®=r4x) where ~—® a trivial computation

of - and its multiplier - is given by m.&¥)=n¢->) where x=P(®
y=P(% |

However since  is a connected Lie group &7 is trivial therefore
is exact that is a Borel function »:@-7 such that
m (. ) =, (995 =34 O 9/ 14 8 (5)

Forall === ,and ~—& »>—=®
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Now we define the ordinary representation =~ of =~ by *®=a(%7(% for

<= the ordinary representation of &M =}13/P( Bp(t), ==  repl-

acing ' its definition in term of - , we get that for each = , 7lx)=

_D[V(f/ﬁ_l)zdp(f) for any = such that ~—® . So we would like to define

77:G —u(H) by  77(x) =% 4% for any ' as above and verify that

thus defined is an irreducible projective representation of with multiplier
m. But first we must show that is well defined, that is if =* are elements

of mapping in the same element = of under ' then we need to show
M 28(H=mU 9" 7(9p (6)
Let = be the kernel of the covering map ' . Since ' is a discrete

normal subgroup of the connected topological group <2 is a central

subgroup of . Since for each +* is irreducible it follows that there is a

Borel function [44]. »:2~1 _ Such that #%=v(#1 for all -+ we have
mh=z (D2 =APyA4) =( Py forall - .
Therefore evaluating #* using its ~ all in a set of full ~ J

measure and all = . Replacing the domain of integration by this subset if

need be we may assume that »=r forall - . Thus
242p = 2p1 (7)
forall -~ andforall ' .Alsofor << and := we have

y(?/})r(z/}’/ r(w}’ =m(,9(of/)’ =m(x,1) =1
where ~—® and hence

A By =y (% 7} (8)
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Now we come back to prove equation (6) [5]:
Since ~®>—=¢> thereis -~ suchthat »—=> using equation (6) we get

U 2 =% A2} 72627 2p from equation (8) we have W% A %=

V%" 74% this proves equation (6) and hence is well defined. Now for

xy LG 72(xy) = p 24 S

we apply P B =7 Op 2K 9

we get 72(x) =3 Bp 2 (x) PH )
we use 77(x) =A%) 2K %
and 71(x) =P 7K 2
this implies PH p=77(x)/ U~

P H=71(y)/ AP

by applying eq. (8) we get

) = 77(xv) 71(xy) - Apr (Ppra(x) 7a(y) _ A Rpr(9p

form eq. (8) we get

Wﬂ(x) 77(y) =m, (%77 (x) 77(y)

Since m&3)=mG->)  then 7#(x)=m(xy)77(x)77(y) where =~+== are
such that ~-—=&>»>—¢>  this shows that is indeed projective
representation of * with multiplier - . Since from the definition of it is

clear that and have the same invariant subspaces and since the latter is

irreducible it follows that each is irreducible. Thus we have the required

decomposition of as a direct integral of irreducible projective

O
representation with the same multiplier as m7=[ndp(t) . As a
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consequence of theorem (3-1-10) we have the following corollary, here as
above - in the universal cover of -~ < is the covering map. Fix a

Borel section == <= for ' such that s@®— . Notice that the kernel ' of

is naturally identified with the fundamental group =< of ° . Define
the map.
== = by alx.y)=s(w)s)'s(kx), x.yr& 9)

For any character (i.e., continuous homomorphism into the circle group

) of rl6 define m:c~ =  mGe)=(HrD. x~yrt@ | Sipnce © is a
central subgroup of it is easy to verity that satisfies the multiplier
identity (7). Hence - is a multiplier on * for each character ' of

Corollary (3-1-11) [17]:
Let be a connected semi-simple Lie group, then the multipliers
are mutually in equivalent and every multiplier on is equivalent to - for
a unique character ' . In other words ~~I=l defines a group isomorphism
me @) =somn. @1y for  =emon is non-vanishing analytic on
Hence there is an analytic branch of log * on @ Fix such a branch for each
such that
(@) For = log 7=

(b) The map ¢==> —e=<%> from ~<-— into : is a Borel function

with such a determination of the logarithm we define the function [/ and

" {N | {
v= and ==-* on ' by WﬁEXp[Elog& Z[ ,and ors S —mios O

for "= let r:m -~ defined by (=2" in the following all the Hilbert space

+ is spanned by orthogonal set {.:"o% | Where is s subsets of ' thus the
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Hilbert space of functions specified by the set I and {i7I~=} for ==~
and complex parameters © and  define the operator =-~{#') on ' by
R, (67)1(2) =47(2)216()“(F()(2) 20T, f OH,6CIMOb

