Chapter 2
The Representation of Bitriangular and
Quasitriangular Operators

We deal with a striking matrix representation for biquasitriangular
operators and deduce some consequences of this representation for the
structure of biquasitriangular operators. The canonical Jordan model of a
Jordan operator is determined by the numerical data. We prove the
complementary invariant subspaces for the triangular operator
Section (2-1): Representation of Biquasitriangular Operator

Let ' be a complex separable infinite-dimensional Hilbert space and

let v denote the algebra of all bounded linear operators on * , we

introduced the remarkable class of quasitirangular, operators on * which we
shall denote by «©» [31, 32, 33, 123]. One consequence of the subsequence
study of this class was the spectral characterization of non-quasitriangular
operators. In particular this theorem implies that every non- quasitriangular
operator on * has non trivial hyperinvariant subspace, and thus attention
now naturally focuses on the class
rerrs rr S Cor'y

Of biquasitriangular operators on * . It was shown that ®<» is the norm
closure of the class * of all algebraic operators on * and the norm-closure
of the class of all nilpotent operators on * was also determined .

We present a striking matrix representation for biquasitriangular
operators and to deduce some consequence of the existence of this

representation for the structure theory of biquasitriangular operators. If

roy(H)  we shall denote the spectrum of = by 2@ and the [left, right]

Clakin spectrum of = by l[a.(T).a.(T)] am _If  is a Fredholm operator
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we write @ for the Fredholm index of ' . Moreover if ' 1is a Hilbert

space and ° is bounded operator mapping * into ' such that

ker (@) =kec (@~ ) =0}
We say that * is a quasiaffinity. We shall say that an operator  in

viH  has a staircase-matrix representation if there exists a orthogonal decom-

position of * of the form

H=S OH, @))

n=1

Where the subspaces #.(1=n=<=9 gare finite-dimensional such that the matrix

of - with respect to this decomposition has the form

A, B C
a C
o & C
O A, B, C
| C
[l D1 Cl Bn C
g C
a C
0 D, A, C
O C
0 D, C, C
0 A, T

(2)

Where all the entries except the * , * | and » are understood to be

Theorem (2-1-1) [37]:

An operator ' in Y is biquasitriangular if and only if for every -

there exists a compact operator in v such that <= and such that

r— has a staircase-matrix representation.

Proof:
Suppose first that an operator * in " can be written as a sum

== _where ' isacompactand ° has a staircase-matrix representation

of the form (2) with respect to a decomposition of the form (1). To show that
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*is bitriangular, it suffices in view of the fact that (BQT) is invariant under
compact perturbations to show that «<» is biquasitriangular. Since the

finite-dimensional subspaces

H,.H, [ HL, [ HL, ., H, 10 HL, ...

are all invariant under  , it follows easily from the definition .
That sr«» | That =r+®» is just as obvious, since each of the finite-
dimensional subspace
Is invariant under . To prove the other half of the ~=®<» and let

be any positive number. Then by virtue of the equivalent definitions of
quasitriangularity, it follows easily that there exist increasing sequences

vy and {=¥= of finite-rank projections converging strongly to *=-
and satisfying the future conditions

PH+T'P,H OQ,H (n =1,2,..))
QH+TQ,H P, . H (n=1,2,..)

3)
and
|0 —pP,)TP,| <g/2"" (n=12,.)
@ —P, )T P, | =g/2" (n=12,..)
4)

It follows from (3) that
aQ—+,, e, =0 =0 —€, )T Qn
(5) and
(P, =0 = —e,)P, (= =n) (6)

Moreover the inequalities (4) imply that if ' is defined by the equation

k. =Sl —p)rp, +o,70—,)] .

i=

Then ' is a compact operator of norm less than . We define ===+,

Then by virtue of (5) and (6) we have the equations [5]:
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(1—P,)T,P, =(1—P,)TP, —(1 —Pn)§(1 —p )P, +Q,T(1—0,)CP,
- 0
=(1—,)7e, ~(1=R )31 P, ), 2,
.? D
=@1—p,)TP, —(1—P,) > (1—p, )P, %

(1—p,)TP, TP, =0 (n=12,..)

7)
By an analogous argument we conclude that

Q. T, —,) =0

(8)
We define + ==+. and for every positive integer * we get

H., Q. —+£,)H.H,,, =<XP,, —,)H
€)
It follows easily from (7) and (8) that the matrix of = ="—+- with respect to
the decomposition (1) has the form (2). Thus the theorem is proved.
Corollary (2-1-2) [37]:
Let ' be any biquasitriangular operator in »* and let by any
positive number. Then there exists a compact operator = of norm less than
such that the operator ~—* has a staircase-matrix representation of the
form (2) where
(@) for *=— , each eigenvalue of * [ respectively, ¢ ] has algebraic
multiplicity one,
(b) for *==— and =/ <)ok )=< and G)I AC) =9
(c) for 1=.i =¥a)nK0,) =<
We shall now deduce some consequences of theorem (2-1-1) and corollary (2-
1-2).
Recall that two operators and ' acting on Hilbert spaces ‘ and

respectively are called quasisimilar if there exist bounded operators x:~ —«
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and >+ —« with trivial kernels and trivial co-kernels such that ~—=~ and
Theorem (2-1-3) [37]:
Let 7o¥(H) | Then the following statements are equivalent:
(D) rreen .
(i) ==~-~ , where ' is compact and * is quasisimilar to a normal
operator,
(iii) For every - there exists a compact operator = such that = and
such 7 is a quasisimilar to a diagonable normal operator.
We show that the property of being biquasitriangular is not preserved under
quasisimilarity.
Proposition (2-1-4) [37]:
There exists a biquasitriangular operator that is quasisimilar to anon-
quasisimilar to a unitary operator.
Proof:
A contraction * was constructed that is a quasisimilar to a unitary
operator ' and has the further property that
1,) —<x (1) —XT,) A @ | A=)
Let === _where ' is a unilateral shift operator multiplicity one. Then
the spectrum of ' and the left essential spectrum of ' are again the closed
unit disc, that * is biquasisimilar. On the other hand  is obviously
quasisimilar to v-* , which fails to be quasisimilar since the Fredholm index
of v== atthe origin is -1. The following proposition is known and
extremely useful.
Proposition (2-1-5) [37]:

