
Chapter 1

Sum Rules for Jacobi Matrices and Their

 Applications to Spectral Theory

We show and prove a bound of a Jacobi matrix. And we give complete 

description for the point and absolutely continuous spectrum, while for the 

singular continuous spectrum additional assumptions are needed, we prove a 

characterization of a characteristic function of a row contraction operator and 

verify its defect operator. We also prove a commutability of an operator of this 

row contraction. 

Section (1-1):  Spectral Form for Jacobi Matrices: 

The case of some rules and were efficiently used to relate properties of 

elements of a Jacobi matrix of certain class with its special properties. For 

instance  spectral  data  of  Jacobi  matrices  being  a  Hilbert  space-Schmeidt 

perturbation of the free Jacobi matrix were characterization [42,101,135] and 

we suggest a modification of the method that permits us to work with 

higher order sum rules. We obtain sufficient conditions for a Jacobi matrix to 

satisfy certain constraints on its spectral measure. We consider a Jacobi matrix 

[129,124].
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Where  { } 0,k ka a a >=  and  { } ,k kb b b= ∈  ¡ , We assume that  J is  a  compact 

perturbation of the free Jacobi matrix 0J
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A  scalar  spectral  measure  ( )Jδδ=  is  defined  by  the  formula 

( )( ) ( )
0 0,

d x
J z e e

x z

δ
− =

−∫
¡

 with  z∈£ \ ¡ , the  absolutely  continuous  spectrum 

( )Jacδ  of J fills in [-2, 2]and the discrete spectrum consist of two sequences 

{ }±
jx with properties    2−<jx ,  2jx →  and 2, 2j jx x+ +> →                             

Let { }1−−=∂ kka aa  for a given a  and Nk ∈ we construct a sequence ( )kγ α by 

formula  ( ) 1...k
k j j j kj
aγ α α α+ −= −  where 1aα= −  and 1 is a sequence of units

Theorem (1-1-1) [87]:

Let ( )baJJ ,=  be a Jacobi matrix described above. If

              (i)     1 21, , ,m
a ba b L L+− ∈ ∂ ∂ ∈

             (ii)  ( ) ( ), 3, 1 / 2k a L k mγ ′  ∈ = +                                                            (2)

Then                 ( ) ( ) ( )
1

2 2 2log . 42

m
i x x dxδ

−
′ ′ − > −∞∫−

                         ( ) ( ) 1/22 4
m

ii x
j

+±′ − < ∞∑                                                         (3)

When 1=m  the theorem gives the fact of theorem (1-1-1) 

Proof:

       Define  ( )Jmφ  as ( ) ( ) ( ) ( ),1 ,2m m m mJϕ ϕ δ ϕ δ ϕ δ= = +

                                           ( ) ( ) ( )∑∫ ±−

−
+−

′
=

j
jm

m
xGdxx

x
2

1
22

2
4.

1
log

2

1

δπ .

We have to show that ( ) ∞<Jmφ . We put ( ){ }kNN aa = and ( ){ }kNN aa ′=′ , where 
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Define sequences  NN bb ′,  in the same way (of course, with  ,1 s  replaced by 

s,0 ).

Let  ( )NNN baJJ ,= .  As  we  readily  see,  0,,0,1 →′∂′∂→− NNNN baba ,  and 

( ) 0k Naγ ′ →  in corresponding norms, as ∞→N  by the Lemma 

(1-1-4) below, we have for mNN −=′

                    
( ) ( ) ( )

( )
1 1 1

2 2 1

, ( 1

)

m m N m N N N Nm m

N N k N
k

J J a b C a b

a b d

ψ ψ ψ

δ δ γ
′ ′ ′ ′+ +

′ ′ ′

′ ′− ≤ ≤ − +

+ + +∑

or               ( ) ( ) ∞→→ NasJJ mNm ,ψψ

on the other hand ( ) ( )1 1

NJ z J z for z
− −− → − ∈£ \R, and consequently δδ →N  

weakly ( ) ( )NmNm δφδφ 1,1, intlim≤  and ( ) ( )δφδφ 2,2,lim mNm =  we bound the latter 

quantity  ( ) ( )∑ ±=
j

jmm xGJ2,ψ ( )1

1

1

12 1
+

+

+

+
+−≤ m

m

m

m
baC  with some constant  2C . 

Summing up we obtain  

                ( ) ( ) ( ) ( ) ( )lim sup lim sup limN N N N NN
J J Jϕ δ ϕ δ ψ ψ ψ

→∞
≤ = = =

The  proof  is  complete.  It  is  easy  to  give  simple  conditions  sufficient  for 

( )k a Lγ ′∈  for  the  instance  put  ( )( ) ( )1 1... 1k j j k jj
A a kα α α+ + −= + + − − ,then 

relations  21 ,1 LeLa a
m ∈∂− +  and  ( ) ( )mk

k LaA ,2∈  ( ) ( ) ( )kmmmk −++= 2!1,2  imply  that 

( )k a Lγ ′∈ . In particular we have the following corollary.

Corollary (1-1-2) [87]:

         Theorem (1-1-1) holds if conditions (i), (ii) are replaced with
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( ) ( ) ,,2 mk
k LaA ∈ ( ) ( ) ( )kmmmk −++= 2/1,2 ,  where  



 +=

2

1
,
m

k δ  we  observe  that 

relations  (i)  and  (ii)  are  trivially  true  in  the  case  of  discrete  Schrödinger 

operator i.e., when ( )bJJ ,1= .

Corollary (1-1-3) [87]:

Then inequalities  ( ) ( )iiandi ′′  let hold ( )bJJ ,1= .  If  1+∈mLb  , 2Lb∈∂ ,  the 

corollary is still true if 2mb L +∈ , m being even. The proof is a sum rule of a 

special type. First we obtain it assuming rank ( ) ∞<− 0JJ . Applying methods 

we see that 

               ( ) ( ) ( ) ( )JxGdxx
x mj

j
m

m ψ
δπ

=+−
′

±−

− ∑∫ 2

1
22
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4.

1
log

2

1

Where  ( ) ( )baJ mm ,ψψ =  and  ( ) ( ) ( ) ( )
1 3

1 2 22 2
01 4 4

m mm

mG x C x o x
+ ++= − − + −  with  [ ]2,2\ −∈ Rx , 

0C  being a positive constant. where

                  ( ) ( ) ( ) ( )
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ψ                               (4)

Where { }kadiagA =  and ( ) !!!!

!!~

kkm

m
C k

m −
= . Notation !!k  is used for “even” or 

“odd” factorials. 

Lemma (1-1-4) [5]:

Let ( )baJJ ,=  we have

( ) ( )
( )1 /2

1 1 1 2 2 1
3

1
m

m a km m
k

J C a b b aψ γ
 +  

+ +
=

 
≤ − + + ∂ + ∂ + ÷ ÷ 

∑                   (5)

Where 1C  depends on T  only. Above, norms .
p refer to the standard −pL

space norms. We begin with considering expressions tr ( )kk JJ 2
0

2 −  a rising in 

(4). Defining ( )baJJJV ,10 −=−=  we have 

1

0 0 0
1 ... 2

22 2 1...
pp i I k p

ik ipk ktr J J tr VJ VJ
= + + = −

 
 ÷ ÷ 

− = ∑ ∑

we prove the lemma in steps. 
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Proof:

First we bounded summands corresponding to  
1

,
2

m
P m

+=  in [87]. We 

get ( )( ) ( ) ( )
11

,000 s

p
psp

p
p

p VJFJFVJFVtr ≤≤  and for these sP '

                      ( )1

1

1

110
1

10 1
11

+

+

+

+
+ +−≤≤ m

m

m

ms

m

s

p baCVCV  

(6)

With the constant depending on V . Similarly  1
1 111

p m
tr C a mα +≤ − + , let

mp ,3=  now. As we already mentioned in [134]

                                 ( ) ( )( )∑
=

+=
p

j

j
jpjp

ip SbapbapSV
0

,, ,, .

It is easy to show by induction that the polynomials ( )baP pp ,, are particularly 

simple. Namely ( ) ( ) ( )11, ..., −= ppp baP ααα   yields that 

                      ( ) ( ) ( )
( ) p

pp
p

p JtrV
mp

m
JFtrV ,00 !!22

!!12
1

−−=

                                       ( ) ( )
( ) ( ) ( )( )ppppp

p baPpaPtr
mp

m
,,

!!22

!!12
1 ,, +−−=   

                                       ( ) ( )
( ) ( )11...!!22

!!12
1 −++∑−−= pj

j
jj

p

mp

m ααα

Since 0,0 =s
p JtrV  for 1+≥ps . Hence ( ) ( ) ( )

( ) 






 +−+ + pp
p

p

mp

m
JFVtr α

!!2

!!12
1 1

0

                ( ) ( )
( ) ( )11

1 ...
!!22

!!12
1 −++

+ ∑ −−−= pj
j

jj
p
j

p

mp

m αααα    and we obtain that

                ( ) ( ) ( )
( ) ( )1

0 12 1

2 1 !!
1

2 2 !!

pp p
p p

m
trV F J C a

p m
α γ+ −

+ − ≤                                 (7)

Where 12C depends on mp,  and sequences ( )k aγ  are defined in [134]

Observe that ( ) 0p aγ =  when 1=p . Furthermore we have for 2=p that

                       ( ) ( )∑∑ +++ +−=−
j

jjjj
j

jjj
2

11
2

1
2 2

2

1 ααααααα

                                              ( ) 2

2

2
1 2

1

2

1
a

j
jj ∂=−= ∑ +αα
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So the left hand-side of (7) for  2=p can be estimated by .
2

213 aC ∂ It is also 

clear that inclusion 1+∈ mLα and 2La∈∂  give that ( )p a Lγ ′∈  for 12/ +>mp . Indeed 

we have ( ) ( ) ( )( )∑
=

−−−−
−

− −=−
p

k
pkpkp

kp
p

p

1
1111 ...... ααααααααα

The  terms  in  the  latter  sum  look  like  ( ) ( ) ( )( )
pipi αααα −−121 ...  for  some 

( )piii ,...,1= .  Obviously  2
ip ipa a a Lα α− = − =∂ ∈ .  Applying  the  Holder 

inequality  ∑ ∑∑ 









≤

=
+

k

p

j

q
kj

j
kp

k
k

ja
q

aa
1

,

1
...  with  ( ) ( )12,, −== pqa jkikj j

α  for 

1,1 −= pj and ( )
2

1
,, =−= pkikp qa

p
αα  we get that 

                                ( ) ( ) ( )
( )12

12

2

214111 ...
−

−− +∂≤− p

pp
p aC ααααα    

Which is finite for  12+>mp . Thus gathering the above argument which is 

complete( see [134] )we complete the proof of the lemma 

Lemma (1-1-5) [87]:

      Let ( )piii ,...,1=  and ni
s

s =∑ then                            

                                    
[ ]∑

=++
=++

+=
nppp
pLLL

pLpLLp
p

npii JVJVVJCJVVJVJ p

321

321

3322111
000,1000 ,...

