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 − − e We deal with a striking matrix representation for biquasitriangular 

operators and deduce some consequences of this representation for the 

structure of biquasitriangular operators. The canonical Jordan model of a 

Jordan operator is determined by the numerical data. We prove the 

complementary invariant subspaces for the triangular operator 

Section (2-1): Representation of Biquasitriangular Operator

Let H  be a complex separable infinite-dimensional Hilbert space and 

let ( )Hy  denote the algebra of all bounded linear operators on H , we 

introduced the remarkable class of quasitirangular, operators on H  which we 

shall denote by ( )QT [31, 32, 33, 123]. One consequence of the subsequence 

study of this class was the spectral characterization of non-quasitriangular 

operators. In particular this theorem implies that every non- quasitriangular 

operator on H  has non trivial hyperinvariant subspace, and thus attention 

now naturally focuses on the class 

( ) ( ) ( )*QTQTBQT = .

Of biquasitriangular operators on H .  It was shown that  ( )BQT  is the norm 

closure of the class ( )A  of all algebraic operators on H  and the norm-closure 

of the class of all nilpotent operators on H  was also determined .

We  present  a  striking  matrix  representation  for  biquasitriangular 

operators  and  to  deduce  some  consequence  of  the  existence  of  this 

representation  for  the  structure  theory  of  biquasitriangular  operators.  If 

( )T ∈y H  we shall denote the spectrum of  T  by  ( )Teδ  and the [left, right] 

Clakin spectrum of  T  by  ( ) ( )[ ]TT reLe
δδ , ( )Teδ . If  T  is a Fredholm operator 
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we write  ( )Tj  for the Fredholm index of  T .  Moreover if  k  is a Hilbert 

space and T  is bounded operator mapping H  into k  such that 

( ) ( ) { }0ker * == TketT .

We say that  T  is a quasiaffinity. We shall say that an operator  T  in 

( )y H  has a staircase-matrix representation if there exists a orthogonal decom-

position of H  of the form 

1
n

n

∞

=

= ⊕∑H H                                                                                            (1)

Where the subspaces ( )1n n≤ <∞H  are finite-dimensional such that the matrix 

of T  with respect to this decomposition has the form



































+





1

2

11

22

1

11

n

nn

n

n

A

CD

AD

BCD

BA

C

BA

 

(2)

Where all the entries except the nA , nB , nc  and nD  are understood to be 0 .

Theorem (2-1-1) [37]:

An operator T  in ( )y H  is biquasitriangular if and only if for every 0>ε  

there exists a compact operator  εk  in  ( )y H  such that  εε <k  and such that 

εkT −  has a staircase-matrix representation.

Proof:

Suppose  first  that  an  operator  T  in  ( )y H  can  be  written  as  a  sum 

kST += , where k  is a compact and S  has a staircase-matrix representation 

of the form (2) with respect to a decomposition of the form (1). To show that 
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T  is bitriangular, it suffices in view of the fact that (BQT) is invariant under 

compact  perturbations  to  show  that  ( )BQT  is  biquasitriangular.  Since  the 

finite-dimensional subspaces

,......,...,, 1213211 +⊕⊕⊕⊕ nHHHHHH

are all invariant under S , it follows easily from the definition .

That  ( )QTS∈ .  That  ( )QTS ∈*  is  just  as  obvious,  since  each  of  the  finite-

dimensional subspace

,......,...,..., 214121 nHHHHHH ⊕⊕⊕⊕⊕

Is invariant under *S  . To prove the other half of the ( )BQTT ∈  and let ε  

be  any  positive  number.  Then  by  virtue  of  the  equivalent  definitions  of 

quasitriangularity,  it  follows  easily  that  there  exist  increasing  sequences 

{ }∞
=1nnP  and  { }∞

=1nnQ  of finite-rank projections converging strongly to  H11 =  

and satisfying the future conditions

( )
( ),...2,1

,...2,1

1

*

=⊂+
=⊂+

+ nPTQQ

nQPTP

nnn

nnn

HHH

HHH
 

(3)

and 

( ) ( )
( ) ( ),...2,121

,...2,121
2*

2

=≤−

=≤−
+

+

nPTP

nTPP
n

nn

n
nn

ε
ε

 

(4)

It follows from (3) that 

( ) ( ) QnTQTPP nnn
*

11 101 ++ −==−  

(5) and 

( ) ( ) ( )njPQQP jnjn ≤≤−==− + 1101 1                                                   (6)  

Moreover the inequalities (4) imply that if εk  is defined by the equation 

( ) ( )[ ]∑
∞

=

−+−=
1

11
j

jjjj QTQTPPkε . 

Then εk  is a compact operator of norm less than ε . We define εkTT −=0 . 

Then by virtue of (5) and (6) we have the equations [5]:
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )...,2,101

111

111

11111

1

1

1
0

==−=









−−−−=









−−−−=









−+−−−−=−

∑

∑

∑

∞

=

∞

=

∞

=

nTPTPP

PTPPPTPP

PTPPPTPP

PQTQTPPPTPPPTP

nnn

n
j

jjnnn

n
j

jjnnn

n
j

jjjjnnnnn

 

(7)

By an analogous argument we conclude that 

( ) 010 =− nn QTQ  

(8)

We define 111 HH P=  and for every positive integer n  we get 

( ) ( )HHHH nnnnnn QPPQ −=−= ++ 1122 ,  

(9)

It follows easily from (7) and (8) that the matrix of εkTT −=0  with respect to 

the decomposition (1) has the form (2). Thus the theorem is proved.

Corollary (2-1-2) [37]:

Let  T  be any biquasitriangular operator in  ( )y H  and let  ε  by any 

positive number. Then there exists a compact operator  εk  of norm less than 

ε  such that the operator  εkT −  has a staircase-matrix representation of the 

form (2) where 

(a) for ∞<≤n1 , each eigenvalue of nA  [ respectively,  nC ] has algebraic 

multiplicity one,

(b) for ∞<≤ ji,1  and ( ) ( ) φδδ =≠ ji AAji  , and ( ) ( )i jC Cδ δ ϕ=I  .

(c) for ( ) ( ) φδδ =∞<≤ ji CAji ,,1

We shall now deduce some consequences of theorem (2-1-1) and corollary (2-

1-2).

Recall that two operators A  and B  acting on Hilbert spaces H  and k  

respectively are called quasisimilar if there exist bounded operators :X k→H  

43



and :Y k→H  with trivial kernels and trivial co-kernels such that BXXA=  and 

YBAY = .

Theorem (2-1-3) [37]:

Let ( )T ∈y H . Then the following statements are equivalent:

(i) ( )BQTT ∈ .

(ii)  kTT += 0 ,  where  k  is  compact  and  0T  is  quasisimilar  to  a  normal 

operator,

(iii) For every 0>ε  there exists a compact operator εk  such that εε <k  and 

such εkT −  is a quasisimilar to a diagonable normal operator.

We show that the property of being biquasitriangular is not preserved under 

quasisimilarity.

Proposition (2-1-4) [37]:

There exists a biquasitriangular operator that is quasisimilar to anon- 

quasisimilar to a unitary operator.

Proof:

A contraction 0T  was constructed that is a quasisimilar to a unitary 

operator V  and has the further property that 

( ) ( ) ( ) { }1:000 ≤∈=== λλδδδ CTTLT ee

Let STT ⊕= 0 , where S  is a unilateral shift operator multiplicity one. Then 

the spectrum of T  and the left essential spectrum of T  are again the closed 

unit disc, that T  is biquasisimilar. On the other hand T  is obviously 

quasisimilar to SV ⊕ , which fails to be quasisimilar since the Fredholm index 

of SV ⊕   at the origin is -1. The following proposition is known and 

extremely useful.