Suppose that for every positive integer =~ and * are similar
operator. Then >54. is quasisimilarto >©&
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Proof:
Suppose that s-~ ==.s. where for every ', ‘ isan invertible

operator. Then

@jcxsn @j@ BZ@ZB” @ja;sn F
e = | = = C

and

S sy B [ |

Where ¢ and @ are sequences of positive numbers chosen to make the
quasiaffinity =t*=s. and =% bounded. The result follows.
Proposition (2-1-6) [37]:
There exists an operator in *#| of the form ~-< , where ' is normal
and ' is compact that is quasisimilar operator.
Theorem (2-1-7) [37]:
Let = and = be nonzero operators in »*" suchthat ' isa

compact quasiaffinity. If * has property that there exists at least one scalar
such that *— is a Fredholm operator of nonzero (necessarily finite)

index then ' does not commute with

Proof:
We may suppose, without loss of generality that " . We can apply the
argumentto © and ' . By the Fredholm theory, there exists a neighborhood

of the point ~ such that for »-#.«x=xer —3 g a nonzero finite-
dimensional subspace of * . Suppose now that contrary to the theorem
m=r _Then ((T-—Ak=T-AKx foreveryscalar , and it follows that all of

the subspaces #+=™) are invariant under
Since is finite-dimensional +# must have a nonzero eigenvalue

—= and an associated eigenspace <"~ . Since ' is compact, the
collection f{«l.v must be at most countable and thus there exists an
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uncountable subset ¥“¥ suchthat ~« =« forall A~ in ' . If for each

in © we choose a unit vector = in , then the space v~{r2} must be
finite-dimensional ( because each ' is an eigenvector of ' corresponding to
the eigenvalue ). This contradicts the compactness of ' and the proof is
complete.

The preceding theorem and the spectral characterization of non
quasisimilar operators yield the following corollary.
Corollary (2-1-8) [37]:

If ' is a compact quasiaffinity on * and ' commutes with a non-bi
quasisimilar operator ' , then for every scalar = such that ~— is a semi-
Fredholm operator /¢ ——= .

We observe that this phenomenon can actually occur.
Proposition (2-1-9) [37]:

There exist a compact quasiaffinity * on * and a non- quasisimilar
operator * on ' such that * ==
Proof:

Let ' be the classical Voltera operator that is, let

X

V)x) = [ F(dde (rOL[o1])

0

Then ' issimilarto *~ . In other words, there exists an invertible operator

on =i suchthat V2= XVX' . We set

H =.[oalca.foalea. and define © and © by the matrices

0o 0

EXO 0

and o

0
v/2

°
%) v/4 |

FTmIrmrirm—
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Respectively. Then it is clear that =~— [and ' is not quasisimilar, since
is a semi-Fredholm operator with +¢>—= _ Since ' is obviously a

compact quasiaffinity, the proof is complete.

Bitriangular Operators and Jordan Forms
with Quasisimilarly Orbit
Section (2-2):

A Hilbert space operator ' is called triangular if it has an upper
triangular matrix with respect to some orthonarmal basis .=t of the
underlying space. When both ~ and =~ — are triangular (in general,
with respect to different orthogonal bases), —=— is called
bitriangular ( class ©~ ). This is a rich class containing all algebraic
operators, diagonal normal operators, block diagonal operators, and all
operators, and all operators with a staircase representation. When the Hilbert
space is finite dimensional of course every operator is bitriangular [21, 26,
112, 115].

Every operator on a finite dimensional space is similar to a unique
Jordan form. In infinite dimensions, operators similar to Jordan forms (direct
sums of Jordan blocks) form quite a small class.

It will be shown that every bitriangular operator ' is quasisimilar to a
canonical Jordan form, called the Jordan model of ' .

The bitriangular operators form the largest class of operators which
have Jordan models. We have obtained the best possible result concerning the
extension of Jordan forms to infinite dimensions.

In particular the results subsume those of A postol Douglas and Foias

on models for algebraic operators. Let =@ —>> be the dimensional of

ker(T —/\)’< e ker(T —/\)kﬂ
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Infinite dimensions this counts the number of Jordan blocks for of size at
least © . So we set =& — > =@ ——>—r @ —x =3 _where == is

designed to be . Now the Jordan form of - is

J(T) =A%) O g()\kf g, A (10)

The bitriangular operators are *~-’@ the main result yields many
consequences. In particular we obtain a complete description of the
quasisimilarity orbit

2y(T) =[ADy(H):A;T} (11)

of a bitriangular operator
We also consider the relationship between 217 and the closure of similarity
orbit .

2 (1) ={WTWA w Iy (H) s invertible} (]_2)

Let * denote a separable Hilbert space of infinite dimension let " denote
the space of bounded linear operators and let * or +“ denote the ideal of
compact operators.
In particular, «» , an | a0 and <@ denote the spectrum, left and right
spectrum, and point spectrum respectively, the sets <@ | () = a@)  gre
the corresponding parts of the essential spectrum. Also

<) ==@)n<=@) s the complement of ~() the set of points
in ¢ suchthat ~— isthe semi-Fredholm. The set < consists of the
isolated eigenvalues of finite multiplicity known as normal eigenvalues.