 

                                   [ ] [ ]
,

0 0, ,
im p

k k k
i

A V J B V J C+∑   

Where  ( ) ( )321321 ,,1,,, LLLpppp ==  and  kkk CBA ,,  are  some  bounded 

operators 

Lemma (1-1-6) [87]

         Let ∑ −=
s

pki 2 we have ( ) ( )
223000 ...1 baCJVVJVJtr pkpii p ∂+∂≤− −  

With  3C  depending  on V only.  The  lemma  exactly  bounded  ,we  may 

assume that operators V and 0J to commute we estimating ( )Jmψ  
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∑ %                         (8)

Where { }kdiag a A Iα= = −% and 

                           ( ) ( )
( )[ ]
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k

k
m

m
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k
p JCCJF −−

−
+=

+

+

∑ −= 2
02

12
12

2/1
12

1
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Here p
kC   is a usual binomial coefficient, observe that for 1+≥mp  we have 

                      ( )( ) ( ) ( )1

1

1

1400 1
1

+

+

+

+
+−≤≤ m

m

m

m

p
pp

p baCVJFJFVtr δ

Where 1
. δ is the norm in the class of nuclear operators, hence it remains to 

bound the first m terms in (8) we have 

                                  ( ) ( ) ( )12
2

1

1
~~1~1log +

=

+

+−=+ ∑ m
m

p

p

o
p

ααα

Set pJ ,0  to be a symmetric matrix with 1’s on p-th auxiliary diagonals and o’s 

elsewhere the following lemma holds.

Lemma (1-1-7) [87]:

     We have ( ) ( ) ( )
( ) p

p
p J

mp

m
JF ,0

1
0 !!22

!!12
1

−−= +

Combining  this  with  explicit  form  of  pV and  the  series  expansion  for 

( )α~log +I we get the required bound (7).

Section (1-2): Spectral Properties of Self-adjoint Extensions

Let A be a closed symmetric operator on a separable Hilbert space h . 

If A has equal deficiency indices ( )n A±  =dim ( )( )h ran A iI±e , then A has a 

lot of self-adjoint extensions. These self-adjoint extensions can be labeled by 

the so-called Weyl function ( ).M  [82, 83, 84]. The generalization is based on 

concept  of  a  boundary  triple  { }0 1, ,Π= Γ ΓH  for  *A being  an  abstract 

generalization of the Green’s identity. Here  H is a separable Hilbert space 

with dim ( ) ( )n A±=H  and 0Γ  and 1Γ  are linear mapping from dom ( )*A  to H  

so that Green’s identity is satisfied [108,119]. 
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The problem is  the  following.  Let  ( ).M  be  the  Weyl  function  of  a 

certain self-adjoint  extensions  0A  of  ,A  introducing the associated  scalar 

Weyl function  ( ) ( )( ) H∈= hhhMM h ,,..  is  it  possible to localize the different 

spectral  subsets  of  0A knowing the boundary values  ( )0 ,hM x i x+ ∈¡ of the 

associated scalar Weyl function. Let H  be separable Hilbert space. Recall that 

an  operator  function  ( ).F with  values  in  [ ]H  is  said  to  be  a  Hirglotz  or 

Nevanlina function  or R-function if  holomorphic in  +£ and for every z +∈£  

the operator ( )zF in H is dissipative i.e.,  ( )( )
( ) ( )( )*

0
2

F z F z
Sm F z

i

−
= ≥ . In the 

following we  prefer  the  notion  R-function.  The  class  of  R–functions  with 

values in  [ ]H is denoted by  HR .If  ( ) ( )HRF ∈. then there exist bounded self-

adjoint  operator  L  in  K,  a  bounded  non-negative  operator  0≥R  with 

0R K =e H such that 

           ( ) ( ) ( )
1 1

12 2
0 1 ,kF z C C z R I zL L z R z

−
+= + + + − ∈£H                              (9)

Denoting by  ( ).LE  the spectral measure of the self-adjoint operator  L  one 

immediately obtains from (9) the representation 

                          ( ) ( )0 1 2

1
,

1 F

t
F z C C z d t z

t z t

∞

+
−∞

 = + + − ∈ ÷− + 
∑∫ £                     (10)

Where ( )∑
F

.  is an operator valued Borel measure on R  given by 

                   ( ) ( ) ( )
1 1

2 2 21 . ,L
F

d t t R dE R t= − ∈∑ ¡                                                (11)

the measure ( )∑
F

.  is self-adjoint and obeys 

                                 ( ) [ ]H∈
+ ∑∫

+∞

∞− F

td
t 21

1  

(12)
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In contrast to spectral measures of self-adjoint operators it is not necessary 

true that ran ∑ 1δ is orthogonal to ran ( )∑ 2δ  for adjoint Borel sets 1δ and 2δ .

However the measure ( )∑
F

.  is uniquely determined by the R-function ( ).F .

The integral in (10) is understood in the strong sense in the following  ( )∑
F

.  is 

called the spectral measure of ( ).F  defined by 

                ( )

( )

( )









<−
=

>

=

∑

∑
∑

F

F

F
tt

t

tt

t

0:0,

0:0

0:,0

                                                                 (13)

The distribution function  ( )∑
F

.  is  strongly left  continuous and satisfies the 

condition 

                                 ( ) ( ) ( ) ( ) ∞<<<−∞≤= ∑∑∑∑ tststt
FFFF

,,
*

The distribution function ( )∑
F

. is called the spectral function of  ( ).F .

We  note  that  the  spectral  function  ( )∑
F

. can  be  obtained  by  the  Stieltjes 

transformation:

 ( ) ( ) ( ) ( )∑∑∑∑ ++−++ sstt
FFF

0
2

1
0

2

1
= ( )( )

0

1
lim , .

t

y
s

w Sm F x iy dx t s
π→

− + ∈∫ ¡       (14)

Where it is used that the spectral function is strongly left continuous. 

A  will  always  denote  a  closed  symmetric  operator  with  equal  deficiency 

indices ( ) ( )n A n A+ −= [97,140,147,148].

We can assume that A is simple. This means that A has no self-adjoint parts. 

Definition (1-2-1) [96]:

A triple { }0 ,Π= Γ Γ1H, consisting  of  an  auxiliary  Hilbert  space  H and  linear 

mapping  ( )*:i dom A iΓ → =H , 0,1  is  called  a  boundary  triple  for  the  adjoint 
9



operator H→*A , 1,0=i  is called a boundary triple for the adjoint operator *A  

of A  if 

 

(i) The second Green’s formula takes place

             ( ) ( ) ( ) ( ) ( )* * *
1 0 0 1, , , , , ,A f f A f f f dom A− = Γ Γ − Γ Γ ∈g g g g               (15)

(ii) The mapping { } ( ) HH ⊕→ΓΓ=Γ *
10 :, Adom is surjective 

Definition (1-2-2) [96]:

(i) A closed linear relation θ in H  is closed subspace θ of HH⊕ .

(ii) The closed linear relation θ is symmetric if ( ) ( )1 2 1 2, , 0f f− =g g  for all 

               { } { } θ∈21 gg, ,, 21 ff

(iii) The closed linear relation θ is self-adjoint if it is maximal symmetric.

Definition (1-2-3) [96]:

Let { }1H, ΓΓ,0 be a boundary triple for *A

(i) for every self-adjoint relation θ in H   we put 

                    ( ){ } θθθ θ DAAffAdomfD *
10

* ,,: =∈ΓΓ∈                                (16)

(ii) In particular we set 1,0,,1,0, === iifiAA ii
i θθ

(iii) If ( )BG=θ  where B is an operator on H ,then we set θAAB  

Proposition (1-2-4) [96]:

            Let { }1H, ΓΓ,0  be a boundary triple for *A then for every self-adjoint 

relation  θ in H the  operator  θA given  by  definition  (1-2-3)  is  self-adjoint 

extension of  A the mapping θθ A from the set of self-adjoint extensions in 

H  onto the set  AExt of self-adjoint extensions of  A is bijective. It is well 

known that  Weyl  function  are  an  important  tool  in  the  direct  and inverse 

spectral theory of singular Sturm-Liouville operators. 

Definition (1-2-5) [96]:

Let { }1H, ΓΓ,0 be a boundary triple for the operator *A . The Weyl function 

of A corresponding to the boundary triple { }1H, ΓΓ,0 is the unique mapping 
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( ) ( ) H→0:. AM ρ   satisfying 

( ) ( )001 ,, AzNffzMf zzzz ρ∈∈Γ=Γ                                                     (17)

Where ( )zIAN z −= *ker above implicit definition of the Weyl function is correct 

and the Weyl function ( ).M  is a R-function obeying 

                                            ( )( )( )o Sm M iρ∈  

Definition (1-2-6)[96]:

A  closed  linear  relation θ in H  is  called  boundedly  invertible  if  the 

inverse relation  { } { }θθ ∈×∈= gg ,, ff :HH-1  is the graph of a bounded operator 

defined on H .  we say  λ∈£ belong to the resolvent  set  ( )θρ  if  the closed 

linear relation { } { }{ }θλλθ ∈−=− gg ,:, fffT is boundedly invertible. 