Proposition (2-1-5) [37]:

Suppose that for every positive integer nAn,  and nB  are similar 

operator. Then ∑
∞

=

⊕
1n

nA  is quasisimilar to ∑
∞

=

⊕
1n

nB .
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Proof:

Suppose that nnnn SBAS = , where for every n , nS  is an invertible 

operator. Then 






 ⊕





 ⊕=





 ⊕





 ⊕ ∑∑∑∑

∞

=

∞

=

∞

=

∞

= 1111 n
nn

n
n

n
n

n
nn SBAS αα

and 






 ⊕




 ⊕=





 ⊕





 ⊕ ∑∑∑∑

∞

=

∞

=

−
∞

=

−
∞

= 11

1

1

1

1 n
n

n
nn

n
nn

n
n BSBSBA

Where { }nα  and { }nβ  are sequences of positive numbers chosen to make the 

quasiaffinity ∑⊕ nnSα  and ∑⊕ 1
nnSβ  bounded. The result follows.

Proposition (2-1-6) [37]:

There exists an operator in ( )y H  of the form kN + , where N  is normal 

and k  is compact that is quasisimilar operator.

Theorem (2-1-7) [37]:

 Let k  and T  be nonzero operators in ( )y H  such that k  is a 

compact quasiaffinity. If T  has property that there exists at least one scalar 

0λ  such that 0λ−T  is a Fredholm operator of nonzero (necessarily finite) 

index then k  does not commute with T .

Proof:

We may suppose, without loss of generality that ( ) 00 >− λTj . We can apply the 

argument to *T  and *k . By the Fredholm theory, there exists a neighborhood 

N  of the point 0λ  such that for ( )λµλ λ −=∈ TN ker,  is a nonzero finite-

dimensional subspace of H  . Suppose now that contrary to the theorem

kTTk = . Then ( ) ( )T k T Kλ λ− = −  for every scalar λ , and it follows that all of 

the subspaces ( )N∈λµλ  are invariant under k .

Since λµ  is finite-dimensional kk µ  must have a nonzero eigenvalue 

λµ and an associated eigenspace λλ µε ⊂ . Since k  is compact, the 

collection { } N∈λλµ  must be at most countable and thus there exists an 
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uncountable subset N⊂y  such that 21 λλ µµ = for all 21 ,λλ  in y . If for each λ  

in y  we choose a unit vector λf  in λε , then the space { }λλ fV y∈  must be 

finite-dimensional ( because each λf  is an eigenvector of T  corresponding to 

the eigenvalue λ ). This contradicts the compactness of k  and the proof is 

complete.

The preceding theorem and the spectral characterization of non 

quasisimilar operators yield the following corollary.

Corollary (2-1-8) [37]:

If k  is a compact quasiaffinity on H  and k  commutes with a non-bi 

quasisimilar operator T , then for every scalar λ  such that  λ−T  is a semi-

Fredholm operator ( ) ±∞=−λTj .

We observe that this phenomenon can actually occur.

Proposition (2-1-9) [37]:

There exist a compact quasiaffinity k  on H  and a non- quasisimilar 

operator T  on H  such that TkkT = .

Proof:

Let V  be the classical Voltera operator that is, let

( )( ) ( ) [ ]( )∫ ∈=
x

LfdttfxVf
0

2 1,0

Then V  is similar to 2V . In other words, there exists an invertible operator 

X  on [ ]1,02L  such that  12 −= XVXV . We set 

[ ] [ ] ...1,01,0 22 ⊕⊕= LLH  and define k  and T  by the matrices 





















4

2

0

VO

V

V

 and 

0 0

0 0

0

x

O x

 
 ÷
 ÷
 ÷
 ÷
 O O
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Respectively. Then it is clear that KTTK = , and T  is not quasisimilar, since 

T  is a semi-Fredholm operator with ( ) −∞=Tj . Since k  is obviously a 

compact quasiaffinity, the proof is complete.

Bitriangular Operators and Jordan Forms 

with Quasisimilarly Orbit

Section (2-2):

A Hilbert space operator T  is called triangular if it has an upper 

triangular matrix with respect to some orthonarmal basis { }1, ≥nen  of the 

underlying space. When both T  and *T  are triangular (in general, 

with respect to different orthogonal bases), T  is called 

bitriangular ( class ( )∆B ). This is a rich class containing all algebraic 

operators, diagonal normal operators, block diagonal operators, and all 

operators, and all operators with a staircase representation. When the Hilbert 

space is finite dimensional of course every operator is bitriangular [21, 26, 

112, 115].

Every operator on a finite dimensional space is similar to a unique 

Jordan form. In infinite dimensions, operators similar to Jordan forms (direct 

sums of Jordan blocks) form quite a small class.

It will be shown that every bitriangular operator T  is quasisimilar to a 

canonical Jordan form, called the Jordan model of T .

The bitriangular operators form the largest class of operators which 

have Jordan models. We have obtained the best possible result concerning the 

extension of Jordan forms to infinite dimensions.

In particular the results subsume those of A postol Douglas and Foias 

on models for algebraic operators. Let ( )kTnul ;λ−  be the dimensional of 

( ) ( ) 1
ker ker

k k
T Tλ λ −− −e .
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Infinite dimensions this counts the number of Jordan blocks for λ  of size at 

least k . So we set ( ) ( ) ( )1;;; +−−−=− kTnulkTnulkT λλλα , where ∞−∞  is 

designed to be ∞ . Now the Jordan form of T  is 

( ) ( )
( )

( )( )kT

T k
kk

p

JITJ
,

1

λα

δλ
λ −

∈ ≥
∑ ∑ +⊕=                                                        (10)

The bitriangular operators are ( )TJT qs~  the main result yields many 

consequences. In particular we obtain a complete description of the 

quasisimilarity orbit

( ) ( ){ }: ~
qs

T A A T= ∈2y y H                                                                       (11)

of a bitriangular operator T  .

We also consider the relationship between ( )T2y  and the closure of similarity 

orbit .

( ) ( ){ }1 :T WTW W is invertible−= ∈2y y H                                             (12)

Let H  denote a separable Hilbert space of infinite dimension let ( )y H  denote 

the space of bounded linear operators and let k  or ( )Hk  denote the ideal of 

compact operators.

In particular, ( )Tδ , ( )T1δ , ( )Trδ  and ( )Tpδ  denote the spectrum, left and right 

spectrum, and point spectrum respectively, the sets ( )Teδ , ( )TLeδ , ( )Treδ   are 

the corresponding parts of the essential spectrum. Also 

( ) ( ) ( )TTT reIeLre δδδ =  is the complement of ( )TsFρ  the set of points λ  

in £  such that IT λ−  is the semi-Fredholm. The set ( )T0δ  consists of the 

isolated eigenvalues of finite multiplicity known as normal eigenvalues.

If δ  is a (closed and open) sub set of ( )Tδ  then ( )δ,TH  denote the 

corresponding subspace. The range of A  in ( )y H  is denoted by HAranA= , 

and Aker  denotes its kernel. Also ( ) AAnul kerdim= . By wAker , we mean 

n
n AV ker1≥
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and wnulA  is the dimensional of this subspace. When Aran  is closed and one 

of ( )Anul  or ( )*Anul  is finite then is semi-Fredholm and

( ) ( ) ( )*AnulAnulAind −=                                                                        (13)

Let ( )AsF
±ρ  denote the parts of positive and negative indices respectively.

An operator X  in ( )y H  is quasiaffinity it is injective and has dense range. An 

operator S  is a quasiaffine transform of an operator T  (written S Tp ) if 

there exists a quasiaffinity X  such that XSTX = .

Two operators S  and T  are quasilinear (written TS qs~ ) if S Tp  and 

T Sp . Since the product of quasiaffinities is a quasiaffinity, p  is a partial 

order and qs~  is an equivalent relation.