If = isa(closed and open) sub set of <« then +¢-< denote the

corresponding subspace. The range of * in ¥ is denoted by r«— |

and *~ denotes its kernel. Also ~w¢>=amrera By kear [ we mean

V, o ker A"
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and -~ is the dimensional of this subspace. When -~~~ is closed and one
of @ or mila) is finite then is semi-Fredholm and
ind (A) == u1 (A) —rur(A™) (13)
Let ~ denote the parts of positive and negative indices respectively.
An operator ' in ¥ is quasiaffinity it is injective and has dense range. An
operator ' is a quasiaffine transform of an operator * (written =s°r ) if
there exists a quasiaffinity ' such that 7=x ——=s
Two operators ~ and ' are quasilinear (written °--7 )if <er and

res  Since the product of quasiaffinities is a quasiaffinity, ‘- is a partial

order and - is an equivalent relation.

We see that an operator ' is triangular if and only if

v {ker(T —A)" : A,k =1} =H (14)

Definitions (2-2-1) [102]:

Let =r¢o  denote A zmerarr gpd meressd—mimeerCuax == [et
0 if kerA-1:0
ord 1= if ml A Dt 02l A+ Dont 1 (15)

il L O frdlm 1

Lemma (2-2-2) [102]:
Let ' be a triangular operator with diagonal <> .Then 2¢) is
contained in @@} and
nut (@ —=F : k) =nul @ —=Ak) (16)
Proof:
Without loss of generality, let = . Let to-7=t be the orthonormal

basis that triangularizes ' ; and let * be the orthogonal projection onto

#=span  {e,..e,}  Sipnce is invariant for 7.ker(T*/#4) is contained in
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er(r*)  for each +«= . Thus the projection of ker(@/4¢:%)  ontg =@ js
injective, and
(17)
On the other hand, for any vector

(P, /24 )P, x =p, T x (18)

So ~kerm™) s obtained in ker(R7™/4¢) . Moreover for any nonzero vector

in xer@:x)rx  will not lie in Tker(Tk_l//,[n) for -

sufficiently large. So
nul(T*; k) =limsup nul(PnT*/M ; k)
From the linear algebra we obtain (27" /#¢) =nui(t*/44)  Forall += and

=, Hence for = and -= wehave P77/ cpik)=nu(r/se:x) | Putting

these inequalities together yields

nul(T*;k) < limsup nul(PnT*//Jn ;k)

19
= limsupnul(T\un;k) < nul(T;k) (19)
In particular if * isnotin = ,then *r@~e = forall -= and thus
verr- =3 Consider an operator in  ¥(HoH)  of the form
M CC
- 0 B E (20)

Where ~~< belongto v .If © and ' are triangular. For example, if
is the compact backward weighted shift defined by
Ae, =0, 4e, =(j*)e,.  for =
( with respect to the orthormal basis ©?= of * ), == and ° isany
operator mapping ° injectively onto a linear manifold  of * such that
rane crana == canthen a straightforward computation shows that and
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V{kerT“ : Kk =1=,2,3,---}=FT CH{D} =+ [ H (21)

If =ov(H) s a strict contraction (i.e., '*— ),and  is the backward shift

of multiplicity one then -~ is unitarily equivalent to

5 sof

The operator =~ is triangular, but the ¢» -entry of the above matrix is not
in general.
Nevertheless, the (2, 2)-entry is always triangular if the := operator matrix
is triangular.
Lemma (2-2-3) [102]:
Let ' be triangular operator with diagonal <@>=A3./=¢ | Suppose that
is an invariant subspace for + and = ¢/« —.r/~ Then ' is
triangular, and basis can be chosen so that <¢>==@> _In particular,
<& /0@ s not empty.
Proof:

By our previous remarks the triangular of * implies that
H =vkerc —3)"  With respectto = —="= , we can write

S

_ e cHA-A)
T—ﬁ? ZE and (T-4) —% o (B-A)

C (22)

So any vector ~*> in ket =) yields the vector ' in ere—¥ It

follows immediately that #~=vker(a—=2)"  Hence ' is triangular with
a@rcae@ I particular, <+® meets @ .So <€ /<<e>  jsnot empty.
Corollary (2-2-4) [102]:
If  istriangular, <¢>=t3= (with respect to some orthogonal basis)

and
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[T, * C ker(T—/\l)w
(] =
o b = ker @T—Al)(T—Az)ﬁeker(T—/\l)w
5 o . ker T - A ) (T -A,) (T -A,)H
% E eker@T—Al)(T—)\z)g
Then =-7---- are triangular operators. =-7--- may act on finite

dimensional spaces; if +=* forsome ‘= then * acts on the trivial space

[}

Proof:

It is obvious that 7. =7/ker(r —A)* | [s triangular. By lemma (2-1-3)

H-
O
Ho

Is also triangular and a straight forward computational shows that

B, =

o (24)
~

T, =B, /ker(B. —A)" s triangular. The result follows by induction. Our next
result can be applied to a wide class of operators, not necessarily triangular.

Observe that if

E HZDy ﬁHE

=

(25)

where ~ =#,) for '= | and interior 9a)=¢ forall ', then

*a) i 4, )=

(and each component of v meets <)z but in general this inclusion

is proper. For instance it can happen that <) & <%a,)= s a totally

disconnected set but < is connected.