Proposition (1-2-7) [96]:

Let  A  be  a  simple  closed  densely  defined  symmetric  operator  in  h. 

Suppose that { }1H, ΓΓ,0  is a boundary triple for *A ( ).M  is the corresponding 

Weyl  function  , θ  a  self-adjoint  relation  in  H  and  ( )0Aρλ∈ .  Then  the 

following holds. 

(i) ( )θρλ A∈  if and only if ( )( )λθρ M−∈0 .

(ii) ( )Aθ
τλ δ∈ if and only if ( )( )0 , ,M p cτδ θ λ τ∈ − =

If  A  is  a  simple  symmetric  operator  then  the  Weyl  function ( ).M  

determines the pair { }0, AA  up to unitary equivalence. We shall often say that 

( ).M  is the Weyl function of the pair { }0, AA or simply of 0A . We can prove 

( )1 .M and ( )2 .M with values in [ ]1H  and [ ]2H  are connected via 

( ) ( ) DKzMKzM += 1
*

2                                                                             (18)

Where  [ ]2H∈= *DD  and [ ]12 HH ,∈K  is  boundedly  invertible.  With  each 

boundary triple we can associate a so-called γ -field γ (.) corresponding to

π is defined by  

( ) ( ) ( )1

0 2 0: ,zz N N z Aγ ρ−
= Γ → ∈H                                                      (19)
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One can easily check that

( ) ( ) ( ) ( ) ( )1

0 0 0 0 0 0, .z A z A z z z z Aγ γ ρ−= − − ∈                                            (20)

And consequently ( ).γ  is a γ -field. The γ -field and the Weyl function ( ).M

are related by 

( ) ( ) ( ) ( ) ( ) ( )* *

0 0 0 0 0, ,M z M z z z z z z z Aγ γ ρ− = − ∈                             (21)

The relation (21) means the ( ).M  is a 2θ  -function of a pair { }0, AA .Further we 

note that if A is simple then  ( )0, AzN z ρ∈  is generating with respect to  0A  

too .

Let  µ be  a  Borel  measure  on  ¡ .  A  support  of µ is  a  set  S such  that 

( )\ 0Sµ =¡  we note that SS
~⊆ implies that  S

~ is a support too. Measures  µ

and v on R  are called orthogonal if some of their supports are disjoint. The 

topological support ( )µS  of µ is the smallest closed set which is a support of

µ .According to the Lebesgue-Jordan\decomposition sacs µµµµ ,+=  scpp µµ +=

.  Where  scpps µµµ ,,  and are the corresponding singular  pure point,  singular 

continuous and absolutely continuous measures of µ respectively. We set 

( ) ( ) acscppsTSS TT ,,,, == µµ  the  set  ( ) ( ) ( ) ( )µµµµ acscpps SSSS ,,, are  closed  and 

called  singular,  pure  point,  singular  continuous  and  absolutely  continuous 

supports of  µ ,  we denote that  the closed supports  ( )µsS , ( ) ( )µµ acpp SS ,  and 

( )µscS  are not generally mutually disjoint to obtain mutually disjoint supports 

we introduce the following sets .

( ) ( ) ( ){ }0S t d t dt existsand d tµ µ µ′ = ∈ =∞¡ :                                          (22)

( ) { }( ){ }0ppS t tµ µ′ = ∈ ≠¡ :                                                                    (23)

( ) ( ) ( ) ( ) ( ) 0sc

d t
S t d t d t exists and t

dt

µ
µ µ µ

 
′ = ∈ =∞ = 

 
¡ :                         (24)

    ( ) ( )( )
0 /ac

d t
S t exists and d t dt

dt

µµ µ ′ = ∈ < <∞ 
 

¡ :                              (25)
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Where the distribution function ( ).µ  is similar to (13) defined by  it turns out 

that.  Since  the  sets  ( )µTS ′  , scppsT ,,=  are  of  Lebesgue  measure  zero  and 

mutually disjoint we find that for any Borel set R⊆χ  one has 

( )( ) ( ) acscppsTS TT ,,,, ==′∩ χµµχµ                                                      (26)

The  sets  ( ),µsS ′ ( )µppS ′ , ( )µscS ′ ,  and  ( )µacS ′ singular  pure  point  ,singular 

continuous and absolutely  continuous supports  of  µ respectively.  We note 

that 

             ( ) ( )µµ pppp SS ′= and ( ) ( ) ( )S S Sτ τµ µ µ′⊆ ⊆ , , ,s sc acτ=                 (27)

In general it is not possible to replace inclusion by equalities, let now ( )∑. be 

a  measure  with values  in  { }H  the measure ( )∑. admit  a  Lebesque-  Jordan 

decomposition ∑∑ ∑∑ ∑+= ac s pp sc
,, .As above the notation  

          ( )∑ ∑∑ ∑∑∑ === scpp

sc

s

pps SSSSSS ,,  and ( ) ( )∑∑ =
acac SS  

stand for the singular pure point , singular continuous and absolutely. We get 

( ) { } { }( ): 0pS τ τ= ∈ ≠∑ ∑¡                                                                (28)

we  have  ( ) ( )p ppS S=∑ ∑ and  ( ) ( )∑∑ = ppp SS  with  each  operator-valued 

measure ( )∑.  we can associate a scalar measure ( ) ( )( ) H∈=∑∑ hhh
h

,,.. . In 

the following  we are interested in the problem whether the spectral properties 

of the operator valued measure  ( )∑.  can be characterized by a family  of 

scalar measures. To this end let { }
1

, 1
N

k
h Nτ

=
= ≤ ≤+∞  be a total set in H with 

we associate the family  { } ,. 1∑ =
kh

N
k  of scalar measures. Let us introduce the 

following sets.

( ) ( )1; k

N
s k s h

S Sτ =′ ′=∪∑ ∑                                                                       (29)

( ) ( )1; k

N
pp k pp h

S Sτ =′ ′=∪∑ ∑                                                                    (30)

( ) ( ) ( )1;
|

k

N
sc k sc pph

S S Sτ =′ ′ ′=∪∑ ∑ ∑                                                     (31)
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( ) ( ) ( )1;
|

k

N
ac k ac sh

S S Sτ =′ ′ ′=∪∑ ∑ ∑                                                       (32) 

Lemma (1-2-8) [96]:

Let H  be a separable Hilbert space and { } +∞≤≤= = NhT N

kk 1,1 be a total 

set  in  H .Then  the  sets  ( ) ( ) ( ); ; ;
, ,s pp scS S Sτ τ τ′ ′ ′∑ ∑ ∑  and  ( );acS τ′ ∑  are 

singular ,pure point ,singular continuous and absolutely continuous supports  of 

( )∑.  respectively i.e.,

( )( ) ( )
;

, , , ,S s pp sc ac
τ

τχ τ χ τ′∩ = =∑ ∑ ∑                                               (33)

For any Borel set R⊆χ . In particular the following relations hold.

( );p ppS S τ′ ′=∑ ∑  and 

 ( ) ( ) ( );
, , ,p pS S S s sc acτ τ′⊆ ⊆ =∑ ∑ ∑                                               (34)

Proof:

By the Lebesgue-Jordan decomposition one easily  gets  that  for  each 

H∈h  We have

( )( ) ( )
,

, , , , ,
h

h h s pp sc ac
τ

τχ χ τ= =∑ ∑                                                    (35)

For  any  Borel  set  R∈χ where  ( )∑ Th,
. arises  from  the  Lebesgue-Jordan 

decomposition of the scalar measure ( )∑h
. . Let sτ= . Since mes ( );

0sS τ′ =∑

We get 

          ( )( )( ) ( )( ) ( )( )
,; ; ;

,
k k s

s k k s sh h
S h h S Sχ τ χ τ χ τ′ ′ ′∩ = ∩ = ∩∑ ∑ ∑ ∑ ∑ ∑      (36)

For any kh τ∈  using (35),(36) and 

( )( ) ( )( )
, ,; ;k s k s k

s s sh h h
S S Sχ τ χ τ′ ′ ′∩ = ∩ ∩∑ ∑ ∑ ∑ ∑  

                                        ( )( ) ( )
, ,;k s k s

sh h
Sχ τ χ′= ∩ =∑ ∑ ∑                              (37)

14



We  find  ( )( )( ) ( )
;

, ,
s

s k k k kS h h h hχ τ χ ′∩ = ÷
 

∑ ∑ ∑  for  any  kh τ∈ .  Since  τ is 

total  we  finally  obtain  ( )( ) ( )
;

s

sSχ τ χ′∩ =∑ ∑ ∑ for  any  Borel  set  χ ∈¡ . 

Similarly we prove the statements for .,, acscppT =

Let  ;ppx S τ′∈ ∑ .  Then  there  is  kh τ∈ such  that  ( )∑′∈
khppSx .  Hence 

{ }( ) { }( )( ) 0, ≠= ∑∑ kkh
hhxx

k  which  yields  { }( ) 0≠∑x  or  ( )∑∈ pSx ,  i.e. 

( ) ( );pp pS Sτ′ ⊆∑ ∑  conversely  if  ( )∑∈ pSx  then  there  is  a  H∈h such  that 

{ }( ) 0≠∑h
x .  If  this  is  not  the  case  then  for  each  Thk ∈ one  has 

{ }( ) { }( )( ) 0, ==∑∑ kkh
hhxx .  Since  T is  total  this  yields 

{ }( )( ) { }( ) 0, ==∑∑ hkk xhhx

For each H∈h  Contrary to the assumption. however, if there is a Thk ∈ such 

that ` { }( ) 0≠∑
kh

x  then ( ) ( ); ;
, , .pp p ppx S i e S Sτ τ′ ′∈ ⊆∑ ∑ ∑  hence  ( ) ;p ppS S τ′=∑ ∑  . 