We obtain a complete result of the irreducible projective representations

of Mob is follows that [10,11] Holomorphic discrete series representations °

2 I A .
here —~—=. <=<.r—=~ and 1.l =% if -~ we get IrI= for
n=o for each in the representation space there is an
- _ i analytic in such that is the non-

tangential bounding value of ', by the identification the representation
space may be identified with the function Hilbert space  ® of analytic

functions on : with reproducing kernel

a—=2w)" z.w O
b

Principal series representation <-~ ——>=-= purely imaginary.
equation [5]:

(n+1)T(A) :nr(n) r(A)

2 r
= =M Al =1 A=1 2=
If. | Fln+A) AT (] (4) where so In"=  here

s r=z.lr.1= for all + and the complementary series

. 1 1 A
representation Cas» —1=<A<1,0<5=3(1—A) , here A=Awu=;0-Jbrs 1=z

and

where one takes the upper or lower sign according as n is positive or negative.

Theorem (3-1-12) [17]:
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(i) ~ is a multiplier of Mobs for each <~ up to equivalent - , <~ are
all the multipliers in other words, * (Mob) is naturally isomorphic to
 viathe map == - .
(ii) For each of the representations of Mob result above.
The associated multiplier is ~ where ~-='" in each case except for the

auti-holomorphic discrete series, from the definition of =~ one calculates

that the associated multiplier m is given by

zOT

m{q, @‘1) = @m
(2): del(x

For any two elements << of Mob to show this we have [5]:

A0

e
&
( 2
o= from equation (3) 7%o.9.)=m(a.9.) 7@)7e.) by applying (3) if

=v.== then (HAa#r".&#")f)z =m(&. & )74ar*).(#") implies that

A e (n((p ¢2_1))
e = e

substituted

(R, (07 05" )z
R, (¢ ).(6")

e omlglg) =

but since

(Ras( @) 1) 2 =a8(2)%|0(2) F ok =)

Implies
- =”1(Z)2ql(zﬁizf?}lfj;:f(@(”)(z))
_d(2): () leed o) F(@(@)(2)
RA,H(((‘?@) f)(z)
Then
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A
2

(g = @) @l leale)T (ale)) _ (aa) ()
(d(@)(2)): g (2 ) (@(@2)) @(2):(d(a)(2))

NN

Notice that the right hand side of this equation is an analytic function of z
in + and it is of constant modulusl in view of the chain rule for
differentiation there fore by the maximum modulus principle, this formula is
independent of z for -~= . Hence we may take z = 0 in this formula and
thus ~=»- with v=" so m is the multiplier associated with is
since 7= it follows that if =7 is the anti-holomorphic discrete series,
then multiplier is -~ where we='" . The multiplier - , ~*= are naturally
equivalent (since - ) is clearly a group homomorphism from ' onto

=>(voe.t) - this amounts to verifying that = is never exact for ~= this
fact may be deduced from corollary (3-1-11) as follows [40,132]. Identify Mob

with 7 =®vie w0 (= the group law on == is given by

0o LY0BB B+aB T

(Q{’ﬁ)(az”@) 0O S 1+a,B8B a, +BB [

, the identity in - is (1,0) and

inverse map is (=»>' <= then the universal cover is naturally identified
with == taking covering map. === === to be res~"25 | the
group low on == is determined by the requirement that ' be a group

homomorphism as follows

1 ot 27dt,
(t1,[3)(t2,[%) =tHit +7T1m IOg(1+e ﬁ@h)%
to show this we have [5]:

Let a =™ | a,=¢ _ Substitute and in the following equation

_ 1+a,BB, B +a,B,
(al,ﬁl)(az,ﬁz) - E’laz'l+azﬁ'lﬁ2 ’ a, +B3 E

we get
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_gmtalﬁza e 272 GA b A+""25 E
| 1724 2 v O
O e AL 5
and this gives
H_ - """ sl

G1>ICEX2’[§):T1 -+, _'—1;_}_m1°g %_e_ 711_2’?’%’ 2 7w, _
e 2 73t

where (log) denote the principle branch of the logarithm on right halt plane.
The identity in =~ is (0,0) and the inverse map is @& ——=—"")
and the kernel + of the covering map ' is identified with additive group
via ~ @  so we choose a Borel branch of the argument function satis-
fying e=¢&>—=ce>.-cm we make an explicit choice of the Borel function