Proposition (2-2-5) [102]:
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w
[l

>

N

SR
»

>

Let A (26)

PG

and assume that <)~ <%a)=< jf /= Then >0 <a

Proof:
It will be shown that there exists an upper triangular operator matrix

of the form
H)l b1X12 b3X13 H_h
b

2 b3X23 |:Hz

Ay 27)

Such that ' is a quasiaffinity and
e —xpEE b 28)

Here ®J- is a strictly decreasing sequence of positive real’s converging to

~, ®=0) _The ~ areinductively defined as follows: if we formally write

ax =x[$0a, [ (or, equivalently, 2x —x 4, 50 ), we obtain

o
I|

o —x 5 DA, b X, + S AX, +A, — XA L

r=i+l

k=1

=b {AX, KXW A) A S AKX, E

r=i+l

For '=—— | and the remaining entries of the matrix vanish identically. The

(1,2)-entry shows that ~x.. —x.A. —=a.  Since HA)nda)=¢ |
Rosenblum's theorem establishes the invertibility of 7. B Bt (H..H)E |

where z.. (xX)=ax —xa,  Whence we readily obtain the unique solution

X =20, (Az) CY (H. H,)
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We proceed by induction; suppose the «— columns have been determined,

and consider the 10" column. The above equation show that
7, A (X)) =—A, — ZrA’ X, i=12,.,k—1

Which define the = column. It is easily seen that the matrix defining
represents, indeed, a boundary linear mapping provided * — fast enough.

and

Ax =x 50, |
=

For all possible choices of the ' ’s. Moreover

xS OH FES O, (forall « == )

So that (ranx)” OV E'H H: ZDH =H _ Thus it only remains to show that

]11

the »* can be chosen so that ' is injective. To this end, choose the

decreasing to ' so fast that
2Lillxsl=2"p foreach =

( For example, one could recursively define » —=-# —min——jx.i™ ), Let

x=>0x, for ~ in * beanyvectorin ==~ .The * coordinate of °

Hence

|, || =b.™ _:ZA\XUH x| =="|x|; Whence IxI°© —==F=I" =~I*/3
(29)
Which implies = .

Remark (2-2-6) [102]:
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Under certain circumstances these two result can be applie to a triangular

operator ' to obtain triangular operators ' with <@)=«} “and

2" =T However to do this we require %) to be pair wise disjoint.

Proposition (2-2-7) [102]:
Suppose ' is a triangular operator and for some  in © and some
integral +, ~w@ —=¥:x)—=  Then <<¢:3— _Thatis there is an integer

SO that ker@ —Y —ker(@ —3A"
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Lemma (2-2-8) [102]:
Let © and ' be operators on ‘ . Assume that ' has dense range and
ax = Then xw=—> s containedin et —¥
Thus if © triangular so is
Lemma (2-2-9) [102]:
If ' isa quasiaffine transform of —  then
i ——mO =i —~>  forall Ave.x= Inparticularif 42 , the
nul(B —AK) =mwi(a—arx)  forall ~~ and *= .
Theorem (2-2-10) [102]:
Let ' be a bitriangular operator with diagonal <) =A.n=1} with
respect to the triangularizing basis. Then
@) @@=y —>)—6y . Moreover

nul (@ —=Ak) =aul(G —F". k)

Forall .Thuseach in 2@ occurin <« exactly
amrer —3"  times, If - —>— forsome ' ,then
ord@; A —=—
(ii) If »=® and -— issemi Fredholm, then -— isinvertible thus

&) —. ()0 ) |

(iii) Every nonempty clouse open subset  of <+ meets <* and

card {/:A 5% =dim# (7.9 | Hence each component of 4» meets
()"

Proof:

Note that we use the notation ==*A—>1} to avoid confusion with

the notation | the closure of a set. By lemma (2-2-2) =) is contained in

« which is a subset of 2@ , Anda <@ iscontainedin <« which is
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a subset of =t . So equality of these four sets in assured. Moreover, by the
same lemma,

nul(T —/\;k) =nul ((T —/\)* ,k)
Form the proof of this lemma, one sees that

nul((T —A)* ) Slig}onul((T - )" ) =nul(T —A)* =nul((T —A)* ) (30)
Since the number of occurrences of  in @ is easily seen to be

limnul(T =&/ #4)" it follows that this equals =@ —3 |, The last statement of
(i) is a consequences of proposition (2-2-7).

A semi-Fredholm triangular operator has index ° . Thus such an operator is
either invertible, or * belongs -»—> . Hence <®)==.G)n<=) |
If  isaclouse open subset of < then by the Riesz functional calculus,

* is similar to an operator 7-“"- . Such that <7.)=¢ and 4%) is disjoint
from .Bylemma (2-2-3), * is bitriangular. Hence - isa non-empty
subset of <@ ='@>  Indeed, <) is necessarily a subset of <« .

Of cardinality <m# (7.9 | That each component of <’ meets <@ isa

simple topological consequence.
Proposition (2-2-11) [102]:
An operator is bitriangular if and only if

v{ker(T —A)": ACC,k =1} =H =v{ker(T —A)" A:C, k=1 (31)

Hence the class = is closed under quasisimilarities. We were able to apply

Remark (2-2-6) to both © and -+ . We would obtain triangular operators *

and ' for *= ,suchthat a@)=a@)=(«} [ Where f{uw.x==3@) g0 that
>tmpepT gnd >t epT | Thus

S, LpTpS, CW (32)
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If we know that % -~-7 foreach ' ,this would reduce to consideration of

the case <@ =+  When r& —==>— forsome -~ = ,isnilpotent and
the Apostol Dauglas theorem applies. So the case ¢ —=+«>—for all
remains.

An operator is quasitriangular if it has a compact perturbation which is
triangular, and an operator ' is biquasitriangular if both *+ and - are quasi
triangular. If #=w. s, . guch that  is invariant for * and * is
invariant for - forall += . With respect to the decomposition

H = TN, Tled) C( £ TIN,) E(V, Tley) ..

The operator * has the matrix form

A, B 0

0 0

g G O 0

0 D A B 0
_D 1 2 2 D
T=p C, 0
- D, A B ¢

g O D, 0

(33)

From this form it is clear that ' is both block upper triangular and block
lower triangular, and so is *# . We introduce the following diagrammatic
device to represent the matrix

ker (T —=A)”

ker [ —=A) (T —2A) Eg=Rer (T —A)” (34)

ker [ —) (T —=2)(T —2) EH

e ker [ —N) (T —2) B
Note that * represents the operator mapping the invariant subspace
<t~ into itself. Similarly ¢« maps ~ =% into itself and this is

invariant.