Further from (33) we get             

( ) ( );
, , , ,T TS S s pp sc acτ τ′⊆ =∑ ∑

Taking (27) into account we get  ( ) ( ) , , , ,
k k

T h h
S S s sc ac scτ′ ⊆ =∑ ∑  for each 

kh τ∈ .  Since  ( ) ( )∑∑ ⊆ SS
kh  for  each  Thk ∈  we  get  ( );TS τ′ ∑  which 

immediately proves (34). Taking (20) and (21) into account we obtain that 

01=C  which leads to the representation.

                     ( ) ( )0 2
,

1

t
M z C d t z

t
 = + − ∈ ÷+ 

∑∫
¡

£
1

t- z                                    (38)

Lemma (1-2-9) [96]: 

          Let A be a simple densely defined closed symmetric operator on the a 

separable  Hilbert  space  with   ( ) ( )AnAn −+ = .  Further,  let  [ ]0 1, ,Π= Γ ΓH be  a 
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boundary  triple  of  *A  with  Weyl  function  ( )∑. .  If  ( ).
0A

E  is  the  spectral 

measure of ( )( )AExtAA ∈Γ= 0
*

0 ker  and ( )∑.  that of the integral representation 

(38)  of  the  Weyl  function ( )∑. .  Then  the  measure  ( ).
0A

E  and  ( )∑.  are 

equivalent. In particular one has ( ) ( )0Aτ τδ δ= ∑  .

Theorem (1-2-10) [96]:

Let  A be  a  simple  densely  defined  closed  symmetric  operator  on  a 

separable  Hilbert  space  h  with  ( ) ( )AnAn −+ = .  Further  let  [ ]0 1, ,Π= Γ ΓH be a 

boundary triple of *A with Weyl function ( ).M .

If  ( ).
0A

E is the spectral measure of  ( )AExtAA ∈Γ= 0
*

0 ker and ( )∑. that of 

the integral representation (38) of the Weyl function ( ).M , then for each total 

set 

{ }
1

, 1
N

k k
h Nτ

=
= ≤ ≤+∞  in H  the sets ( ) ( ) ( ); ; ;

, ,s pp scS S Sτ τ τ′ ′ ′∑ ∑ ∑  and ( );acS τ′ ∑ .

Singular pure point, singular continuous, and absolutely continuous supports 

of ( ).
0A

E  respectively, i.e. we have 

( )( ) ( )
0 0;

T
A T AE S Eχ τ χ′∩ =∑                                                                    (39)

For each Borel set R∈χ . In particular the relations ( )0 ;p ppA Sδ τ′= ∑  and 

                    ( ) ( )0 0;
, , ,A S A s sc acτ τδ τ δ τ′⊆ ⊆ =∑ hold.

Proof:

Since by lemma (1-2-8) the sets  ( ); , , , ,TS s pp sc acδ τ τ′ = are supports of 

( )∑. ,  one  immediately  gets  from  lemma  (1-2-9)  that  the  same  sets  are 

supports of ( ).
0A

E of the same type, i.e., (39) holds . If ( );ppx S τ′∈ ∑  then there 

is at least one Nk ,...,2,1= such that 

{ }( ) ( ) ( )( )
0

, 0A k kE x i h i hγ γ ≠

Hence ( )0Ax pδ∈  conversely, if ( )0Ax pδ∈  then due to the fact that ( )iγ τ  is 
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Generating for ( ).
0A

E  then is at least one Nk ,....,2,1=  such that 

{ }( ) ( ) ( )( )
0

, 0A k kE x i h i hγ γ ≠

Hence ;ppx S τ′∈ ∑  which proves ( ) ( )0 ;p ppA Sδ τ′= ∑  the relations ( ) ( )0 ;s A Sτδ τ′⊆ ⊆∑  

( )0 , , ,A s sc acδ τ=  are consequences of lemma (1-2-8) and lemma (1-2-9) .we 

characterize  the  spectral  properties  of  the  operator-valued  measure  ( )∑.  

using the boundary behavior of  the Weyl-function  ( ).M .  A first  step is  to 

develop a corresponding theory for scalar measure µ which satisfies

( ) +∞<
+∫

R
21 t

tdµ
 

(40)

Let us associate with µ    the Poisson integral 

( )=zV

( )
( ) 2 2

,
yd t

z x iy
t x y

µ
+= + ∈

− +∫ £
R

 

(41)   

Which  defines  a  positive  harmonic  function  in  +£ .  Conversely  it  is  well 

known  that  each  positive  harmonic  function  ( )zV1  in  +£  admits  the 

representation ( ) ( )zVayzV +=1  with 0≥a  and ( )zV  of the form (40) and (41). 

Below we summarize some well-known facts on positive harmonic function 

Proposition (1-2-11) [96]:

Let  µ  be a positive Radan measure obeying (40) and let  ( )zV be a 

positive harmonic function in z x iy += + ∈£ defined by (41). Then one has.

(i) for any x∈¡ the ( ) ( )lim limV x io V x iy+ = +  exists and is finite , if and 

only if symmetric derivative ( )xDµ

( ) ( ) ( )
0

lim
2

x x
D xµ ε

µ ε µ ε
ε→

+ − −
=                                                        (42)

           Exists and is finite. In this case one has 

                                          ( ) ( )V x io D xµπ+ =                                           (43)

17



(ii) if  the  symmetric  derivative  ( )xDµ  exists  and  is  infinite  the 

( ) +∞→zV as xz →>

(iii) for each R∈x one has ( ) ( ) { }( )xzVxzSm µ→−  as xz →>    

(iv) ( )zV  converges to a finite constant as  xz →> ,  if and only if the 

derivative ( )d t dtµ exists at xt =  and is finite. 

The symbol  → >  means that the limit  ( )
0

lim ,i

r
V x re xθ

→
+ ∈R  exists uniformly 

in [ ],θ ε π ε∈ −  for each ( )0, / 2ε π∈ . Proposition (1-2-11) allows us to introduce 

measures satisfying (40) the following sets ( )z x iy= +   

( ) ( ){ }sS xµ′′ = ∈ →∞¡ :V z  as xz →>                                                     (44) 

( ) ( ) ( )lim 0ppS x V zµ
→>

′′ = ∈ >¡ :
z x

Sm z- x                                                     (45)

( ) ( ) ( ) ( ){ }0scS x and z x V z as z xµ′′ = ∈ →∞ − → →>¡ :V z                      (46)

( ) ( ) ( ){ }0 0scS x exists and V x iµ′′ = ∈ + < + <∞¡ :V x i0                              (47)

Obviously the sets  ( )µsS ′′ and  ( )µacS ′′ as well  as  ( ) ,µppS ′′ ( )µscS ′′ ,  and  ( )µacS ′′ are 

mutually  disjoint.  By  proposition  (1-2-15)  one  immediately  gets  that 

( ) ( )µµ pppp SS ′′=′  and

( ) ( ) ( )S S Sτ τµ µ µ′ ′′⊆ ⊆                                                                            (48)

Indeed the relation ( ) ( )µµ pppp SS ′′=′ is a consequence of (iii).By (ii) we get 

( ) ( )µµ ss SS ′′⊆′

Similarly  we  prove  ( ) ( )µµ scsc SS ′′⊆′  using  (ii)  and(iii).Finally  the  relation 

( ) ( )µµ acac SS ′′⊆′  follows from (i). We note that it can happen that ( ) 0≠′ µscS  and 

the inclusion  ( ) ( )µµ scsc SS ′′⊆′  is strict even if  0=scµ . Furthermore we note that 

from (26) and the inclusion ( ) ( ) , , , ,T TS S s pp sc acµ µ τ′ ′′⊆ =  we find that 

                                  ( )( ) ( )S xτ τµ χ µ µ′′∩ =                                                     (49)

For any Borel set χ ∈¡ . Now we are going to characterize the spectral parts of 

the extension 0A  by means of boundary values of the Weyl function ( ).M .
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Using the integral representation (38) of the Weyl function we easily get that 

( )
( )

( ) ( )( )2 2
, ,h hV z Sm M z z h

y
= = ∈ ∈

+
∑∫

¡

£ H
y

x- t h
d t                      (50)

Where ( ) ( )( ), , ,hM z M z h h z h= ∈ ∈£ H                                                          (51)

The function  ( ).hM is a scalar R-function. Since  ( ).hM arises from the Weyl 

function we call it the associated scalar Weyl function ( ).hV  is  imaginary

part of the associated scalar Weyl function ( ).hM  and the theory developed we 

can  relate  the  boundary  behavior  at  the  real  axis  the  imaginary  part  of 

associated scalar Weyl functions with the spectral properties of the self-adjoint 

extension 0A . To this end in addition to (29) and (32) we introduce.

( ) ( )1; k

N
s k s h

S Sτ =′′ ′′=∪∑ ∑                                                                       (52)

( ) ( )1; k

N
pp k pp h

S Sτ =′′ ′′=∪∑ ∑                                                                     (53)  

( ) ( ) ( )1;
\

k

N
sc k sc pph

S S Sτ =′′ ′′ ′′=∪∑ ∑ ∑                                                        (54)

( ) ( ) ( )1;
\

k

N
ac k ac sh

S S Sτ =′′ ′′ ′′=∪∑ ∑ ∑                                                        (55)

By  definition  the  sets  ( );sS τ′′ ∑  are  disjoint.  They  holds  for  ( );ppS τ′′ ∑ . 