(#2) —are(A(2))  as follows ars #=L) ==ra(—=1mmles0 —3 let’s also
choose function =v== —=== as follows sSl@B)=(%(a.B) and easy
computation shows that for these choices we have s(##@)s(#')s(#')=

=(ea) for <<« in Mob. Hence we get that for == =~ where x=x

is the character * maps to » of : . Thus the map + -1 is but a special
case of the isomorphism ~—~- of corollary (3-1-11) to show the simple

representation of the Moby’s group let ' be the maximal compact subgroup of
88



Mob given by {#.:<tr} of course ' is isomorphic to the circle group
via vie ==
Definition (3-1-13) [17]:

Let be a projective representation of Mob and we shall say is

normalized if ~ is an ordinary representation of
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Lemma (3-1-14) [17]:
For any projective representation  of Mob then ** is projective repress-

entation of ' say with multiplier m. But =® so there exists a Borel function

ree —r guch that m(xy)= f(;()x';()y)» x,y Dk

. Extend to a Borel function

«mew o Define by ==& | ~omoo then  is normalized and
equivalentto ~ for -~ ,let ' be the character of ' given by () =x~
< for any normalized projective representation of Mob and -~ let

V,7e{vEH : 7x)v =x (x)vi.bx 0} then = ==~ | The subspace v.(?

are usually called the ' -isotopic subspaces of ' put . (>r=imv.> and
T(7¥={n 0% : d, (=0}

Definition (3-1-15) [17]:

(@) A subset * of ' is said to be connected if for any three elements
=== jn <<=~ implies »>» . If ' is any subset of ' . a
connected subset of ' . Since the union of two intersecting connected

sets is clearly connected, the connected components of a set partition the
set.
(b) let  be a normalized projective representations of Mob we shall say that
is connected " is connected will be called simple if is
connected and further <= for all -~ . More generally projective
representation is connected simple if it’s equivalent to a connected simple
(normalized) representation.
Remark (3-1-16) [17]:

If and are equivalent normalized representations then there is an
integer © such that v &=..¢> for all -~  consequently @ is an
additive translate of ~ . Hence is connected simple if and only if s
thus the definitions given above are constant and we need this

Lemma (3-1-17) [17]:
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Let be normalized projective representation of Mob then each

connected component of ¢ is unbounded.
Theorem (3-1-18) [17]:

Up to equivalent the only simple projective representations of Mob are the
irreducible projective representations of Mob and the representations
Theorem (3-1-19) [17]:

If + is an irreducible homogenous operator the ' is a block shift. If
is a normalized representation associated with ' then the blocks of ' are
precisely the ' -isotopic subspaces.

Vi(x nrT(sy

Proof:

If + is an irreducible block shift then the blocks of ' are uniquely
determined by ' . Then

TW, (7Y v, (¥ for e (10)
indeed since ' is irreducible then equation (10) show that is connected
and »~*> then (10) would imply that “»v.(-> is a non-trivial. Since
unbounded by theorem (3-1-21) it follows that be re-indexing, the index can
be taken to be either all integer or the non-positive integers, therefore = is a
block shift. So it only remains to prove (10). To do this, fix ==~ and
vat+ for ~* wehave ~&»=xC» _ Consequently
Iy =AY
=G ) 7 XD

=(x -T )*T (x v ) =x (=),

So 7vrw.(=> _this proves (10)
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Lemma (3-1-20) [17]:

Let ' be any homogenous weighted shift, let be the projective Repre-
sentation of associated with ' . Then up to equivalent is one of the
representations further

(@ If + is a forward shift then the associated representation is
holomorphic discrete series.
(by If ' is a back word shift then the associated representation is auti-
holomorphic discrete series.
(¢ If  is a bilateral shift then the associated representation is either
principle series or complementary series.
Theorem (3-1-21) [17]:

Up to unitary equivalence the only homogenous weighted shifts are
reducible.
Proof:

Let ' be homogenous weighted shift. If = is reducible we are done
by theorem (3-1-2). So assume * is irreducible then by theorem (3-1-4) there
is a projective, representation = of Mob associated with ' . By lemma (3-1-3)

is one of the representation. Further replacing ' by - if necessary, we
may assume that T is either a foreword or bi-lateral shift.