Diagrammatically
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(35)

A

Similarly ~.=w«¢=» js  invariant and can be collapsed into one.
Example (2-2-12) [102]

Note every bitriangular operator admits a fair case representation. Let

0 12 13 Y4
B 1/2 O
R=F 13

=0
00
H

With respect to the given basis ¢n2L R | can be written

R =S¥ "e, & e, :iéé_*en E (36)

This is a compact triangular operator. Let

=
~
M

0 1 Y2 13 -0

H 1 [

H H *
S:B 1 OE:I+e1DE"Zn'1enHH

0 0 1 U .

] (]

B ~ B

A simple computation shows that * in invertible and

SRS Z’zl_nﬂen e, Zdiag(nﬂ) (37)

This is diagonal, and thus ' is bitriangular. The eigenvalues of ' are

t-~.»=} and the corresponding eigenvector are == and

r.=s"e. <=~ for -= . The corresponding eigenvectors for ' are
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g, =s"e, ==, +>_@—=)"e. and ¢-- for -= .Since f{s..m=t forms a
basis for ' any staircase form for © must contain * insome * .

But then ~ must both contain ¢ and be spanned by a finite subset of

tr.n=1_ This is clearly impossible. This example is similar to «s* which

being diagonal has a staircase model.
Lemma (2-2-13) [102]:
Let and ' be finite dimensional subspaces, andlet * and ' be

the corresponding projections. Suppose that [M —M "“NM | =5<(&/dim 14 S%

Then there is an operator =—-~ suchthat x—= and »=I.== |so that

» contains . Similarly there is an operator == -+ such that »-—"~
and . == sothat * is contained in
Proof:

Note that » = wvns = —== g0 A =wnr(s —=asvas)™ has norm at most

. . 0
e—>* _ With respect to ~—===- | has the matrix E}, OE . Thus
|| =(1—&= —1): <2 .Hence |u| =25 (dims)<2¢ . Therangeof ' isa

subspace © of ' . The operator $ =E:H 2E is of the desired form, and it

maps =~ onto .Hence = contains . For the second statement let

be the projection onto * . Decompose -+ — ==~ . As above there is an

0 .
operator B =§2N OE with range equal to  and «=—"» | Let

T=E:k ?E . Then ~ =~ maps onto * . As before

ll7<ll, =]l clirm e === (38)

Proposition (2-2-14) [102]:
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Let ' be a bitriangular operator. Then given °—— | there exists a
trace class operator ' with ~. = such that ¢ —=>r¢—-x>" admits a
staircase representation.
By a Jordan operator we mean a direct sum of dimensional operators *-+- |
where -~ isthe identityon ¢ and ' is the standard Jordan nilpotent
operator of order ' givenby = | o=~ for ==
Theorem (2-2-15) [102]:

Let ' be a bitriangular operator with <) =(A.»=}  Suppose that for

all =~ andall = , ~«@—2:x) js * or . Then there are a Jordan

operators * and * suchthat * ==+  and

nul(H, —A; k) =nul(H, —A; k) =nul(T —A; k) for all n O and k=1
Lemma (2-2-16) [5]:

Let = =.=m.=.=. Dbe a monotone increasing sequence of positive

integers. Let A=>™/.» and 5=3%/, .Then ~-*

Proof
Let {V:1=i=m} and {r“:1=i=n} be the canonical basis for the

spaces " and ' onwhich ~ and * actrespectively. Define < = -
Then define a linear operator * by

X1 =) e, —( ) el (39)

Where <=0 for -= .Notethat ' extends to compact operator from

k=2>0k into H=3>TH, . A routine computation on these basis vector

shows that ~x —= _ We show that ' is a quasiaffinity. Suppose that

nj ) . n; . ) 1 .
x=5>a’f” and °—~ .Then o0 =zzaf’)%65’lﬁ —r—ye ™ E from

&£ S 4 (j+1)p

equation (57) and
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(40)

Where we drop the convention <=0 . Examination of each coefficient yields

G —=) J—
Paetj waetj 2 T

al —algn, —
Since ~— all coefficients must be * ,so ' isinjective to see that ' has
dense range, note that

x (1 r4)) =e” —(j +1)"elip

. P J! ; J! .

Summing these terms for °—=-=—=— yields

e —GY G WYY s
(41)
Inrange " .Consequently, * belongsto - forall = and ' .So
has dense range. It follows that ==~ .Butthen ~raes s So ~~.*
Theorem (2-2-17) [102]:

Let f{m.x=8% and {~.x=1 be sequences of positive integers. Set

A ZZDJM and B ZZDJM . Then A~, B if and Only if rul CAs k) =l (B: K<)

forall «=
Proof:
The necessity follows from lemma (2-2-9). So we suppose that
nurGs > =G> for «= ]t is easy to see that s>
Jordan blocks of size * in * for * ==- . The same holds for ' and the
sum of these blocks for ' and ' are thus unitarily equivalent. By restricting
our attention to remaining summands, we can assume that = =< and =~

forall += with equality holding infinitely often in both cases.
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In either case: (i) s« ====ver.  or (ii) =wm =mswem, =Hmsuprn, =k, == - j{
is routine exercise to split "/ and " into at most countably many infinite

subsets, which we denote by t./=t and t{=.7=t¢ so that foreach ',

either my =Ty, =N, =h, =.. Q[ a == =, =0, =. let A :zl_l:ljm” and

B =25 Bylemma (2-2-16), ~--= .Hence ~--= as desired.

It now apparent by comparison of theorems (2-2-15) and (2-2-17) how
to obtain a Jordan operator quasisimilar to given bitriangular operator ' . We
wish to define a canonical Jordan model for ' , which we denote by @ .