We see that an operator T  is triangular if and only if 

( ){ }ker : , 1
k

V T kλ λ− ∈ ≥ =£ H                                                          (14)

Definitions (2-2-1) [102]:

Let ( )kA;ker  denote 1ker −⊕ kk AA  and ( ) ( ) 1,;kerdim; ≥= kkAkAnul . Let 

( ) ( ) ( )
( )





≥≠−∞
+−=≠−

=−
=

10;

1;0;

0ker0

;

nallfornAnulif

nAnulnAnulifn

Aif

Aord

λ
λλ

λ
λ                               (15)

Lemma (2-2-2) [102]:

Let T  be a triangular operator with diagonal ( )Td . Then ( )*Tpδ  is 

contained in ( ){ }Td∈λλ:  and 

( )( ) ( )kTnulkTnul ;;* λλ −≤−                                                                  (16)

Proof:

Without loss of generality, let 0=λ . Let { }1, ≥je j  be the orthonormal 

basis that triangularizes T ; and let np  be the orthogonal projection onto 

n spanµ =  { }1,..., ne e . Since nµ  is invariant for ( ),ker k
nT T µ  is contained in 
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( )kTker  for each 1≥k . Thus the projection of ( )kT n ;ker µ  onto ( )kT ;ker  is 

injective, and 

( ) ( )kTnu lkTn ul n ;;\ ≤µ                                                                      (17)

On the other hand, for any vector x

( ) xTpxPTP k
nnn

k
n

** =µ                                                                      (18)

So ( )k
n TP *ker  is obtained in ( )n

k
nTP µ*ker . Moreover for any nonzero vector 

x  in ( ) xPkT n,;ker * , will not lie in ( )n
kTT µ1ker −

 for n  

sufficiently large. So 

( ) ( )kTPnulkTnul nn
n

;suplim; ** µ
∞→

≤

From the linear algebra we obtain ( ) ( )n
k

nn TnulTPnul µµ =* . For all 1≥k  and 

1≥n . Hence for 1≥k  and 1≥n  we have ( ) ( )kTnulkTPnul nnn ;;* µµ = . Putting 

these inequalities together yields

( ) ( )
( ) ( )kTnulkTnul

kTPnulkTnul

n
n

nn
n

;;\suplim

;suplim; **

≤=

≤

∞→

∞→

µ

µ
                                                         (19)

In particular if 0  is not in ( )Td , then ( ) 0ker =nT µ  for all 1≥n  and thus

{ }0ker * =T . Consider an operator in ( )⊕y H H  of the form 

0

A C
T

B

 =  ÷
 

                                                                                        (20) 

Where CBA ,,  belong to ( )y H . If A  and B  are triangular. For example, if 

A  is the compact backward weighted shift defined by

( ) 1
1

11 ,0 −
−== jejAeAe   for 2≥j                                                        

( with respect to the orthormal basis { }∞
=1jje  of 1H ), 0=B  and C  is any 

operator mapping H  injectively onto a linear manifold ℜ  of H  such that 

HARranAranC  = , then a straightforward computation shows that ( ) ( ) { }0=TT pδδ  and 
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{ } { } HH⊕≠⊕== 0,...3,2,1:ker HkTV k                                                 (21)

If ( )R∈y H  is a strict contraction (i.e., 1<R  ), and *S  is the backward shift 

of multiplicity one then ( )∞*S  is unitarily equivalent to 

( ) 





∞*0

*

S

R

The operator ( )∞*S  is triangular, but the ( )2,2 -entry of the above matrix is not 

in general.

Nevertheless, the (2, 2)-entry is always triangular if the 22×  operator matrix 

is triangular.

Lemma (2-2-3) [102]:

Let T  be triangular operator with diagonal ( ) { }1, ≥= jTd jλ . Suppose that 

µ  is an invariant subspace for *T  and ( ) µµ µTPTB ==
** . Then B  is 

triangular, and basis can be chosen so that ( ) ( )TdBd ⊆ . In particular, 

( ) ( )** TdT µδ  is not empty.

Proof:

By our previous remarks the triangular of T  implies that

( )wjTV λ−= kerH . With respect to µµ⊕= ⊥H  , we can write 









=

B

CA
T

0   and ( ) ( )
( ) 









−
−=−

k

k
k

B

A
T

λ
λλ

0

*
                                  (22)

So any vector yx⊕  in ( )kjT λ−ker  yields the vector y  in ( )kB λ−ker . It 

follows immediately that ( )wiBV λµ −= ker . Hence B  is triangular with

( ) ( )TdBd ⊆ . In particular, ( )Bpδ  meets ( )Td . So ( ) ( )** TdT µδ  is not empty.

Corollary (2-2-4) [102]:

If T  is triangular, ( ) { }∞== 1jTd λ  (with respect to some orthogonal basis) 

and 

51



1

2

3

*T

T

TT

O

 
 ÷
 ÷
 ÷=
 ÷
 ÷
 ÷
 

O
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( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1

1 2 1

1 2 3

1 2

ker

ker ker

ker

ker

w

w w

w

w

T

T T T

T T T

T T

λ

λ λ λ

λ λ λ

λ λ

−

 − − Θ − 

 − − − 

 − − e

                       (23)

Then ,..., 21 TT  are triangular operators. ,..., 21 TT may act on finite 

dimensional spaces; if jk λλ =  for some kj <  then kT  acts on the trivial space 

{ }0 .

Proof:

It is obvious that  ( )wTTT 11 ker λ−= . Is triangular. By lemma (2-1-3)
















=

0

*

3

2

2 T

T

B                                                                            (24)

Is also triangular and a straight forward computational shows that 

( )wBBT 2222 ker λ−=  is triangular. The result follows by induction. Our next 

result can be applied to a wide class of operators, not necessarily triangular. 

Observe that if 



















=

0

*

3

2

1

A

A

A

A  




 ⊕∈ ∑

∞

= j
j

y H
H

H

H

1
3

2

1



 

(25)

where ( )jj yA H∈  for 1≥j , and interior ( ) φδ =jA  for all j , then 

( ) ( )
−∞

= 



⊃ j
j

AA δδ
1


(and each component of ( )Aδ  meets ( )
−∞

= 





j
j

Aδ
1
  but in general this inclusion 

is proper. For instance it can happen that ( ) ( )
−∞

= 



⊃ j
j

AA δδ
1

  is a totally 

disconnected set but ( )Aδ   is connected.

Proposition (2-2-5) [102]:
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Let      









3

2

1

333

232

13121

H

H

H



















=

O

AA

AA

AAA

A                                                                   (26)

and assume that ( ) ( ) φδδ =kj AA   if kj ≠ . Then ∑ <⊕
∞

=
AA j

j 1 .

Proof:

It will be shown that there exists an upper triangular operator matrix X  

of the form 









3

2

1

3

2332

1331211

H

H

H



















=

O

b

Xbb

XbXbb

X                                                         (27)

Such that X  is a quasiaffinity and 






 ⊕= ∑

∞

= j
j
AXAX

1                                                                           (28)

Here { }∞
=1jjb  is a strictly decreasing sequence of positive real’s converging to 

0 , ( )11 =b . The sikX '  are inductively defined as follows: if we formally write 






 ⊕= ∑

∞

= j
j
AXAX

1  ( or, equivalently, 0
1

=




 ⊕− ∑

∞

= j
j
AXAX ), we obtain 

1

1
1

0
k

j k i ik ir ir ik ik k
j

r i

AX X A b A X A X A X A
=∞

= = +

   = − ⊕ = + + −  ÷ ÷    
∑ ∑

   ( )
1

1

k

k i ik ik k ik ir ir
r i

b A X X A A A X
=

= +

 = − + + 
 

∑

For ∞<<≤ ki1 , and the remaining entries of the matrix vanish identically. The 

(1,2)-entry shows that 12212121 AAXXA −=− . Since ( ) ( ) φδδ =21 AA  , 

Rosenblum's theorem  establishes the invertibility of ( )
1 2, 2 1,A Aτ  ∈  y y H H , 

where ( ) 21, 21
XAXAXAA −=τ . Whence we readily obtain the unique solution 

( ) ( )
1 2

1
12 , 12 1 2,A AX Aτ−=− ∈y H H
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We proceed by induction; suppose the 1−k  columns have been determined, 

and consider the 10th column. The above equation show that 

 ( ) 1,...,2,1,
1

1
, −=−−= ∑

−

+=
kiXAAX

r

ir
rkirikikAA ki

τ

Which define the kth  column. It is easily seen that the matrix defining X  

represents, indeed, a boundary linear mapping provided 0→jb  fast enough. 

and 






 ⊕= ∑

∞

= j
j
AXAX

1 .