Furthermore we denote that the sets ( );TS τ′′ ∑  have Lebesgue zero, i.e., mes

( );
0 , , , .TS s pp scτ τ′′ = =∑ , it turns out that the sets  ( );TS τ′′ ∑  in theorem (1-2-14) 

can be replaced by the sets ( );TS τ′′ ∑

Theorem (1-2-12) [96]:

Let  A be  a  simple  densely  defined  closed  symmetric  operator  on  a 

separable Hilbert space H with ( ) ( )AnAn −+ = . Further, let  { }0 1,Π= Γ ΓH,   be a 

boundary  triple  of  *A with  Weyl  function  ( ).M .  If  ( ).
0A

E  is  the  spectral 

measure of ( )AExtAA ∈Γ= 0
*

0 ker  and total set { } +∞≤≤= = NhT N

kk 1,1  in H  the 
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sets  ( );sS τ′′ ∑ ,  ( ) ( ); ;
,pp scS Sτ τ′′ ′′∑ ∑  and  ( );asS τ′′ ∑  are  singular ,pure  point  , 

singular  continuous  and  absolutely  continuous  supports  of  ( ).
0A

E  

respectively , i.e.,  we have               

( )( ) ( )
0 0;

, , , ,A AE S E s pp sc acτ
τχ τ χ τ′′∩ = =∑                                             (56)

For each Borel set χ ∈¡ . In particular  it hold ( ) ( )0 ;p ppA Sδ τ′′= ∑  and 

                                     ( ) ( ) ( )0 0;
, , ,A S A s sc acτ τδ τ δ τ′′⊆ ⊆ =∑ .

Proposition (1-2-13) [96]:

Let  ( ).φ  be  a  scalar  R-function.  Then  for  almost  all  x∈¡ the  limit 

( )=+0ixφ lim
0y →

( )0ix+φ  exists  and  moreover  in  this  case  one  has 

( ) ( )lim
z x

x io zϕ ϕ
→>

+ = . 

Theorem (1-2-14) [96]:

Let  A be  a  simple  densely  defined  closed  symmetric  operator  on  a 

separable  Hilbert  space  h  with  ( ) ( )AnAn −+ = Further  let  { }0 1,Π= Γ ΓH be  a 

boundary triple of  *A with Weyl function  ( ).M and let ( )0
0A

E  be the spectral 

measure of the self- adjoint extension  *A of A  . If { }
1

N

k k
hτ

=
=  , +∞≤≤N1  is a 

total set in  H  then  sets  ( );s M τΩ , ( );pp M τΩ , ( );sc M τΩ  and  ( );ac M τΩ  are 

supports  of ( ).
0A

E  respectively. i.e., we have 

( )( ) ( )
0 0

; , , , , .A AE M E s pp sc acτ
τχ τ χ τ∩Ω = =                                          (57)

For  each  Borel  set  R∈χ In  particular  it  holds  ( ) ( )0 ;p ppA Mδ τ=Ω  and 

( ) ( ) ( )0 0;A M Aτ τ τδ τ δ⊆Ω ⊆  for  , ,s sc acτ= .  We  note  that  the  inclusions 

( ) ( )0 ;s sA Mδ τ⊆Ω     and   ( ) ( )0 ;sc scA Mδ τ⊆Ω  of theorem (1-2-14) may be strict 

even if ( )0Ascδ  is empty.
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Let ( ).µ   be a Borel measure on R and let χ ⊆¡  be a Borel set the set  

( ) ( )( ) 0acCL x x x x xε ε ε δ= ⊆ + ∩ > ∀ >¡ :mes - ,                 (58) 

is  called  the  absolutely  continuous  closure  of  set  x  obviously  the  set 

( ) xxCLac ∈  is always closed and one has  

Lemma (1-2-15) [96]:

Let  ( ).φ  be  a  scalar  R-function  which  has  the  representation  (10)  then 

( ) ( )( )φµ acacac CLS Ω=  

Proof: 

If  ( )( )φacacCLx Ω∉=  then there is an 0∈>  such that ( ) ( ), acmes x xε ε ϕ θ− + ∩Ω =  

( ) ( ) ( ), , 0ac ac acx x x xµ ε ε µ ε ε ϕ− + = − + ∩Ω =                                        (59)

Hence  ( ) ( )µµ acac SSx =∉  which  yields  ( ) ( )( )φµ acacac CLS Ω⊆  conversely  if 

( )µacSx∉  then  there  is  an  0>ε  such  that  ( ) ( ), 0acx xε ε µ− + ∩Ω =  then 

( ), 0ac x xµ ε ε− + =  using                    

( ),x xacµ ε ε− + = ( ) ( ) ( )
( ) ( ),

, 0
ac

ac ac x x

d t
x x dt

dtε ε φ

µ
µ ε ε φ

− + ∩Ω
− + ∩Ω =∫            (60)

 and proposition (1-2-11) (i) and (vi) one gets 

           ( ),ac x xµ ε ε− + = ( ) ( ) ( )( )1
0 0, Sm i dx x ac

φτ τε ε φπ + =∫ − + ∩Ω         (61)

Hence  ( )( ) 00 =+ dtitSmφ  for ( ) ( ). . , aca e t x xε ε ε φ− + ∩Ω . However by definition 

of the set ( )φacΩ  one has ( )( )0 0Sm i dtφ τ + >  for all    ( )acτε φΩ  which implies 

( ) ( )( ), 0acmes x xε ε φ− + ∩Ω =

Hence ( )( )φacacCLx Ω∉  or equivalent ( )( ) ( )µφ scacac SCL ⊆Ω .

Proposition (1-2-16) [96]:

Let  A  be  a  simple  densely  defined  closed  symmetric  operator  a 

separable  Hilbert  space  with  ( ) ( )AnAn −+ = .  Further  let  { }0 1,Π= Γ ΓH,  be  a 

boundary triple of *A with Weyl function ( ).M  If { }
1

N

k k
hτ

=
=  , +∞≤≤N1  is a 
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total  set  in  H  then the absolutely continuous spectrum of  the self-adjoint 

extension 0A  of A is given by.

( ) ( )( )
khacac

N
kac MCLA Ω∪= =10δ                                                                   (62)

Theorem (1-2-17)[96]:

Let  A  be a simple densely defined closed symmetric operator  on a 

separable Hilbert space h  with ( ) ( )AnAn −+ = . Further, let { }0 1,Π= Γ ΓH,  be a 

boundary triple of *A   with Weyl function ( ).M .

If { }
1

N

k k
hτ

=
=  , +∞≤≤N1  is a total set in H , then for the self-adjoint extension 

0A  of A  the following conclusions are valid : 

(i) The self-adjoint extension  0A of  A  has no point spectrum within 

the  interval  ( )ba,  .  i.e.,  ( ) ( ) θδ =∩ baApp ,0  if  and  only  if  for  each 

Nk ,...2,1=  one has 

                                             ( ) 0lim
0

=+
→

iyxyM hk
y  

(63)

for all ( )bax ,∈ . In this case the following relation holds 

                ( ) ( ) ( ) ( )
( ) ( ) ( )baM
M

baA
baA hkac

N
k

hkac
N
k

c ,
,

, 1
1

0
0 ∩Ω∪=

∪Ω∪
∩=∩ =

=

δδ                       (64)

(ii) The  self-adjoint  extension  0A  of  A  has  no  singular  continuous 

spectrum within the interval  ( ) ( ) ( ) θδ =∩ baAeiba ac ,..,, 0  if  for  each

Nk ,...2,1=  the  set   ( ) ( )baM hkac ,∩Ω is  countable  in  particular,  if 

( ) ( ), ac hka b MΩ  is countable. 

(iii) The self-adjoint extension  0A of  A  has no absolutely continuous 

spectrum within the interval ( )ba,  .i.e., ( ) ( ) θδ =∩ baAac ,0  if and only 

if for each Nk ,...2,1=  the condition

     ( )( ) 00 =+ixMSm hk                                                                            (65)

holds for a.e. ( )bax ,∈ . in this case we have                           
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( ) ( ) ( ) ( )0 , ; ,s sA a b M a bδ τ∩ =Ω ∩

Proof:

(i) If condition (65) is satisfied for all ( )bax ,∈  and all Nk ,...2,1= , then a 

simple  computation  shows that ( )lim 0hkz x
z x M

→>
− =  holds  for  all ( )bax ,∈  

and each Nk ,...2,1=  too. Therefore ( ) ( ) 0, =∩Ω baM hkpp  for  Nk ,...2,1=  

whichyields ( ) ( ) 0,; =∩Ω baTMpp  theorem  (1-2-14).  Implies  ( )0p Aδ ∩  

( ), 0a b =   which yields ( ) ( ) 0,0 =∩ baAppδ .  

(ii) Conversely if  ( ) ( ) 0,0 =∩ baAppδ then  ( ) ( ) 0,0 =∩ baApδ  again by theorem 

(1-2-14)  we find  ( ) ( ) 0,0 =∩ baAppδ therefore  ( ) ( ) 0,0 =∩ baAppδ  for  each 

Nk ,...2,1= .  However  this  implies  that  ( ) ( )lim 0hkz x
z x M z

→>
− = which 

yields  ( ) 0lim
0

=+
→

iyxyM hk
y

for all  [ ]bax ,∈  and each  Nk ,...2,1= .  The 

first  of  relation  (64)  is  consequence  of  ( ) ( ) ( )000 AUAA cpp δδδ =  and 

( )0pp Aδ ∩  ( ), 0a b = . The second part of relation (64) is a consequence of 

theorem (1-2-18) which shows that                         

( ) ( ) ( ) ( )0 1 0; ; , ,N
kA M M A sc acτ τ τδ τ τ δ τ=⊆Ω =∪ Ω ⊆ =                            (67)

and ( ) ( ) ( )000 AUAA acscc δδδ = .Both facts imply that ( ) ( ) ⊆∩ baAc ,0δ  

           ( ) ( ) ( ) ( ) ( ) ( ) ( )baAbaAbaMM chkac
N
khkac

N
k ,,, 0011 ∩=∩⊆∩Ω∪Ω∪ == δδ            (68) 

Which proves (64) 

(ii) By (53) we gets that ( ) ( ) ( ) ( )hkhkscschkhkac MscSSS Ω′′⊆′=′ ∑∑∑ , . Therefore if 

( ) ( )baM hkac ,∩Ω  is  countable,  then so is  ( ) ( )baS
hkac ,∩′′ ∑  this yields that  the 

singular continuous measure  ( )∑schh,
.  is supported within the interval  ( )ba,  

on  a  countable  set.  However  this  implies  that  ( ) 0,
,

=∑schk
ba  for  each 
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Nk ,...,2,1=  and  every  H∈h  one  has  ( )
,

, 0
hK sc

a b =∑  which  yields 

( ) 0, =∑sc
ba . Therefore by lemma(1-2-9) one gets ( ) 0,

0
=baE sc

A  which proves 

( ) ( ) 0,0 =∩ baAscδ .  If  ( ) hkacMba Ω\,  is  countable,  then by  ( ) ( ) ( )hkachksc MbaM Ω⊆Ω \,  

the set ( )hksc MΩ   is countable too which completes the proof (ii).