Define

e=@F —% ) =l @ — ) —rrul @ —% —a)

Where =— is deignedtobe . By analogy with the finite dimensional

case, let

J(T) ES Z ) DJ(T; /\) :ﬂ;) Z:](Alk +J, )(X(Tf/\;k))
» ST =

Note that there are three cases:
(i) When ru(@r—A"<e | s@:a3 jgthe Jordan form of 7\ker@—o~
(ii) When nul{T = sk, | = > nullT - A;k] > 0 for ko, <k <T, and nul(T —A Io) =0 s then J(T: A

k Iy—1 o
equals ZD(AI]( +Jk)(°°) Dk | D(Mk +Jk)x(T /\,k)
=T

=k0+1
(iii) When rw@-—>— forall = ,then ‘@ equal
St +2,)"

By proposition (2-2-7), these cases are exhaustive. We can obtain two special

cases of the main theorem as corollaries of theorems (2-2-15) and (2-2-17).
Section (2-3): Complementary Invariant Subspaces and the

Relative boundedness of Triangular and Bitriangular Operators

Corollary (2-3-1) [102]:
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Let ' be a bitriangular operator such that =& —>= or  for

each = and *= .The 7:/(T)  [34, 41, 105, 38].
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Corollary (2-3-2) [102]:
Let ' be an algebric operator. Then 73’(") | Recall that two subspa-ces

and ' are quasicomplementary if ~<-~= and <=~-= . We require a
technical lemma.

Lemma (2-3-3) [102]:

Let “ gk be an operator in ¥(H=H)  where

. 0 OC
=)=} are distend complex numbers and 7=f ,£ for *= . Suppose

is an operator in such that 2:* . For each subset —= | set
H (B, 1) =v{ker(B—2)": AU}

Then == and H(B£\N) are quasicomplementary hyperinvariant

subspaces . If ' is a quasiaffinity such that ~v—= then >»>w@ o> =@ o
_If I/ isa collection of subsets of = ,then HBUT)=VH(B. ) If
n.m== then "R®EI=0l We prove the following result.
Theorem (2-3-4) [102]:
Let - be a bitriangular operator. Then 7;’(7)
Proof:
Let =@ be a bitriangular operator. Then 7:’(") . Where

ord (T, £4) =o< SO that nul(T —p4£ k) =o< for all K =m,, i=a and ord(T,v,)=m, <<

so that

nut(@ —v,.k)=o0  forall == =
: _ (e . :
Define R=2™!*/n' EW(R)  Then -+= is a bitriangular operator in

y(HOR)  Moreover, < R =) |
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| L ,k< mj
nu”T_ R' v}I;k“: s nul(T R —gd; k) =o=< for k=1

0 ,k>mj

and ker(T CR —pa)" =ker(T —ga)” {0} for =t Let J =@ CRr) .
By corollary (2-3-1), “z"2® _Let ' be a quasiaffinity such that -
X(TOR)  Let H,=x(H{o}) andset x.=x/nci}  considered as an

element of ¥»(HH)  Let =7+ | Clearly, 7/.*.=x.7 sothat 7r% . We

wish to show that ' is quasisimalar to a Jordan operator. By lemma (2-3-3),

X H@. ) =xH@ tR. ) =HU. ) =HU,.rn)

and

XH(T CR, I5) =H, ;) =H{. "~
also

H, =xv{ker(T —x"): ACI3,(1T)} Cv{ker(s, —ATIS,(T))} CIH,
Hence

Hy, =V{ker(s, —A" : ACE(T)} = STHH, Nker(s —A)" : AT}
When =+ [then Ho.nker(v —#0" =ker( —20" and Jo/ker(Vo —20)" is a
Jordan operator. When 4= | ker(s —,)" =xerls —,)" g0 Jo/ker(so ;)" s
algebric and thus by corollary (2-3-2), " is quasisimilar to Jordan
operator. Thus * isthus ’p7" . By lemma (2-2-9), and theorem (2-2-10)

nul[]1 —/\;k) = nul((l1 —/\)*;k)
< nul{(]1 —/\)*;k) = nul(T - ;K
< nul(J, - A;K)

Consequently, nut(s, —Ak) =nui(r —ax) forall in * and *=
Treating - similarly one finds a Jordan operator ' sothat 7'r7 | whence

.p7  As above
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nul (7, —AK) =nul((7, —A"; k) =nul(T —A"; k) =nul (T —A); k)

By theorem (2-2-17), 7:37:7’(")  Thus - ~»’®
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Corollary (2-3-5) [102]:

Let * and ' be bitriangular operators. Then the following are

equivalent:
(i) St
(ii) nui G ——> —ma G —=a>  forg]l ArEx=
(jjj) 7(s) @)

Corollary (2-3-6) [102]:

Let * be a bitriangular operator such that 2@ isreal. The 7~-7 .
Corollary (2-3-7) [102]:

Let * and ° be bitriangular operators such that s . Then =-7 .
Corollary (2-3-8) [102]:

Suppose ' and ' are bitriangular operators such that <o and

ros  Then 7= .
Lemma (2-3-9) [102]:

Let ' be a bitriangular operator and let - .Then ' is quasisimilar
to an operator of the form ~-+< , where ' is a diagonal normal, ' is quasi-
nilpotent trace class operator which commutes with =~ Il —=<xX~> ==
and <) =8V ) =G
Proposition (2-3-10) [102]:

Let ' be a bitriangular operator. A compact subset ' of = isthe
spectr-um of an operator °--7 if and only if (i) A contains =@ (ii) each

compo-nent  of = meets <@ | and (ii) each component = of ' which

is not a sin-gleton meets (7.
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Corollary (2-3-11) [102]:
Let = be a bitriangular operator. Suppose that *==) is an isolated
point of =@ ; e -—=— ‘gpnd nu@-—A=e gnd =2=erd@. A==  Then
(1) is not contained in s forany =-*
Theorem (2-3-12) [102]:
Let ' be a bitriangular operator. If for each isolated point  of
a@)” | either (i) e<e:>= | or(iili) <<e:>=— | then there is an operator
s~.7 such that ss" contains 2(s)" . Conversely, if »(s)"©2(7) for
some <7 ,then - satisfies the conditions above. In particular,
2(r)0y(s)” if and only if <&m)=4 “and @ -2 isnot compact 7t |
where 17 =XT){A.A7.)=A and is not compact for all *' .