For all possible choices of the jb ’s . Moreover 

∑∑ ==
⊕=





 ⊕ j

k

j
j

k

j
X HH

11    (for all ,...2,1=k  )

So that ( ) HHH =⊕=






 ⊕⊃ ∑∑ ==

−
j

k

j
j

k

j
VranX

11 . Thus it only remains to show that 

the sb j '  can be chosen so that X  is injective. To this end, choose the jb  

decreasing to 0  so fast that 

∑
∞

+=

−<
1

2
ij

i
i

ijj bXb    for each 1≥i

( For example, one could recursively define 1

11 min2
−

<≤−
−= ijjij
j

j Xbb ). Let 

∑
∞

=
⊕= j
j
xx

1 , for jx  in jH  be any vector in Xker . The ith  coordinate of xX  

is, ∑
∞

+=

+=
1

0
ij

jijjii xXbxb

Hence 

;2
1

1 xxXbbx i

ij
ijjii

−
∞

+=

− ≤≤ ∑  Whence 3
222

xxx i ≤=∑  

(29)

Which implies 0=x .

Remark (2-2-6) [102]:
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Under certain circumstances these two result can be applie to a triangular 

operator T  to obtain triangular operators kT  with ( ) { }hkp T µδ = , and 

∑
≥

<⊕
1k

k TT . However to do this we require ( )kTδ  to be pair wise disjoint. 

Proposition (2-2-7) [102]:

Suppose T  is a triangular operator and for some λ  in C  and some 

integral k , ( )( ) ∞<− kTnul ;*λ . Then ( ) ∞<λ;*Tord . That is there is an integer 

m  so that ( ) ( ) mw TT ** kerker λλ −=− .
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Lemma (2-2-8) [102]:

Let A  and B  be operators on H . Assume that X  has dense range and 

XBAX = . Then ( )kBX λ−ker  is contained in ( )kA λ−ker .

Thus if B  triangular so is A . 

Lemma (2-2-9) [102]:

If B  is a quasiaffine transform of A  then 

( ) ( )kAnulkBnul ;; λλ −≤−  for all , 1kλ∈ ≥£ . In particular if BA qs~ , the 

( ) ( )kAnulkBnul ;; λλ −=−  for all C∈λ  and 1≥k .

Theorem (2-2-10) [102]:

Let T  be a bitriangular operator with diagonal ( ) { }1, ≥= nTd nλ  with 

respect to the triangularizing basis. Then 

(i) ( ) ( ) ( ) ( )**** TTTdTd pp δδ === . Moreover 

             ( ) ( )( )kTnulkTnul ,; *λλ −=−

             For all 1, ≥∈ kCλ . Thus each λ  in ( )Tpδ  occur in ( )Td  exactly 

( )wT λ−kerdim  times. If ( ) ∞<− kTnul ,λ  for some k , then 

( ) ∞<λ;Tord .

(ii)  If ( )Tpδλ∉  and λ−T  is semi Fredholm, then λ−T  is invertible thus 

( ) ( ) ( )TTT Lre 0δδδ = .

(iii) Every nonempty clouse open subset δ  of ( )Tδ  meets ( )Tpδ  and 

card { } ( ): dim ,jj Tλ δ δ∈ = H . Hence each component of ( )Tδ  meets 

( )−Tpδ .

Proof: 

Note that we use the notation { }∑ ∑∈= λλ:*  to avoid confusion with 

the notation 
−

∑  the closure of a set. By lemma (2-2-2) ( )**Tpδ  is contained in

( )Td , which is a subset of ( )Tpδ . And a ( )Tpδ  is contained in ( )**Td  which is 
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a subset of ( )**Tpδ . So equality of these four sets in assured. Moreover, by the 

same lemma,

( ) ( )( )*
; ,nul T k nul T kλ λ− = −

Form the proof of this lemma, one sees that 

( )( ) ( )( ) ( ) ( )( )kkk
n

n

k TnulTnulTnulTnul ** lim λλµλλ −=−≤−≤−
∞→                (30)

Since the number of occurrences of λ  in ( )Td  is easily seen to be 

( ) kn
n

Tnul µλ−
∞→

lim , it follows that this equals ( )wTnul λ− . The last statement of 

(i) is a consequences of proposition (2-2-7).

A semi-Fredholm triangular operator has index 0 . Thus such an operator is 

either invertible, or 0  belongs ( ) ( )**TT pp δδ = . Hence ( ) ( ) ( )TTT Lre 0δδδ = . 

If δ  is a clouse open subset of ( )Tδ  then by the Riesz functional calculus, 

T  is similar to an operator δδ ′⊕TT . Such that ( ) δδ δ =T  and ( )δδ ′T  is disjoint 

from δ . By lemma (2-2-3), δT  is bitriangular. Hence ( )δδ Tp  is a non-empty 

subset of ( ) ( )TdTp =δ . Indeed, ( )δTd  is necessarily a subset of ( )Td .

Of cardinality ( )dim ,T δH . That each component of ( )Tδ  meets ( )−Tpδ  is a 

simple topological consequence.

Proposition (2-2-11) [102]:

An operator is bitriangular if and only if 

( ){ } ( ){ }*
ker : , 1 ker : , 1

k k
V T C k V T C kλ λ λ λ− ∈ ≥ = = − ≥H                  (31)

Hence the class ( )∆B  is closed under quasisimilarities. We were able to apply 

Remark (2-2-6) to both T  and *T . We would obtain triangular operators kT  

and kT ′  for 1≥k , such that ( ) ( ) { }kkpkp TT µδδ =′=  , Where { } ( )Tku pk δ=≥1,  so that 

1 kk
T T

≥
⊕∑ p  and * *

1 kk
T T

≥
′⊕∑ p . Thus 

 1 1k kk k
T T T

≥ ≥
′⊕ ⊕∑ ∑p p                                                                     (32)
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( )
( )( ) ( )
( )( )( )
( )( )

1

1 2 1

1 2 3

1 2

ker

ker ker

ker

ker

w

w w

w

w

T

T T T

T T T

T T

λ
λ λ λ
λ λ λ
λ λ

−

 − − Θ − 

 − − − 

 − − e

If we know that kqsk TT ′~  for each k , this would reduce to consideration of 

the case ( ) { }µδ =Tp . When ( ) 0; =− mTnull µ  for some ITm µ−, , is nilpotent and 

the Apostol Dauglas theorem applies. So the case ( ) ∞=− kTnul ;µ  for all k  

remains.

An operator is quasitriangular if it has a compact perturbation which is 

triangular, and an operator T  is biquasitriangular if both T  and *T  are quasi 

triangular. If ...2211 ⊂⊂⊂⊂ NN µµ  such that kµ  is invariant for T  and kN  is 

invariant for *T  for all 1≥k . With respect to the decomposition 

( ) ( ) ( )1 1 1 2 1 2 2 ...N N Nµ µ µ µ= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕H

The operator T  has the matrix form





























=



3

332

2

221

1

11

D

BAD

C

BAD

C

BA

T

O

O

 

(33)

From this form it is clear that T  is both block upper triangular and block 

lower triangular, and so is ( )∆B . We introduce the following diagrammatic 

device to represent the matrix

                                                                                                      (34) 

Note that kA  represents the operator mapping the invariant subspace 

1−⊕ kk Nµ  into itself. Similarly kC  maps kkN µ⊕  into itself and this is *T  

invariant.

Diagrammatically
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                                                                                                     (35)

Similarly ( )nkN kn ≤⊕µ  is *T  invariant and can be collapsed into one.