According is either a homomorphic discrete series representation or a
principal complementary series representation. Hence -~ for some
parameters  recall that the representation space * is the closed span of
the function - »=* where & =2z".ntx and :==* in the former case and

=z in the a case the element’s - »=*  form a complete orthogonal set of
vectors in * , but these vectors are not unit vectors . Their norms are as
given before .Since - is a weighted shift with respect to the orthogonal basis

of obtained * by normalizing * where are scalar <= ~*+ such that

Tf, —anf, . . n N
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Notice that since the * are not normalized the numbers an are not the
weights of the weighted shift ' . These weights are given by follows there the
adjoint racts by w, == f._Jl/Fll. n T

I

.
| £l

Its follows that the adjoint act by 7' f. =7 zan—1f,.. n0I where one puts

a.=0 in case =z~ let M be multiplication operator on * define by

Mf, =, . n L1

Notice that for each representation is corresponding operator ' . Also in

case ' is invertible »~ is also exist. Let ' be a fixed but arbitrary element

of andlet ¢;=¢.,0 Mob. Notice that * is an involution and this

simplifies the following computation of 7) a little bit indeed a straight

foreword calculation shows that for ==+ we have

(7B frs £,) =C(—2)" B £, T, (m.n)r* . 0=r =1 (11)

k=m-n

N | . .
where we have put =+ |, c=g¢,(0)= and since is
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associated with +  from the following equation (4) we have
1 —#%) = X5—) g show this [5]:
we analysis the two sides of the above equation we get
T () —F Hag) 75 —Aarz) = a)r
implies 7 72 +=tep)r —tem) = At and
7F Hap)r o)t == HapJr a2t
where =~ fix in I, we evaluate each side of the above equation at and take

the inner product of the resulting vectors with we have for the instance

(T Aa Y, . £,y = AL, T 1) =a, a,_, f <7{r¢ﬁ) Fonsis Fas )

and similarly for the other three terms . Now substituting from equation (11)

We get B fon —CC BT ST nn )ty

applying equation (11) in the main equation we have

(ANt 7 1) =apan Loy Bin, ST

I fasl® =i
by comparing with the equation (11) we get

@@, CB £ ST (m+n ) =

k m—n+2

C(A) B S C(mn)

=(m-—n+2)

where c== |

a,.a,_, Zk(m _l_l’n_l) r< = k(rn,n)rk
k=m-n—+2) k=fm-n-—2)

we canceling the common factor <= ir.1"=-~  we have the following

identity in the indeterminate © which is obtained from the above

En_}kzémg)k (m,n ) r< =a,, k#’g)k (m +,n)r*

(12)

taking ~=" in equation (12) and equating the coefficients of we obtain
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G+ —der, = —dr, = o (13)
Homogeneous Operators and Mobius Group
Section (3-2):
Definition (3-2-1) [15]:
An operator - is called homogenous if «#» is unitary equivalent to

forall = in Mobs which are analytic on the spectrum of -
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Lemma (3-2-2) [15]:
Let <= =& be a pure contraction valued inner analytic function. Let

denote the invariant subspace **® == corresponding to in the sense of

Beur’s theorem. That is #={z a €(z)r (z):f OH*(D) Ok}  then coincides with

the characteristic function of the compression of multiplication by ' to the
subspace [14,45].
Lemma (3-2-3) [15]:
Let be contraction in the class © with characteristic function let
be a scalar in the range °—+— and put == == . Then with respect to
the decomposion ~ “tw i of its domain the operator 4

H CH? TH? —H}

has the block matrix representation.

0o
BINY

%

[

Theorem (3-2-4) [15]:
Let be the characteristic function of a homogenous <« contraction.
If  is a compact operator then must be constant function.
Proof
Let =~ =& be the characteristic function of a homogeneous
operator. Assume <= compact. Replacing by a coincident analytic
function if necessary we may assume without loss of generality that = and
= . By lemma(3-2-3) there exists unitaries v-v-  such that
“%)=v.cv..ztp. lot A=a=. be the non-zero eigenvalues of compact

positive operator  at this point shows the eigenspace corresponding to the
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eigenvalue a common reducing subspace for .-v.-==™ and hence for

<e)>- o e can write <) =eX-)t() where  is an analytic function into

sk) . Since  must be a constant Replacing the same argument with = one
concludes by induction on ' that the eigenspace ' corresponding to the
eigenvalue = is reducing for <>--= and the projection of to each
is a constant function. Since the same is obviously true of the zero eigenvalue
we are done.
Definition (3-2-5) [15]:

Two projective representation * , © of * on the Hilbert spaces +-*-

(respectively) will be called equivalent it there exists a unitary operator

v:n. = and a function (necessarily Borel), < +  such that

AP —r (R 7=z foragll ==

If + is an operator on a Hilbert space -+ then the projective
representation of Mob on  is said to be associated with ' if the
spectrum of - is contained in *© and

> e D (15)

for all elements = of Mob clearly if ' has an associated representation then
is homogeneous. In the converse direct we have.
Theorem (3-2-6) [15]:

If '+ is an irreducible homogeneous operator then ' has a projective
representation of MOb associated with it. This projective representation is
unique up to equivalence.