Proof:

Corollary (2-3-11) shows that condition on isolated points is necessary.
Further, if v7 contains 27 , then lemma (2-3-9) and the upper semi-

continuity of the spectrum imply that <)==~ _Sowhen  is an isolated
point of <@ the Riesz functional calculus implies that 7~7.=r" such that
an)=A4 and <)=%)43 , When (iii) holds =~ is a non-nilpotent

quasinilpotent. If (.- is compact that this properly persists for any

operator ' in 7 suchthat  is still an isolated point of <~ . But

|

U
(1) contains operators ' such that s-~s.=s™ | As)=4  and HH\’M

, and so that @ -2 is not compact for any ' . This proves necessity. The

converse follows from the similarity orbit.

Example (2-3-13) [102]:
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Let us look at our Jordan models. In lemma (2-2-3) we showed that the
2-2 corner of a triangular form of a triangular operator is triangular whereas

the 1-1 corner need not be triangular. This phenomenon occur even for not be
triangular Jordan operators. Let =277 acton “=2"% isn-

dimensional with standard basis f{e”:1=i=n} gsothat 7" = for ===

and 7" =0

1

Let X.=Ya.el. a, =(n-1)=  Then (xx=0 are pair wise orthogonal
and ™ = .Let s—wanlx.kx=0}  Clearly, | isa weight shift with

weights  [x,.||x | =(k +1/k +2)s . Hence | is a Fredholm operator of index-

1, and thus is not triangular.

An even more striking example is obtains by taking ~ =spar{x..~.} | where

N, =spanie{” :1=<i=n—1,n=2}  This is invariant for ' , and by lemma (2-2-3),

is triangular. However =~ =r*x =0 s orthogonal to =~ forall *= .So

we need that

ker(T \N )" =N, =N

noo. . . . .
So | isnot triangular. Nevertheless, * has co-dimension 1in = and

TW,0F 00, 0T o T

]

]T .But | isnot quasisimilar to any

bitriangular operator. This shows that corollary (2-3-8) cannot be extended
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much. On the other hand hyper invariant subspaces of Jordan model are very
easily described.
Lemma (2-3-14) [102]:

Let T=25AI* w where " are distinctand each ' is the direct

sum of nilpotent Jordan blocks. Then the hyperinvariant subspaces of = are

precisely —rau. () =EFTec tra,Gw)E [ If =257 isa direct sum of Jordan

blocks, then () consists of all subspaces of the form
>4 where a4 =spanlef’:1=<j=i}  and
iy =i, =i, Wk, k) if ke =k
Corollary (2-3-15) [102]:
If  isaJordan bitriangular operator and  is hyperinvariant for ' ,
then =~ and =7/« are both Jordan bitriangular operators.
Example (2-3-16) [102]:
It is easy to give an example that show that quasisimilarity does not
preserve the hyperlattice. Let ~=" and #-=-+»¢ _Then ~--=» .But

tae, () consists of ¢, weraxeras gnd ¢ | whereas r«.(® consists of

,  kers. 2= ,  kers? and

Example (2-3-17) [102]:

Lemmas (2-2-7) and (2-2-8) might suggest that if ~--» andif ' isa
quasiaffinity such that =x—=+~ | then xGera*)"=xers*  This is far from true.
Take ~=/ and »==»% with ~= sothat ~--* .Represent these

operatorson +# and #" by
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g ! ° 3

o 0 1 C

| o) O C

1 o) O C
@ E O 0 1 C
o o0 1 C % L

_0 C _

A=0 L and B_D 0 1 OE
O 1C O C
5 of 0 0 1 C

E (0) O O E
0 0 1p
H 0 S

A routine computation shows that if * and ' are quasiaffinities such that

Rany ™ mRanz® =§O} 5 then

&
Q

~
iniminininininininininininininininininininin

O

000000000000000K
o

oooo
N

O

is a quasiaffinity of # into #" suchthat =x—= |, Clearly xG&ea*) isa
proper subspace of = for r=—-— |
Example (2-3-18) [102]:
The situation is even worse when * is bitriangular but not Jordan. Let
be the Jordan model of ' ,andlet ' and ' be quasiaffinities such that
=~ and == . Bylemma (2-3-3), ¥xer¢ —3 e —> forall in
=@, On the other hand, even if «erv~ —er it may occur that x@es> jisa

proper subspace of * .Let ' be the diagonal normal compact operator ?.

Consider the operator = in »(#5H) given by
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Tl o2 -k

This is block diagonal and thus is bitriangular. Its Jordan form is easily seen to

be 7 =%’ g% .Let f{e.n=1 be the standard basis diagonalizing ' , and set
— ] o o
f=2e/" Let * beanyisomtery of * onto ¢ .Then X-= B DBE

Is an operator satisfies =~ . Moreover ' isone to one, since 0=X g% ,

implies ~»»= ,whence -— ,hence = ;so %:%E . Next, notice that

i

Let --# ,Since G»e..nN=irI” | thereis avector : suchthat wx =r —ne.

So Xa:z"e E:Ernie E converges to 5 . It follows that

RanX~ =Ran(W) VC DCEI:H 0o
O

Whence Ranx ™ =H CRan(D*) =+t _Thus = is a quasiaffinity.