Example (2-2-12) [102]

Note every bitriangular operator admits a fair case representation. Let 

























=





41

31

21

4131211

O

O
R

With respect to the given basis Rnen ,1, ≥ , can be written 

*

1 2

1
1

1∑ ∑
≥ ≥

−− 




⊗+⊗=

n n
n

e
nn eneeenR                                                        (36)

This is a compact triangular operator. Let 

*

1
1

1
1

1

1

1

312111

0
0 





⊗+=

























= ∑
≥

+
−

n
neneIS





A simple computation shows that S  in invertible and 

( )∑
≥

−−− =⊗=
1

1*11

n
nn ndiageenSRS                                                          (37)

This is diagonal, and thus R  is bitriangular. The eigenvalues of R  are 

{ }1,1 ≥− nn  and the corresponding eigenvector are 11 ef =  and 

( ) 11 1 −− −−= neSf nn  for 2≥n . The corresponding eigenvectors for *R  are 
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( ) nn
eneeSg

1

211
*

1 1
−

≥∑ −+==  and nn eg =  for 2≥n . Since { }1, ≥ngn  forms a 

basis for H  any staircase form for R  must contain 1g  in some kN .

But then 1+kµ  must both contain 1g  and be spanned by a finite subset of 

{ }1, ≥nf n . This is clearly impossible. This example is similar to 1−RSδ  which 

being diagonal has a staircase model. 

Lemma (2-2-13) [102]:

Let µ  and N  be finite dimensional subspaces, and let M  and N  be 

the corresponding projections. Suppose that ( ) 2 1
dim

2
M M NM δ ε µ⊥− = < ≤ .

Then there is an operator XIS +=  such that MMX ×= ⊥  and ε2
1
≤X , so that 

Nδ  contains µ . Similarly there is an operator YIT +=  such that YNNY ⊥=  

and ε2
1
<Y , so that µT  is contained in N . 

Proof:

Note that ( )IMNMM δ−≥+⊥ 1 , so ( ) 1−⊥+= MNMMNMA , has norm at most

( ) 11 −−δ . With respect to ⊥⊕= µµH , has the matrix 





0

01

H . Thus 

( )( ) 2

1

2

1
2 211 δδ <−−≤ −H . Hence ( ) εµδ 2dim2 2

1

1
<≤H . The range of A  is a 

subspace y  of N . The operator 





−

=
1

01

H
S  is of the desired form, and it 

maps y  onto µ . Hence SN  contains µ  . For the second statement let p  

be the projection onto µN . Decompose ⊥⊕= NNH . As above there is an 

operator 





=

0

0

k

NP
B  with range equal to µ  and HPB ⊥=ker . Let 







−

=
1

01

k
T . Then  TkkP ,=  maps µ  onto µN . As before 

εµ 2dim
1

<≤kk                                                                            (38)

Proposition (2-2-14) [102]:
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Let T  be a bitriangular operator. Then given 10 <<ε , there exists a 

trace class operator X  with ε<
1

x  such that ( ) ( ) 11 −++ XTXI  admits a 

staircase representation.

By a Jordan operator we mean a direct sum of dimensional operators kk JI +λ , 

where kIC,∈λ  is the identity on kC  and kJ  is the standard Jordan nilpotent 

operator of order  k  given by 01 =eJ k , 1−= iik eeJ  for ki ≤≤2 .

Theorem (2-2-15) [102]:

Let T  be a bitriangular operator with ( ) { }InT np ∈= ,λδ . Suppose that for 

all In∈  and all 1≥k , ( )kTnul n ;λ−  is 0  or ∞ . Then there are a Jordan 

operators 1H  and 2H  such that 21 HH <<T , and 

( ) ( ) ( )kTnulknulkHnul nnn ;;; 21 λλλ −=−=− H  for all In∈  and 1≥k .

Lemma (2-2-16) [5]:

Let ...2211 ≤≤≤≤ nmnm  be a monotone increasing sequence of positive 

integers. Let ∑
∞

=

⊕=
1j

mjJA  and ∑
∞

=

⊕=
1j

njJB . Then BA qs~  .

Proof  

Let ( ){ }jj
i mie ≤≤1:  and ( ){ }jj

i niF ≤≤1:  be the canonical basis for the 

spaces jH  and jk  on which mjJ  and njJ  act respectively. Define jjj mnd −= . 

Then define a linear operator X  by

( ) ( ) ( ) ( )( ) ( )111 !1! +−
−

− +−= j
i

j
dji

j
i ejeJXf                                                           (39)

Where ( ) 0≡j
se  for 0≤s . Note that x  extends to compact operator from 

∑
∞

=

⊕=
1j

jkk  into ∑
∞

=

⊕=
1j

jHH . A routine computation on these basis vector 

shows that XBAX = . We show that X  is a quasiaffinity. Suppose that 

( ) ( )∑∑
= =

=
1 1j

nj

i

j
i

j
i fax  and Xx=0 . Then ( ) ( )

( )
( )∑∑

≥ =

+
− 





+

−=
1 1

1

!1

1

!

1
0

j

n

i

j
i

j
dji

j
i

j

e
j

e
J

a  from 

equation (57) and 
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( ) ( ) ( ) ( )

( ) ( )( ) ( )∑∑

∑∑ ∑∑

≥ =

−
+

≥ =

−

=

−

=
+

−=

−=

1 1

1

1 1

1

2

1

1

!

1

!

1

!

1
0

j

m

i

j
i

j
i

j
dji

j

m

i

j
i

j
i

j

n

i

j
i

j
dji

j

j j

eaa
j

ea
j

ea
j

 

(40)

Where we  drop the convention ( ) 00 ≡ia . Examination of each coefficient yields 

( ) ( ) ( ) ....2
21

1
1 === +

++++
+
++

j
djdji

j
dji

j
i aaa

Since ∞<x  all coefficients must be 0 , so X  is injective to see that X  has 

dense range, note that 

( )( ) ( ) ( ) ( )111! +
+

−
+ +−= j

dji
j

i
j
dji ejefjX

( )( ) ( )
( )

( )
( )1

...1...... !1

!

!

!
! ++

++++
+

+++++
+

++++ ++
−

+
= sj

sdjdji
sj

sdjdji
sj

sdjdji e
sj

J
e

sj

J
fjX

Summing these terms for 10 −≤≤ ps  yields
( ) ( )( ) ( )pj

pdjdji
j

i epjje +
−+++++− 1...!!  

(41)

In range ( )X . Consequently, ( )j
ie  belongs to ( )−xran  for all i  and j . So X  

has dense range. It follows that B Ap . But then * *A A B B≅ ≅p  So BA qs~ .

Theorem (2-2-17) [102]:

Let { }1, ≥kmk  and { }1, ≥knk  be sequences of positive integers. Set 

∑
∞

=
⊕=

1k
mkJA  and ∑

∞

=
⊕=

1k
nkJB . Then BA qs~  if and only if ( ) ( )kBnulkAnul ;; =  

for all 1≥k .

Proof:

The necessity follows from lemma (2-2-9). So we suppose that 

( ) ( )kBnulkAnul ;; =  for 1≥k . It is easy to see that ( ) ( )1;; +− kAnulkAnul , 

Jordan blocks of size k  in A  for 00 1 lk ≤< . The same holds for B  and the 

sum of these blocks for A  and B  are thus unitarily equivalent. By restricting 

our attention to remaining summands, we can assume that 0kmk ≤  and 0knk ≤  

for all 1≥k  with equality holding infinitely often in both cases. 
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In either case: (i) jj nSupm sup=∞=  or (ii) jj mm suplimsup =  ∞<== 0suplim kn j ; it 

is routine exercise to split { }jm  and  { }jn  into at most countably many infinite 

subsets, which we denote by { }1, ≥jmij  and { }1, ≥jnij  so that for each i , 

either ...2211 ≤≤≤≤ iiii nmnm  or ...2211 ≤≤≤≤ iiii mnmn  let ∑
≥

⊕=
1j

mi ij
JA and 

∑
≥

⊕=
1j

ni ij
JB . By lemma (2-2-16), iqsi BA ~ . Hence BA qs~  as desired.