Theorem (3-2-7) [15]:

If - is an irreducible homogeneous contraction then its characteristic
function <© —=&» js given by <) —ezyci(=). -c>  where and
are two projective representation of Mob with a common multiplier. Further

<=« — js a pure contraction which intertwines -+ and -~ conversely
whenever == are projective representation of MoOb with a common
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multiplier and * is a purely contractive intertwine between <+ and =

such that the function defined by

&) —7azp) C (2)

is analytic on ' then is the characteristic function of a homogeneous
contraction. Here ' is the involution in MOb which interchanges *© and
also « —tesmov: «)—e} s the standard maximal compact subgroup of MOb).
Lemma (3-2-8) [15]:

The only <~ contractions with a constant characteristic function are the

direct integrals of the operators M" and #~»= . The examples of

homogeneous operator given so a are all weighted shifts.
Lemma (3-2-9) [15]:
Up to unitary equivalence the only irreducible homogeneous operators in

the cowen —pougias 5.@) gre the adjoin of the operators w"*. ~ A=0.A=o

Wilk’s operator = is unitary equivalent to the operator Ww.**

Theorem (3-2-10) [15]:

For === and real number -~ the characteristic function of the
operator Wi coincides with the inner analytic faction
& :D —BH™™).HCY  gjyen by @ ()=c.pi(#)ztp | Here (" is the

adjoin of the k-times differentiation operator & :#©? —==2 and

Chx = 77::—(1(—1) (A _e)¥2
Proof:
It is easy to check that C=¢,,0“ is a pure contraction intertwining the

restrictions to k of i« and 2+ since we already know that is an
inner analytic function *= the recurrence formula &2 =" ee™  for

«==—=—  with the interpretation that * denotes the constant function)
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shows that  is an inner analytic function on @ for —=~—=- a
contraction * in the class C and ' is the compression to +« of the
multiplication operator #®t+~* where * is the invariant subspace
corresponding to this inner function. But one can verity that is the
subspace consisting of the functions vanishing to order ' on the diagonal
therefore = =w.""
Lemma (3-2-11) [15]:

Every normal homogeneous operator is direct sum (countable many)
copies of ' and

Let us define an atomic homogeneous operator to be a homogeneous
operator which can not be written as the direct sum of two homogeneous
operators. We have
Corollary (3-2-12) [15]:

+ and ' are atomic ( but reducible) homogeneous operators ' is a
e« contraction.

Lemma (3-2-13) [15]:

The characteristic function & :p —8*(®)) of the operator is given
by the formula.
Lemma (3-2-14) [15]:

Up to unitary equivalence we have ~-—=-=  where the positive
contraction ° is given on a Hilbert space with orthogonal basis {f, :n=0}
the formula  <r ==rr.o —orr e n=ea2.. where (f~=0) and the

constants a,, b, are given by

=,/nin +1) bn — 2(n —1)2

“ an+2 (2n +1)(2n +3)

n

,n=0

Theorem (3-2-15) [15]:

If + is abounded operator then /=~ —e@asm —=
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Proof:

Say le)l=<c for #U Mob for any == we have an expansion

#Az)=>a,z"  valid in the closed unit disc. Hence 97" =f#AaT)arda

where the integral is with respect to the normalized Haar measure on

therefore we get the estimate I« l7"I== for all ' choosing === we
see that for ~= , la,| =t —>)>"* where == . The choice - —~¢ o/ —==
gives l«.l=e¢/=>  and hence I~ —=¢»

Section (3-3): Homogeneous operators of Holomerphic Function
Proposition (3-3-1) [5]:
Suppose * has a reproducing kernel ' then is unitary

representation if and only if ' is quasi-invariant [67].
Proof:

Assume that ' is quasi-invariant, we have to show that the linear
transformation  is unitary. We note writing ~=="¢> and

W —e DL (@ X Cwd= G D Gt D

=== @. @GO WI=="T7 @. G wWwI=F

)

- {k(-,v”v)f(g,W*Z it Jlg it

)

(g Wi il 1.1)

Since G I CwWITT @I Cw D=6 wD==-  gnd it follows that

= <k(»”v1,v”v)f(g,\7v*'1z L Jlg

vl@*) is isomeric. On the other hand ' is unitary then the reproducing
kernel ' of the Hilbert space * satisfies the transformation rule . It follows
from uniqueness of the reproducing kernel that the expansion is independent
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of the choice of the orthogonal basis. Consequently we also have
k(z,w) Zng,leL)(w)* .