(iii) If for each  Nk ,...,2,1= the condition (65) holds for a.e.  ( )bax ,∈   each 

0ε >  one  has  ( ) ( ) ( ), ,ac hkmes x x M a bε ε θ− + ∩Ω ∩ =  hence  ( )( ) ( ) 0, =∩Ω baMCL hkacac  

taking proposition (1-2-16) into account we find ( ) ( ) 0,0 =∩ baAacδ . Conversely 

if  ( ) ( ) 0,0 =∩ baAacδ  then  proposition  (1-2-16)  for  each  Nk ,...,2,1= we have 

( )( ) ( ) ( )( ) ( ) 0,, =∩Ω=∩Ω baMCLbaMCL hkacachkacac

Which verifies condition (65) for a.e ( )bax ,∈ . Using ( ) ( ) ( )00 , AbaA sδδ =∩  and 

( ) ( ) ( )0 0;s sA M Aδ τ δ⊆Ω ⊆  which was proved in theorem (1-2-14)
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 Section (1-3): Characteristic Function for Row

                             Contraction and Factorization

We give new result  for the characteristic function associated with an 

arbitrary row contraction and show that 
**
TTTT kkI =− θθ            

Where  Tk  is the Poisson kernel of  T . Consequently we will show that the 

curvature invariant  and characteristic  associated  with a  Hilbert  model  over 

nF
+£  generated by an arbitrary row contraction  T can be expressed only in 

terms of the characteristic function of  T  [62,63].

The characteristic function associated with an arbitrary row condition 

[ ] ( )HBTTTT in ∈= ,,...,1 was introduced for the classical case 1=n  and it was 

proved  to  be  a  complete  unitary  invariant  for  completely  non-coisometric 

(c.n.c) row contraction. Using the characteristic of multi-analytic operator on 

Fock spaces, one can easily see that the characteristic function of T  is multi-

analytic operator [64, 65].

( ) ( ) ( ) TnTnnT DHFDHFRR ⊗→⊗ 22
1 *:,...,θ

With the formal Fourier representation

( ) ( )( ) ( ) [ ] ( )( )2 22 2

1

*
1

1

,....,
T Tn nn n

n

i i nF H F HF H F H
i

I T I I R T R I R I I⊗ ⊗

−

⊗
=

 − + ∆ − ⊗ ⊗ ⊗ ⊗∆ ÷ 
∑ H HH   

where  nRR ,....,1   are  the  right  creation  operator  on  the  full  Fock  space 

( )nHF 2     

are  ( )HH BTTI
n

i
iiT ∈





 −=∆ ∑

=

2

1

1

*  and  ( ) ( )( )nHH BTTI
T

∈−=∆ *
*  while  the  defect 

spaces are  HTTD ∆=  and nH** TT
D ∆=  where nH  denotes  the direct  sum of 

n  copies of H , we need the following result .
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Lemma (1-3-1) [61]:

        If ( ) ( )kBRRR nn ,,...,1 H⊗∈ ∞θ . Then ( ) ( )* *

1 11
lim ,..., ,...,n nr

SOT rR rR R Rθ θ
→

− =

Proof:

       We know that  any multi-analytic  operator  ( )*
1,..., nRRθ with  formal 

Fourier  representation  ( )nRR ,...,1θ ~  ( )kBR
k

k
,,

0

H∈⊗∑∑
∞

=
= ααα α θθ  has  the 

property  that   ( )
1

,..., lim1 0T
R R SOT r Rn

k k

αθ θα αα→

∞
= − ⊗∑ ∑

= =  where  the  series 

converge  in  the  uniform  norm  for  each  ( )1,0∈r  now  note  that  for  every 

,, H∈∈ + hFnβ and      ( ) kHF n ⊗∈ 2g  we have  

              ( ) ( ) ( )*

1 1,..., , , ,...,n nR R e h e h R Rβ βθ θ⊗ = ⊗g g   

                                                   ( ),nF
e h Rβ α αα α β θ+∈ ≤

= ⊗ ⊗∑ g  

                                                    ( ) ( )* *

,nF
R e hα α βα α β θ+∈ ≤

= ⊗ ⊗∑ g  

therefore 

                           ( ) ( ) ( )( )heRheRR
nFn ⊗⊗=⊗ ∑ ≤∈ + ββαα ααβ θθ

,

***
1,...,         

similarly we have  

                           ( ) ( ) ( )( )heRrherRrR
nFn ⊗⊗=⊗ ∑ ≤∈ + ββαα αα

α
β θθ

,

***
1,...,       

Using the last two equalities we obtain 

                       ( ) ( ) ( ) ( )* *

1 11
lim ,..., ,...,n nr

rR rR e h R R e hβ βθ θ
→

⊗ = ⊗  

 for any +∈ nFβ  and h  on the other hand according to non commutative von 

Neumann inequality  ( ) ( )*1
*

1 ,...,,..., nn RRrRrR θθ ≤ for any ( )1,0∈r . Hence and 

due to the fact that the closed span of all vectors  he ⊗α  with  ,, H∈∈ + hFnβ  

coincides with ( ) H⊗nHF 2  we deduce that         

                              ( ) ( )* *

1 11
lim ,..., ,...,n nr

SOT rR rR R Rθ θ
→

− =
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The proof is complete. The following factorization play an important role 

Theorem (1-3-2) [5]:

  Let [ ] ( )HBTTTT in ∈= ,,...,1   be a row contraction, then 

**
TTTT kkI =− θθ  

(69)

where  Tθ  is the characteristic function of  T  and  Tk  is the corresponding 

Poisson kernel.

Proof:

Denoting ( ) ( )[ ]nHFHF
TITIT

nn
⊗⊗= 22 ,...,

~
1  and 

                                  [ ]HH RRIRR n ⊗⊗= ,...,
~

1

the characteristic function of T  has representation

( ) ( )( )2 *

1
*

1
1

ˆ ˆ,..., lim
n

n T F H Tr
R R SOT T I eRT rRθ

−

→

 = − − +∆ − ∆  
% %

% %e                     (70)

define the operator   

TDCBTA
TT

~
,,,

~
** ~~

* −=∆=∆== , and 10,ˆ <<= rRrz

and note that 

  
*

*

T

T

TA B

c D T

 ∆   ÷= ÷  ÷∆ −   %

%

%  is a unitary operator therefore 

                     IDDCCIBBAA =+=+ **** ,  and  0** =+BDAC                     (71) 

define                  ( ) ( ) ZBZAICDz 1−−+=φ

 And notice that using relation (71) we have [5]: 

( ) ( ) ( ) ( ) *1*****1** CZAIZDBZBDZAICDDIZZI
−− −−−−−=− φφ

                          ( ) ( ) *1****1 CZAIZZBBZAIC
−− −−−

                       ( ) ( ) *1*****1* CZAIZCAZAcZAICCC
−− −+−+=

                           ( ) ( ) *1***1 CZAIZZZAIC
−− −−−

                           ( ) ( )( ) *1****1 CZAIZZAAZAIC
−− −−+

                       ( ) ( )( ) ( )****1 ZAIZAZAIZAIZAIC −+−−−= −
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                          ( ) ( ) *1********1 CZAIZZAAZZZAZAI
−− −+−−+

                       ( ) ( )( ) *1***1 CZAIZZIZAIC
−− −−−=

Therefore 

( ) ( ) ( ) ( )( ) *1***1* CZAIZZIZAICZZI
−− −−−=− φφ  

(72)

 Therefore  according  to  our  notation  for  any  ( )1,0∈r  the  defect  operator 

( ) ( )*
11 ,...,,..., nTnT rRrRrRrRI θθ =− is equal to the product [5]:

                    ( ) ( )( )
TT

RTrIRRrITRrI ~
1***21*

~ ˆ~ˆˆ~ˆ ∆−−−∆
−−

( )( ) ( )[ ] ( )T

n

i
iii iii

n

i iT ITRrIIRRrTRrII ∆⊗




 ⊗−⊗−⊗−∆⊗=

−

=
=

−

= ∑∑∑ 

1

1

**

1

*2*

1

~
1











∆⊗








⊗





 −∆⊗= ∑∑∑ ∑∑

∞

= =

∞

= == 0

~
*

0 1

*2*

p
T

pk i

n

i
ii

k
rTr

r TRrIRRrITRr ββ
β

β

α

∑ ∑∑
∞

= ===

+ ∆∆⊗




 −=

0,

~
*

~
*

1

*2

,pk
TrT

n

i
ii

pkr
r

r TTRRRrIRr ββ
β

β
 

Now for every , ,n TF h Dαω +∈ ∈  we have

                         ( ) ( )[ ]( ) keherRrRrRrRI nTnT ⊗⊗− ωαθθ ,,...,,..., *
11  

           ∑ ∑ ∑≤∈≤∈
=

+
++ ∆∆





 −= αββω βωαβ

β
,,

*
~

*

1

*2 ,,
nn FrFr TrT

n

i
ii

r khTTeeRRRrIr

using lemma (1-3-1) we have

( ) ( )* *

1 11
lim ,..., ,...,T n T nr

SOT rR rR R Rθ θ
→

− =    

 therefore the above computations imply  that 

( ) ( )[ ]( ) KeheRRRRI nTnT ⊗⊗− ωαθθ ,,...,,..., *
11   

                 * *

, ,
, ,

n n
T T r Tr F r F

R P R e e T T h kβ α ω βωβ β α+ +∈ ≤ ∈ ≤
= ∆ ∆∑ ∑ %%£

                 ( ) khTTkhTTeR TTrFr TrTr
n

,,,1 *

,

*
~ ∆∆=∆∆=∑ ≤∈+ αωω αω

For any +∈∈ nT FandDkh ωα,, . Summing up the above computation we deduce 

that ( ) ( ) **
11 ,...,,..., TTnTnT kkRRRRI =− θθ   which complete the proof.
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We  recall  that  the  spectral  radius  of  an  n-tuple  of  operators 

[ ]nXXX ,...,1=    is defined by 

  ( )
1

2
*lim

k

k
k

r X X Xα α
α→∞ =

= ∑

A  closer  look  at  the  proof  of  theorem  (1-3-2)  reveals  the  following 

factorization result. We should add that operator  *~ˆTXI −  invertible because 

( ) 1<Xr .