It now apparent by comparison of theorems (2-2-15) and (2-2-17) how 

to obtain a Jordan operator quasisimilar to given bitriangular operator T . We 

wish to define a canonical Jordan model for T , which we denote by ( )TJ . 

Define 

( ) ( ) ( )1;;; +−−−=− kTnulkTnulkT λλλα

Where ∞−∞  is deigned to be ∞ . By analogy with the finite dimensional 

case, let 

( ) ( ) ( ) ( )( )

( )( )
∑ ∑∑

∈ ∈ ≥

−+⊕=⊕=
T T k

kTx
kk

p p

JITJTJ
δλ δλ

λλλ
1

;;

Note that there are three cases:

(i)   When ( ) ∞<− wTnul λ , ( )λ;TJ  is the Jordan form of ( )wkTT −ker\ .

(ii)   When ( ) ( ) 0;; 0 >−>∞=− kTnulkTnul λλ  for 00 Ikk <<  and   ( ) 0; 0 =− ITnul λ , then ( )λ;TJ  

equals  ( ) ( ) ( ) ( )kTx
kk

I

kk

k

k
kk JIJI ;

1

1
1

0

0

0
λλλ −

−

+==

∞ +⊕⊕⊕+⊕∑

(iii) When ( ) ∞=− kTnul ;λ  for all 1≥k , then ( )λ;TJ  equal 

          ( )( )∞

≥
∑ +⊕

1k
kk JIλ

By proposition (2-2-7), these cases are exhaustive. We can obtain two special 

cases of the main theorem as corollaries of theorems (2-2-15) and (2-2-17). 

Section (2-3): Complementary Invariant Subspaces and the 

Relative boundedness of Triangular and Bitriangular Operators

Corollary (2-3-1) [102]:
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Let T  be a bitriangular operator such that ( ) 0; =− kTnul λ  or ∞  for 

each λ∈£  and 1≥k . The ( )TJT
qs
~ . [34, 41, 105, 38].
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Corollary (2-3-2) [102]:

Let T  be an algebric operator. Then ( )TJT
qs
~ . Recall that two subspa-ces 

µ  and N  are quasicomplementary  if 0=Nµ  and H=Nµ . We require a 

technical lemma.

Lemma (2-3-3) [102]:

Let ∑
≥
⊕=

1k
kAA  be an operator in ( )⊕y H H , where 

( ) { }kkp A λδ =  are distend complex numbers and 







=

D
J

0

00
 for 1≥k . Suppose 

B  is an operator in such that AB
qs
~ . For each subset Γ⊂£ , set 

( ) ( ){ }, ker :
w

B V B λ λΓ = − ∈ΓH .

Then ( )Γ,BH  and ( ), \B Γ£H  are quasicomplementary hyperinvariant 

subspaces . If Y  is a quasiaffinity such that YBAY =  then ( ) ( )Γ=Γ− ,, ABY HH

. If { }xΓ  is a collection of subsets of £ , then ( ) ( )x
x

x
x

BVUB Γ=Γ ,, HH  If 

Φ=Γxx , then ( ) { }0, =Γx
x

BH . We prove the following result.

Theorem (2-3-4) [102]:

Let T be a bitriangular operator. Then ( )TJT
qs
~ .

Proof:

Let ( )Tpδ  be a bitriangular operator. Then ( )TJT
qs
~ . Where 

( ) ∞=iTord µ,  so that ( ) ∞=− kTnul i ;µ  for all 1, ≥> imk j  and ( ) ∞<= jj mvTord ,  

so that 

( ) 0, =− kvTnul j  for all 1, ≥> jmk j

Define 
( ) ( )

1
jj m

j

R v I J R∞

≥

= ⊕ + ∈∑ y . Then RT ⊕  is a bitriangular operator in 

( )R⊕y H . Moreover, ( ) ( )TRT ρρ δδ =⊕ ,
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( )






>

≤∞
=−⊕

j

j

j mk

mk
kIvRTnul

,0

,
; , ( ) ∞=−⊕ kIRTnul i ;µ  for 1≥k

and ( ) ( ) { }0kerker ⊕−=−⊕ w
i

w
i ITIRT µµ  for 1≥i . Let ( )RTJJ ⊕= . 

By corollary (2-3-1), RTJ
qs

⊕~ . Let X  be a quasiaffinity such that JX =  

( )X T R⊕ . Let { }( )0 0X
−

= ⊕H H  and set { }00 ⊕= HXX , considered as an 

element of ( )0,y H H . Let 0HJJ =0 . Clearly, TXXJ 000 =  so that 0T Jp . We 

wish to show that 0J  is quasisimalar to a Jordan operator. By lemma (2-3-3),

( ) ( ) ( ) ( )101110 ,,,, Γ=Γ=Γ⊕=Γ −− JJRTXTX HHHH

and 

( ) ( ) ( )⊥− Γ=Γ=Γ⊕ 122 ,,, JJRTX HHH

also 

( ) ( ){ } ( )( ){ } 000 ker:ker HH ⊆∈−⊆∈−= TJVTTXV w
ρρ δλδλλ

Hence 

( ) ( ){ } ( ) ( ){ }TJTJV ww
ρρ δλλδλλ ∈−⊕=∈−= ∑ :ker:ker 000 HH

When 1Γ∈= iµλ , then ( ) ( )wi
w

i JJ µµ −=− kerker0 H  and ( )wiJJ µ−00 ker  is a 

Jordan operator. When jv=λ , ( ) ( ) jm
j

w
j vJvJ −=− kerker , so ( ) jm

jvJJ −00 ker  is 

algebric and thus by corollary (2-3-2), ( ) jm
jvJJ −00 ker  is quasisimilar to Jordan 

operator. Thus 0J  is thus * *
1J Tp . By lemma (2-2-9), and theorem  (2-2-10)

( ) ( )( )
( )( ) ( )

( )kJnul

kTnulkJnul

kJnulkJnul

;

;;

;;

1

*
1

*
11

λ
λλ

λλ

−≤
−=−≤

−=−

Consequently, ( ) ( )kTnulkJnul ;;1 λλ −=−  for all λ  in £  and 1≥k .

Treating *T  similarly one finds a Jordan operator 2J  so that * *
2T Jp , whence 

2J Tp . As above 
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( ) ( )( ) ( )( ) ( )( )kTnulkTnulkJnulkJnul ;;;; **
22 λλλλ −=−=−=−

By theorem (2-2-17), ( )TJJJ
qsqs
~~ 21 . Thus ( )TJJ qs~1  . 
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Corollary (2-3-5) [102]:

Let S  and T  be bitriangular operators. Then the following are 

equivalent:

(i) TS qs~

(ii) ( ) ( )kTnulkSnul ;; λλ −=−  for all , 1kλ∈ ≥£

(iii) ( ) ( )TJSJ ≅

Corollary (2-3-6) [102]:

Let T  be a bitriangular operator such that ( )Tpδ  is real. The *~ TT qs .

Corollary (2-3-7) [102]:

Let S  and T be bitriangular operators such that S Tp . Then TS qs~ .

Corollary (2-3-8) [102]:

Suppose S  and T  are bitriangular operators such that TS i  and 

ST i . Then ST qs~ . 

Lemma (2-3-9) [102]:

Let T  be a bitriangular operator and let 0>ε . Then T  is quasisimilar 

to an operator of the form kN + , where N  is a diagonal normal, k  is quasi- 

nilpotent trace class operator which commutes with ( ) ( )TNkN pp δδε =< ,,
1  

and ( ) ( ) ( )−=+= TkNN pδδδ .