We need a relation between <@ and <@ the elements of ¢« are the

|

[

. . . .. 1 1 .
matrices | ’ acting on ' the inequalities le—1<5l<; determine a

'

simply connected neighborhood * o ' in ¢ under the natural projections
it is dimorphic with a neighborhood of ' of * in * , so we may use *

satisfying inequalities parameterize @~ for == -=  we have
o) == +a)* by taking d%g(Z) we get o @ —=56¢- ="
which gives a relation
J(z) =-2cg(2):
(16)
to proof (16) [5]:

We use the relation o —€-—-=>" where d(2)°=bz+a | ®B=9=-a/- and

b=g(z) ==2(d(2))" -a/z(d(2))’ =—2(g'(z))5§ﬁ:m=—2cg(z)3
2]l O

where C=@ the prove is complete. Where depends <== on real

analytically and is independent of the meaning of ¢2: is as defined earlier

since both sides are real analytic (16) remains true on all of <- .
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Definition (3-3-2) [4]:

Let 7:@so —em be the function given by the formula for here is the
constant depending on the following lemma is used for showing that is a
multiplier representation.

Lemma (3-3-3) [4]:
For any we have the formula

/\—%+L;L(z)

EDJ p-L . =
J(g,Z)p,L=%g_C) (d) if p=L (17)

if p<L

for <= . Here ° is the constant depending on ' as in (16). The following
lemma is used for showing that = is a multiplier representation.
Lemma (3-3-4) [4]:

For any <= we have the formula

Proof:
The proof is by induction using formula (17) for - the formula is an

identity assume the formula to be valid for some ' then
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li

Now we observe that
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Ay

[ 1
(Ug | QL} | f q | completing the induction step we can prove the

following theorem.
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Theorem (3-3-5) [5]:

The image of tv»: under is a multiplier representation with the
multiplier given by ’(¢2 as in (17).
Proof:

It will be enough to show T(p;i(g)r)=s(a.)(rled) . For each

ro====we compute ~ the component on both sides. For -~ both sides
are zero by definition of * and knowing that “©@~.. = for += this

comes for equation (17), for = , we have using the lemma (3-3-4)

CphO0 1

Byl ota e

((er;)(g_l) f)

() +2=1 2 (fVog
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A

:mzj(p —F;'!) tjit(p—j —(5 :JJ)):(L —j)! (ZAJ.l)L_j (=e)
()5 (r+og)
:LMZJJ (L —f)(!p —L)1 (2/\]1.)6 (=c) ()= (1 og
= Sla) (1)),
The orthogonal basis on the operator * the vector ellz)=r, 0 Z:f!"z"E

clearly form an orthogonal basis Hilbert space 4"'(c) we have by definition

of

eJZL:: (18)

107



We compute the reproducing kernel =*(® for the Hilbert space 4*'() . We

have B2 (z,w) =S{e) =) (el (w))

In particular it follows that #*©.0 is diagonal and
[ A
Vs L

ol
=2 i D
L]

Then B*(0,0),, = ZB*f (0,0)22 22)

a useful formula for =>¢w and -= we get
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we also write + for the corresponding element of such

that ' depends continuously on = and ~»= then »r.@=.p"=p—= |,
By theorem (3-3-5) holds for »+ and gives

T GIB .00, Y =B ()
(23)

17

we have p;(~,7)=(1 ek .p.(z)=—-")" the  of (16) corresponding to

P s ﬁ so (10) gives

which can be written in matrix forms as
7 (2) =1=22| "7 D(2*Jexp(zs,,)
(24)
where D([')  =(1-*)"" 3. is diagonal and * is the foreward shift on

e with weight sequence -~ that is  (Sw), =La., | o= —=
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-2 A-m

substituting (24) in to (5) and polarizing we obtain B (z.w) =(1—w)
D (zw )exp(WwS,,)

B4 (0,0) =exp(zs], )D(zw)

(25)
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