Corollary (1-3-3) [61]:

Let  [ ] ( )HBTTTT in ∈= ,,...,1  be  a  row  contraction  and  let  Tθ  be  its 

characteristic  function.  If  [ ] ( )KBXXXX in ∈= ,,...,1  is  a row contraction with 

spectral  radius  ( ) 1<Xr ,  then  ( ) ( ) ( ) 1* *
1 1

ˆ,..., ,...,
Tk D T n T n T

I X X X X I XTθ θ
−

⊗ − =∆ −%
%  

( ) ( ) 1
* *ˆ ˆ ˆ

T
I XX I TX

−
− − ∆%

% . Where  ],...,[ˆ
1 HH IXIXX n ⊗⊗=  notation as in  proof 

of theorem (1-3-2).

Theorem (1.3.3) [5]:

Let ( )T B H∈  be arrow counteraction, if  * *.T T T Tk k Iθθ + = , where Tθ  is the 

characteristic function of T  and Tk  is the corresponding Poisson kernel, then 

for *

*,
T

A T B= = %
% V  and 0C =  the operator 0

A B
S

A

 
=  

 
 commute with *S  if and 

only if B  commute with *A  and ,A B  are self-adjoint.

Proof:

If  
* * *

*

*0

A A A B B A
S S

A A

 +
=  

 
 and 

* * *
*

*0

AA AB BA
SS

AA

 +
=  

 
 

Equating,  then  * *S S SS=  if  and  only  if   * *A A AA=  is  normal  and 
* *A B BA= .
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Theorem (1-3-4) [61]: 

Let  t
nF£  be the complete free semigroup algebra generated by the free 

semigroup  t
nF  with generators  ng,...,g1  and natural element  0g any n-tuple 

1,..., nT T of  bounded operators  on a  Hilbert  space  H  gives  rise  to  a  Hilbert 

model over t
nF£  in the natural way ( )1,..., ,n nh f T T h f F h+= ∈ ∈£ H.f   we say 

that  H  is  a contractive  +
nF  model  if  ( )nTTT ,...,1=   is a row contraction 

which is equivalent to 2 2 ... 2
,n nh

+ ++ + ≤ ∈1 1 1 n 1 ng.h ... g h h h,...,h H  we say that H  

is  of  finite  ( ) ∞<∆= Trankrankifrank H .  The  curvature  invariant  and  Euler 

characteristic associated with an arbitrary row contraction T  were introduced 

and studied we recall ( ) ( )
1

lim
...

m
T

mm

trace I I
Cuv T

I n n

ϕ
−→∞

 − =
+ + +

 and  

( ) ( )[ ]
1...1

lim −∞→ +++
−=

m

m
T

m nn

IIrank
T

φχ  where Tφ  is the completely positive map associated 

with T  i.e.,  ( ) ∑
=

×=
n

i
ii TTX

T
1

*φ  using theorem (1-3-2) and some results we can 

show that the curvature and the Euler characteristic of arrow contraction  T  

can be expressed only in terms of the standard characteristic functions Tθ .

Theorem (1-3-5) [61]: 

Let  ( )nTTT ,...,1= ,  ( )HBTi ∈  contraction with rank ∞<∆T  and ( )TCur  

and ( )Tχ  denote its curvature and Euler characteristic respectively then 

( ) ( )[ ]
m

mTT

m
T n

Iptrace
rankTCurv

⊗−∆=
∞→

*

lim
θθ  and  ( ) ( )[ ]

1

*

...1
lim −

≤

∞→ +++
⊗−

=
m
mTT

m nn

IPIrank
T

θθχ

Where  ( )mm PrespP ≤.  in the orthogonal projection of full Fock space  ( )nHF 2  

onto the subspace of all homogenous polynomials of degree (resp-polynomials 

of degree m≤ ).  
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Proof:

Since ( )
( )*

lim
T T m

mm

trace K K p I
Curv T

n→∞

 ⊗ = . Using the factorization results 

of theorem(1-3-2) the first result follows 

( )
( )*

1
lim

1 ...

T m T

mm

rank K P I K
T

n n
χ ≤

−→∞

 ⊗ =
+ + +

                                                          (73)

 Since  ( )IPK mT ⊗≤
*   has  finite  rank  we  have 

( ) ( )[ ]IPkranrankIPrankK TmT ⊗=⊗ ≤≤
**     on the other hand ,since TK  is one- to- 

one  on  the  range  of ( )IPK mT ⊗≤
*  we  also  have 

( )[ ] ( )[ ]IPkKrankIPKrank TTmT ⊗=⊗ ≤≤
** . Hence using relation (73) and theorem 

(1-3-2) we complete the proof.

A constrained characteristic function is associated with any constrained 

row contraction.  For  pure  constrained  row contractions  we  show that  this 

characteristic function is a complete unitary invariant and provide a model in 

terms  of  it.  We  also  show  that  Arveson’s  curvature  invariant  and  Euler 

characteristic associated with a Hilbert model over ],..,[ 1 nZZC  generated by a 

commuting  row  contraction  T  can  be  expressed  only  in  terms  of  the 

constrained characteristic function T .

Let  T  be  a  wot-closed  two  –sided  ideal  of  the  non  commutative 

analytic Toeplitz algebra  ∞
nF  generated by a family of polynomials  JP  we 

define the constrained characteristic function associated with a J-constrained 

row  contraction  [ ] ( ),, HBTTTT in ∈= ,...,1  to  be  the  multi-analytic  operator 

(with  respect  to  the  constrained  shift  [ ],nBB ,...,1

( ) ,: *, TJTJnTJ DNDNWW ⊗→⊗,...,1θ

Defined by the formal Fourier representation  

       ( ) [ ]( )*,...,1

1

1

*

TNn

n

i
iiNTJN JTJ

IIWIWTWINTI ∆⊗⊗⊗




 ⊗−∆⊗+⊗−

−

=
⊗ ∑ HHH
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Taking into account that TN  a co-invariant subspace under nRR ,...,1  can see 

that  TJ ,θ  is the maximal J-constrained pieced  of the standard characteristic 

function  Tθ  of the row contraction T . More precisely we have

 ( ) ( ) andDNDNRR
TJTJnT *

*
1,..., ⊗≤⊗θ    

( ) ( )( )nTJTJnTDN WWDNRRP
TJ

,..,,.., 1,1 * θθ =⊗⊗  

(74)

Let us remark that the above definition of the constrained characteristic 

function makes sense when J  is an arbitrary wot-closed two sided ideal of 

∞
nF  and  [ ]nTTT ,...,1=  is an arbitrary c.n.c constrained row contraction.

Theorem (1-3-6) [61]:

Let ∞≠ nFJ   be wot-closed two seded ideal of ∞
nF generated by a family 

of polynomials JP  .

[ ] ( ),, HBTTTT in ∈= ,...,1 a J-constrained row contraction   then             

*
, , ,TNJ D J T J T J TI K K⊗ − =e                                                                          (75)

where  TJ ,θ  is the constrained characteristic function of  T  and TJK ,  is the 

corresponding constrained Poisson Kernel 

Proof:

The  constrained  Poisson  Kernel  associated  with  T  is 

HH TTJK ∆⊗→TN,  HH T∆⊗→JTJ NK :,   defined 

( ), JJ T N TK P I K∆= ⊗
T H                                                                             (76)

Where TK  is standard Poisson Kernel of T . As well as HT∆⊗⊆ TT NK  using 

theorem (1-3-2) and taking the compression of relation (69) to the subspace

( ) TnTJ DHFDN ⊗⊂⊗ 2  we obtain 

( ) ( ) TJTTDNTJnTnTDNDN DNKKPDNRRRRPI
TJTJTJ

⊗=⊗− ⊗⊗⊗ *,..,,.., 11 θθ  

taking into account relation (74) and (76) and that  niNRW Jii ,...,1,** ==  we 

refer  that  ( ) ( ) *
,,

*
,, TJTJnTJnTJDN KKWWWWI

TJ
=−⊗ ,...,,..., 11 θθ  as in the proof of 
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theorem  (1-3-5)  one  can  use  corollary  (1-3-3)  to  obtain  the  following 

constrained version of it.