Proposition (2-3-10) [102]:

Let T  be a bitriangular operator. A compact subset A  of C  is the 

spectr-um of an operator TS qs~  if and only if (i) A contains  ( )Tpδ (ii) each 

compo-nent δ  of A  meets ( )−Tpδ , and (ii) each component δ  of A  which 

is not a sin-gleton meets ( )p u
Tδ .
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Corollary (2-3-11) [102]:

Let T  be a bitriangular operator. Suppose that ( )Tpδλ∈  is an isolated 

point of ( )−Tpδ ; ( ) ∞=−λTnul , and ( ) ∞=−λTnul  and ( ) ∞<≤ λ,2 Tord . Then 

( )T2y  is not contained in ( )S −
y  for any TS qs~  .

Theorem (2-3-12) [102]:

Let T  be a bitriangular operator. If for each isolated point λ  of 

( )−Tpδ , either (i) ( ) 1; =λTord , or (iii) ( ) ∞=λ;Tord , then there is an operator 

TS qs~  such that ( )S −
y  contains ( )S −

2y . Conversely, if ( ) ( )S T
− ⊃y 2y  for 

some TS qs~ , then T  satisfies the conditions above. In particular, 

( ) ( )T S
−⊃2y y  if and only if ( ) { }λδ λ =T , and ( )kIT λλ −  is not compact 1TT ⊕λ , 

where ( )Tδ −  ( ) { } ( ) { }\ ,T Tλδ λ δ λ= =  and is not compact for all 1k ≥ .

Proof:

Corollary (2-3-11) shows that condition on isolated points is necessary. 

Further, if ( )T
−

y  contains ( )T2y , then lemma (2-3-9) and the upper semi-

continuity of the spectrum imply that ( ) ( )−= TT pδδ . So when λ  is an isolated 

point of ( )−Tpδ  the Riesz functional calculus implies that 1~ TTT ⊕λ  such that 

( ) { }λδ λ =T  and ( ) ( ) { }λδδ TT =1 . When (iii) holds IT λλ −  is a non-nilpotent 

quasinilpotent. If ( )kIT λλ −  is compact that this properly persists for any 

operator A  in ( )T
−

y  such that λ  is still an isolated point of ( )Aδ . But 

( )T2y  contains operators S  such that −⊕SSS λ~ , ( ) { }λδ λ =S  and ( ) ( ) { }λδδ \TS =′

, and so that ( )kIT λλ −  is not compact for any k . This proves necessity. The 

converse follows from the similarity orbit. 

Example (2-3-13) [102]:
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Let us look at our Jordan models. In lemma (2-2-3) we showed that the 

2-2 corner of a triangular form of a triangular operator is triangular whereas 

the 1-1 corner need not be triangular. This phenomenon occur even for not be 

triangular Jordan operators. Let ∑
≥

⊕=
1n

nJT  act on 1
n

n≥

= ⊕∑H H  is n-

dimensional with standard basis ( ){ }nie n
i ≤≤1:  so that ( ) ( )n

i
n
i eTe 1−=  for ni ≤≤2  

and ( ) 0=n
iTe .

Let ( ) ( )( ) 2

1

1, −

>
− −== ∑ nneX n

kn

n
knnk αα . Then { }0, ≥kxk  are pair wise orthogonal 

and 1+= kk xTx . Let { }0, ≥= kxspan kµ . Clearly, µ\T  is a weight shift with 

weights ( ) 2

11

1 21 ++=−
+ kkxx kk . Hence µ\T  is a Fredholm operator of index-

1, and thus is not triangular.

An even more striking example is obtains by taking { }00 ,NxspanN = , where 

( ){ }2,11:0 ≥−≤≤= nniespanN n
i . This is invariant for T , and by lemma (2-2-3), 

( ) *\ NT  is triangular. However 00 ≠= xTx k
k  is orthogonal to 0NT k  for all 0≥k . So 

we need that 

( ) 0ker \
w

T N N N= ≤

So NT \  is not triangular. Nevertheless, 0N  has co-dimension 1 in N  and 

TJNT
n

n ≅⊕≅ ∑
≥

−
2

10\ . So TNTNTT ii  \\ 0≅ . But NT \  is not quasisimilar to any 

bitriangular operator. This shows that corollary (2-3-8) cannot be extended 
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much. On the other hand hyper invariant subspaces of Jordan model are very 

easily described.

Lemma (2-3-14) [102]:

Let ( )∑
≥

+⊕=
1k

kk JIT λ , where ( )kλ  are distinct and each ( )kJ  is the direct 

sum of nilpotent Jordan blocks. Then the hyperinvariant subspaces of T  are 

precisely ( ) ( )( )






 ∈⊕= ∑

≥1k
khkh JLatTLat µ . If ∑

≥
⊕=

1n
kJJ  is a direct sum of Jordan 

blocks, then ( )JLath  consists of all subspaces of the form 

( )∑
≥

⊕
1n

n
in

µ  where ( ) ( ){ }nn
j

n
i ijespan
n

≤≤= 1:µ     and 

( )nmnmn kkiii −+≤≤  if nm kk ≥

Corollary (2-3-15) [102]:

If T  is a Jordan bitriangular operator and µ  is hyperinvariant for T , 

then NT  and ⊥⊥ µµTP  are both Jordan bitriangular operators.

Example (2-3-16) [102]:

It is easy to give an example that show that quasisimilarity does not 

preserve the hyperlattice. Let ( )∞= 3JA  and ( )∞⊕= 32 JJB . Then BA qs~ . But 

( )ALath  consists of { }0 , 2ker,ker AA , and H , whereas ( )BLath  consists of { }0

, ( )∞⊕ 2
32ker JJ , 2ker B  and H .

Example (2-3-17) [102]:

Lemmas (2-2-7) and (2-2-8) might suggest that if BA qs~  and if X  is a 

quasiaffinity such that BX X= H , then ( ) kk BAX kerker =
− . This is far from true. 

Take ( )∞= nJA  and ( ) ( )∞∞⊕= mn JJB  with 1<m  so that BA qs~ . Represent these 

operators on ( )nH  and ( )n m+H  by
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





















=

0

1

10

10

O

O

A



       and      

0 1

0 1

0 1

0

0 1

0 1

0 1

0

o

o
B

o

o

o

o

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
  

O O

O O

A routine computation shows that if Y  and z  are quasiaffinities such that 

{}0** =RanzRanY  , then 





















































=

z

z

z

Y

Y

Y

X

O

O

O

O

O









is a quasiaffinity of ( )nH  into ( )n m+H  such that XABX = . Clearly ( )−kAX ker  is a 

proper subspace of kBker  for 11 −≤≤ nk .

Example (2-3-18) [102]:

The situation is even worse when T  is bitriangular but not Jordan. Let 

J  be the Jordan model of T , and let X  and Y  be quasiaffinities such that 

JYYT =  and XJTX = . By lemma (2-3-3), ( ) ( )ww JTY λλ −=− kerker  for all λ  in 

( )Tpδ . On the other hand, even if TT w kerker =  it may occur that ( )−JX ker  is a 

proper subspace of Tker . Let D  be the diagonal normal compact operator ?. 

Consider the operator T  in ( )y ⊕H H  given by 
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∑
≥

−

−







⊕≅








=

1
3

1

3 0

0

0

0

n n

n

D

D
T

This is block diagonal and thus is bitriangular. Its Jordan form is easily seen to 

be 







=

D
J

0

00
. Let { }1, ≥nen  be the standard basis diagonalizing D , and set 

∑
≥

=
1n

n nef . Let W  be any isomtery of H  onto { } ⊥f . Then 







= 30 D

DW
X

Is an operator satisfies XJTX = . Moreover X  is one to one, since 





=

y

x
X0 , 

implies 03 =yD , whence 0=y , hence 0=Wx ; so 





=





0

0

y

x
 . Next, notice that 







=





−

n

n

n en

ne

en
X 12

0

Let 2
fr = . Since ( ) 2

, ffrnen = , there is a vector nx   such that nn rnefWx −= . 