The final is the observation that <~ ===~ is a proper subspace of
«+ _The only good thing we can say a bout this situation is that the smallest

hyperinvariant subspace of ' containing =~ isall of ** . Thisis

. » JHO .
because the rank two projection onto Span%ko EE? % commute with

Proposition (2-3-19) [102]:
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Let * and ' be quasisimilar bitriangular operators. Then there are

quasiaffinities * and * suchthat *=~ and = =+ and such that

XH (s;T)"=H(T.7) and YH(T.r) =H(s.r) for every subset of ' .

Proof:
It suffices to assume that <= is the Jordan model of ' . By lemma
(2-3-3), we need only construct ' .Let 7.=7/xerc —3¥" foreach  in

s Clearly * is triangular. By lemma (2-3-3), ' is also triangular. So

' is bitriangular. It is obvious that

nul(T/‘ —Ak) =nul(T —Ak) for k=1

Thus an application of corollary (2-3-5) yields ” ~= 25 .Let ' be the

Jordan model of * .So “’=.2)"”7* .Let ' be a quasiaffinity such that

mx.=x~. Now let ' be the orthogonal projection onto the domain of ' ,
and let * be the natural injection of =@ —» into ° . For suitably chosen

positive constants © , the operator

X ZZ/\W/\X AP A
Is a bounded operator (€. =2~ixc.i™) | It clear that =~ = and that

XH (1,2 =H(1.A) for ~==® _In particular, * has dense range. For any

subset of

XH(J, r)_=XrXH(J,A)_=XrH(T,I—)

By lemma (2-3-3) #(7{A)! #(T.c\{A) =0}  Thusif ==+ liesin

- then
CWAX va =—SC,W, X, X,,
Belongs to this intersection and hence is ' . Since * isinjective, = , So

is quasiaffinity.
Proposition (2-3-20) [102]:
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For = in v# the following are equivalent:

(i) Every subspace of finite or co-finite dimension has a complement in
lat ' ;
(ii) H =v{ker@ —3: Ara} =v{ker@ —¥ : a} P
(iii) *is quasisimilar to a diagonal normal operator.
Lemma (2-3-21) [102]:
Let  be the class of injective bitriangular compact operator. Then -
{r HBny:g(@T)=A:x =1} isasequence of non-zero complex numbers
convergingto ' ,and ~«@— — for all
Proposition (2-3-22) [5]:
Let 7ov(#) andlet ' be a polynomial. Suppose  is an invariant

subspace of * contained in *~¢> such that ~./x»@> jsinverible in

y(kerp(T).4) Then =~/ =«=cs where » isthe compression of ' to

. Moreover r¢/~x= and ) isinjective.

Proof:

Let p()=rua(c—Aa)" .So <7< iscontainedin {*--A} and

m

“2 0%, where (. —An"=o Tt suffices to prove the result in the case ==

A=o. p())=t" for the general case will follow by a straight forward induction

argument. Split # =+~2+" and decompose

- o

Then ~-- satisfies ~— .Compute for = ,

k
C
k —
"= ‘
0 B
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. n CTI
Where <. =ac.. wes ™ | ac o5 Inparticular T :% BHE and

. 0 X

0 . . .
™ =§* B*nE . For each vector fﬁf in e wehave o=cix-s7y

By hypothesis the map taking =~ to ' defines an isomorphism of ket~

onto . Hence we deduce that =.<: =x.5" By a well known results there

exists an operator * in ¥(#'# suchthat <:=="x" _ Equivalently

c. ==B"  nOw notice that
(c —ax +xB)B" =cB"")B —(xB" ) {xB")B
=c, —AC, _,)B +AC, —€, B

=A(c, —,_,B) =A(Aa"*C)

Since = isinjective : has dense range. Thus we obtain < =—x —=»

Hence TN% :% g%% :X%:% gE

We observe that a consequence of this proposition is that
ker p(r”) =xer p(r) @ —2) for === _ To see this replace * by the similar
operator ~ = on *“0o4
Since ~«— and ~-= isinjective it follows that ~®)@=—=2) is
injective for == and both kernels above are #"0 . The preceding

proposition may have rather limited application.
Example (2-3-23) [102]:

Let = be the triangular operator given by

m -1 C

O _ C

O © 1/2 O C

O 1 —1/3 C

_ O Y C
T =1 /2 —1/4 C
1 3 —1/5 L

O Y _1/ C

o o : C
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With respect to a basis {e-n=t _ Then ker7=ce and ker7*=spanfe.e} A

routine calculation shows that if *==i.a.e. and 7 c»er* | then
1 n > .
a, =5(n—1)n—2)a, for -= .Hence - ,and k7" —xerT’LCEerr jgtwo-

dimensional for -= . Another simple calculation yields k7" =c<  where
<==>_¢-"e. [f wer = then there is a (unique) vector

x=>La.e suchthat <= and -~— .But this forces <« =v2— for

»=  which is absurd. S0 xer7 =~err-  js one-dimensional for -= . Now

P kerT” =} g0 our proposition does not apply. Indeed the conclusion is
false. For if * is similar to an operator of the form ~ =¢/xert)==x then

1 =nul(T) =nul(A) =1 +nul(T,)

So ' isinjective and rw@")=wia)= forall -= | contrary to fact.
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Examples (2-3-24) [102]:
The precise relationship between «*) and +t") for a triangular
operator ' is rather mysterious, even when ' is compact. Consider the

following three examples. Let

)\]
I}
noooog
NQ
wQ
|
&
V._H_H_H_H_H_\

Where « == and » ==/ | @ =/GD)
Then ° is compactand <#)=ot«.;=t _Since ' isnota diagonal entry
of == isinjective (lemma (2-2-2)). However ke7"=c< forall -= where

<==ue/n . Let

[0 0 1 12 13 -0
oo 1 C
U [
0 0 12 O 0
A=0 0 1/3 i
[ y [
U 0 L
[ U
U O 0 [
U L
O 00
In this case, <«>=®-°-3 | A simple computation yields that + is injective

(so = isempty)and thus r«*)= forall *= .However ru(a)=«-=

forall «= .
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