So  





=





−

nn

n

ern

f

ern

x
X 12  converges to 





0

f
. It follows that 

( ) 0
0

f
RanX Ran W VC

−−  
≥ = ⊕ ÷

 
H

Whence ( )1 3RanX Ran D
−− = ⊕ = ⊕H H H . Thus X  is a quasiaffinity. 

The final is the observation that RanWJX =ker  is a proper subspace of 

Tker . The only good thing we can say a bout this situation is that the smallest 

hyperinvariant subspace of T  containing RanW  is all of Tker . This is 

because the rank two projection onto 





















n

n

e

e
span

0
,

0  commute with T  .

Proposition (2-3-19) [102]:
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Let S  and T be quasisimilar bitriangular operators. Then there are 

quasiaffinities X  and Y  such that TXXS =  and YTSY =  and such that 

( ) ( ); ,X S T T
− = ΓH H  and ( ) ( ), ,Y T S

−Γ = ΓH H  for every subset Γ  of £ .

Proof:

It suffices to assume that JS =  is the Jordan model of T . By lemma 

(2-3-3), we need only construct X . Let ( )wTTT λλ −= ker  for each λ  in 

( )Tpδ . Clearly λT  is triangular. By lemma (2-3-3), *
λT  is also triangular. So 

λT  is bitriangular. It is obvious that 

( ) ( )kTnulkTnul ;; λλλ −=−  for 1≥k

Thus an application of corollary (2-3-5) yields ( )
∑

∈

⊕
T

qs

p

TT
δλ

λ~ . Let λJ  be the 

Jordan model of λT . So ( )
∑

∈

⊕=
Tp

JJ
δλ

λ . Let λX  be a quasiaffinity such that 

λλλλ JXXT = . Now let λP  be the orthogonal projection onto the domain of λJ , 

and let λW  be the natural injection of ( )wT λ−ker  into H . For suitably chosen 

positive constants λC , the operator 

∑= λλλλ PXWCX

Is a bounded operator ( )1
2

−−= n
n

n XCC λλ . It clear that XJTX =  and that 

( ) ( ), ,X J Tλ λ− =H H  for ( )Tpδλ∈ . In particular, X  has dense range. For any 

subset Γ  of £

( ) ( ) ( ), , ,X J V X J V T
λ λ

λ− −

∈Γ ∈Γ
Γ = = ΓH H H .

By lemma (2-3-3) { }( ) { }( ) { }, , \ 0T T Cλ λ =IH H . Thus if ∑⊕= λvv  lies in 

Xker , then 

∑
≠

−=
λµ

µµµµλλλλ XXWCvXWC

Belongs to this intersection and hence is 0 . Since λX  is injective, 0=λv , So 

X  is quasiaffinity.

Proposition (2-3-20) [102]:
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For T  in ( )y H  the following are equivalent:

(i) Every subspace of finite or co-finite dimension has a complement in 

lat T ;

(ii) ( ){ } ( ){ }CTVCTVH λλλλ :ker:ker *−=∈−= ?

(iii) T  is quasisimilar to a diagonal normal operator.

Lemma (2-3-21) [102]:

Let ζ  be the class of injective bitriangular compact operator. Then qsζ =  

( ) ( ) { }{ }: : 1p kT B T kδ λ∈ ∆ = ≥  is a sequence of non-zero complex numbers 

converging to 0 , and ( ) ∞<− wTnul λ  for all { }λ .

Proposition (2-3-22) [5]:

Let ( )T ∈y H  and let p  be a polynomial. Suppose µ  is an invariant 

subspace of T  contained in ( )Tpker  such that ( )*ker Tppµ  is inverible in 

( )( )*
ker ,p T µy . Then ( ) ⊥⊕µµ TTT ~  where ⊥µT  is the compression of T  to 

⊥µ . Moreover ( ) 0=µTp  and ( )*⊥µTp  is injective.

Proof:

Let ( ) ( )nkkk

m

ttp λ−Π= =1 . So ( )µδT  is contained in { }mλλ,...,1  and T µ  

1

~
m

k
k

T
=

⊕∑ , where ( ) 0=− nk
kk IT λ . It suffices to prove the result in the case 1,m =

( )0, np t tλ= = , for the general case will follow by a straight forward induction 

argument. Split µ µ⊥= ⊕H  and decompose 







=

B

CA
T

0

Then µTA=  satisfies 0=nA . Compute for 1≥k , 







=

k
k

k
k

B

CA
T

0
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Where 1
1

−
− += k

kk CBACC , BCCA k
k

1
1

−
− + . In particular 





= n

nn

B

C
T

0

0
 and 







= n

n

n

BC
T **

* 00
. For each vector 





=

y

x
f  in nT *ker , we have yBxC n

v
**0 += .

By hypothesis the map taking f  to x  defines an isomorphism of nT *ker  

onto µ . Hence we deduce that n
annan BRCR ** ⊆ . By a well known results there 

exists an operator X  in ( ),µ µ⊥y  such that *** XBC n
n −= . Equivalently 

n
n XBC −=  now notice that 

( ) ( ) ( ) ( )BXBXBABCBBXBAxC nnnn +−=+− −1

                       ( ) BCACBACC nnnn −+−= −1

                        ( ) ( )CAABCCA n
nn

1
1

−
− =−=

Since nB*  is injective nB  has dense range. Thus we obtain  C AX XB= −

Hence 





=




 −












B

Ax

B

CAx
T

0

0

10

1

010

1
~

We observe that a consequence of this proposition is that 

( ) ( ) ( )*** kerker kTTpTp λ−=  for mk ≤≤1 . To see this replace *T  by the similar 

operator ** BA ⊕  on 1 2⊕H H .

Since ( ) 0* =Ap  and ( )*Bp  is injective it follows that ( ) ( )**
kBBp λ−  is 

injective for mk ≤≤1  and both kernels above are 1 0⊕H . The preceding 

proposition may have rather limited application.

Example (2-3-23) [102]:

Let T  be the triangular operator given by 





























−
−

−
−

−

=

o

O

T

5131

4121

311

210

10
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With respect to a basis { }1, ≥nen . Then 1kerT Ce=  and { }ηeespanT r ,ker 2 =  . A 

routine calculation shows that if ∑≥
=

3n nneax  and 2kerTTx∈ , then 

( )( ) 321
2

1
annan −−=  for 4≥n . Hence 0=x , and TTT n kerkerker 2

≠
⊃=  is two-

dimensional for 2≥n . Another simple calculation yields *kerT Cζ= , where 

( ) nn
en

1

2
1

−

≥∑ −=ζ . If ** kerker TT ≠  then there is a (unique) vector 

∑≥
=

1n nneax  such that 02 =a  and ζ=xT * . But this forces 12 −=nan  for 

3≥n  which is absurd. So ** kerker TT n =  is one-dimensional for 1≥n . Now 

{ }0ker *
ker =TP T  so our proposition does not apply. Indeed the conclusion is 

false. For if T  is similar to an operator of the form ( ) 1ker TTTA ⊕= , then 

( ) ( ) ( )111 TnulAnulTnul +===

So 1T  is injective and ( ) ( ) 1== nn AnulTnul  for all 1≥n , contrary to fact.
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Examples (2-3-24) [102]:

The precise relationship between ( )kTker  and ( )kT *ker  for a triangular 

operator T  is rather mysterious, even when T  is compact. Consider the 

following three examples. Let 



















−
−

−

=


33

22

11

ba

ba

bA

T

Where 111 ==ba  and jb j log1=  , ( )1+= jja j

Then T  is compact and ( ) { } { }1,0 ≥= jaT jδ . Since o  is not a diagonal entry 

of *,TT  is injective (lemma (2-2-2)). However ker nT Cζ=  for all 1≥n   where 

∑≥
=

1n n neζ .  Let 































=

0

0

0

310

210

10

3121100

O

O



A

In this case,  ( ) { },...0,0=Ad . A simple computation yields that  *A  is injective 

(so ( )*Apδ  is empty) and thus ( ) 0* =kAnul  for all 1≥k . However ( ) 1+=kAnul k  

for all 1≥k . 
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