Corollary (1-3-7) [61]:

        Let  ∞≠ nFJ   be closed sided ideal of  ∞
nF  generated by a family of 

polynomials  JP  and  let  [ ] ( ),, HBTTTT in ∈= ,...,1  be  a  J-constrained  row 

contraction. If  [ ] ( ), ,n iX X X B= ∈1,...,X k  is a J-constrained row contraction 

with spectral radius ( ) 1<Xr , then 

( ) ( ) ( ) ( )( )
TTnTJnTJDk XTIXXITXIXXXXI

T
~

1**1*
~

*
,,

ˆ~ˆ~~ˆ ∆−−−∆=−
−−

⊗ ,...,,..., 11 θθ  

where  [ ]HH IXI ⊗⊗= nXX ,...,1
ˆ  and the other notations are from the proof of 

theorem  (1-3-2).  Now  we  present  a  model  for  pure  constrained  row 

contraction in terms of characteristic function.  

Theorem (1-3-8) [61]:

Let  ∞≠ nFJ  be a wot-closed two-sided ideal of  ∞
nF  and  [ ] ,nT T T= 1,...,  

( ) ,iT B∈ H  be  a  pure J-constrained row contraction.  Then the constrained 

characteristic function  ( ) ( )TTnTJ DDBWWW ,*, ⊗∈ ,...,1θ    is a partial isometry 

and T  is unitarily equivalent to the row contraction  

 ( ) ( ) ],...,[ ,,1, TJDnHTjDH HIBPHIBP
TTTj

⊗⊗  

(77)

where TjHP ,   is the orthogonal projection of TJ DN ⊗   on the Hilbert space  

( ) ( )*,, TJTJTJTj DNDNH ⊗⊗= θθ  

Theorem (1-3-9) [61]: 

Let ∞≠ nFJ  be a wot-closed two-sided ideal of ∞
nF  and let [ ] ,nT T T= 1,...,  

( ) [ ] ( ),i n iT B T T T T B′ ′ ′ ′∈ = ∈H H1,...,  be  two  J-constrained  pure  contractions 

then  T   and  T ′  are  unitarily  equivalent  if  and  only  if  their  constrained 

characteristic function  TJ ,θ  and TJ ′,θ coincide. 

Proof:
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Assume that  T  and T ′  are unitarily equivalent  HH ′→:U  let  T be a 

unitary operator such that  UTUT ii ′= *  for any  ni ,...,1=  simple computation 

reveal that UU TT ′∆=∆  and ( ) ( )UU n
iTT

n
i 11 ** =′= ⊗∆=∆⊗  define the unitary operator 

T  and  T ′  by setting  TTT DDDUT ′→= :   and  ( ) **1 TT

n
i DDUr ′= →⊗=′ Taking 

into account the definition of the constrained  characteristic function  it is easy 

to see that  

( ) ( )TITI
JJ NTJTJN ′⊗=⊗ ′,, θθ

Conversely assume that  the characteristic function of  T  and  T ′  coincide. 

According to the remarks preceding the theorem there exist unitary operators

TT DDr ′→:  and  **:* TT
DDr ′→    such that the following diagram 

  

,
*

,
*

*

j T

J J

j T

j j TT

N N

j j TT

N N

I I

N N

τ τ
′

Φ

Φ
′′

⊗ → ⊗

↓ ⊗ ↓ ⊗

⊗ → ⊗

D D

D D

 Is commutative i.e.,  

( ) ( )*,,, rIrI
JJ NTJTJTJN ⊗==⊗ ′′ φφφ  

(78)

Hence we deduce that ( ) TjTjTjN HHHrI
J ′→⊗=Γ ,,, :  is a unitary operator where 

TjH ,  and  TjH ′,  are  the  model  spaces  for  T  and  T ′  respectively.  Since 

( )( ) ( )( ) niIBTITIIB
TJJT DiNNDi ,...,1,**** =⊗⊗=⊗⊗
′  and  ( )TjTj HrespH ′,, .  is  a co-

invariant subspace under ( ) niIBresppIB
TT DiDi ,...,1,. =⊗⊗
′   we deduce that 

( )( ) ( )( )( ) niHTIIBHIB TJNDiTJDi JTT
,...,1,,

****
,

* =⊗⊗Γ=Γ⊗ ′′

Hence we obtain    
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( )( ) ( )( ) niHIBPHIBP TJDiHTJDiH TTJTTJ
,...,1,,,

*

,,
=Γ⊗=⊗Γ ′′′

Now  using  theorem  (1-3-7)  we  conclude  that  T  and  T ′  are  unitary 

equivalent. The proof is complete. 

Theorem (1-3-10) [61]:

Let J  be a WOT-closed two- sided ideal of  ∞
nF  such that JN∈1  and 

condition  { }* *
1: , ( ,..., )n nspan F c B Bα αβ β αβ +∈ =  is  satisfied.  If JNM ∈  is  an 

invariant subspace under  nBB ,...,1  and  [ ] niMBPTTTT iMin ,...1,, === ⊥
⊥,...,1  

then  ( )*, TTTJ DNM ⊗=θ  where  TJ ,θ  is the constrained characteristic function 

of  T  the  reproducing  Kernel  Hilbert  space  with  reproducing  Kernel 

n n nK B B× →£  defined by 

( ) 1
, , ,

1 ,n nn
K z w z w B

z w
= ∈

− £  

The  algebra  ∞∞=∞

ss FFn PW was  proved  to  be  the  *w -closed  algebra 

generated by the operators  niBi ,...,1, =  and the identity. Moreover  ∞
nW  can 

be identified with the algebra of all multiplies of 2H  under this identification 

the  creation  operator  nBB ,...,1  become  the  multiplication  operator 

nzz MM ,...,
1  by  the  coordinate  functions  nzz ,...,1  of  n

−£ .  Let 

[ ] ( ),, HBTTTT in ∈= ,...,1 be  a  constrained  row  contraction  i.e., 

njiTTTT ijji ,...,1,, ==  under  the  above-mentioned  identifications  the 

constrained  characteristic  function  of  T  the  multiplier  (multiplication 

operator)  

TTJ DHDHT
C

⊗→⊗ 22
*:,θ

defined by the operator. Valued analytic function on the open unit ball            

( ) ( )
1

2 2 2
1,..., : ... 1n n nB z z z z z z

  = = ∈ = + + < 
  

£

given by

                  ( ) ( ) [ ] nTnnnTTj BzIzIzTzTzITz
C

∈∆−−−∆+−=
−

,,...,... *1

1**
11 HHθ

35



We  going  to  use  the  same  notation  for  the  multiplication  operator 

( )TTT DDHBM
JC

*
,

2 ⊗∈θ  and  its  symbol TJC
θ  which  is  a  ( )TT

DDB *  valued 

bounded analytic function in nB . All the results of this part can be written in 

this  commutative  setting.  Using theorem (1-3-5)  and corollary (1-3-6)  and 

some result we show that Euler characteristic associated with a commutative 

row  contraction  T  with  rank  ∞<∆T  can  be  expressed  in  terms  of  the 

constrained characteristic function TJC
θ .

Theorem (1-3-11) [61]:

Let  [ ] ( ),, HBTTTT in ∈= ,...,1  be  a  commutative  row contraction  with 

rank  ∞<∆T and  let  ( )TK  and  ( )Tχ denote  Arveson’s  curvature  and  Euler 

characteristic respectively. 

Then         

( ) ( ) ( ) ( )*

, ,
1

lim
C C

n
J T J TB r

K T trace I r r dθ ζ θ ζ ζ
∂ →

 = − ∂ ∫      

                        ( )
( )*

, ,
1 lim

C C TJ T J T m D

T mm

trace Q I
rank n

n

θ θ
→∞

 ⊗ = ∆ − −     

where  mQ  is  the  projection  of  2H  onto  the  subspace  of   homogeneous 

polynomials  of degree m  and               

( ) ( )
( ) ( )*

, ,1
! lim 1

C C TJ T J T m D

T nm

rank Q I
T n n

m

θ θ
χ

≤

→∞

 − ⊗ = ∆ − −

Where  mQ is the projection of  2H  onto the subspace of all polynomials of 

degree m≤  .

Proof:

Using the factorization result of corollary (1-3-6) in our particular case 

we obtain                      

( ) ( )( )*
,,1 zz TJTJ CC

θθ− ( ) ( ) ( ) TnnnT zTzTzTzIz ∆−−−−−−∆−= −− 1
11

1**
11

2
...1...1
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for any  nBz∈  the first formula follows from the definition of the curvature 

and  the  above-mentioned  factorization  for  the  constrained    characteristic 

function of  T . Using (60) and we have. 

( ) ( )
( ) *

11
1 lim

m T T

nr

trace P I K K
K T n

m −→

 ⊗ = −                            

Where TK  is the Poisson on Kernel of T  and mP  is the orthogonal projection 

of  ( )nHF 2  onto the subspace of all homogeneous polynomials of degree m . 

Since  T  is a commutative row contraction  eJ -constrained we have range 

TsT DCFK ⊗2  and  the  constrained  Poisson  Kernel  satisfies  the  equation 

( ) TFTJ KIPK
sC

⊗= 2,   where   2
sF   is  the  symmetric  Fock  space.  Using  the 

standard properties. For the trace and above relation we deduce that      

( ) ( )
( )*

11
1 lim C CJ T J T m

nr

trace K K Q I
K T n

m −→

 ⊗ = −                                              (79)

 where  2
2 smFm FPPQ
s

=  is  the  projection  of  2
sF  onto  the  subspace  of 

homogenous polynomials of degree. According to theorem (1-3-5) we have

, , , ,

* *

C T C T C T C TJ J J JI K Kθ θ− =                                                                          (80)

taking into account relation (79),(80) we deduce the second formula for the 

curvature.   Here  of  course  we used  Arveson’s  identification  of  symmetric 

Fock  space  2
sF  with  his  space  2H  and  Arveson’s  showed  that  his  Euler 

characteristic satisfies the equation  ( )
( )11 1

!lim
m
T

nm

rank
T n

m

ϕ
χ

+

→∞

 − = we here  Tφ  

is the completely positive map associated with T  we get             

( )
( )*

!lim
T m T

nm

rank K P I K
T n

m
χ ≤

→∞

 ⊗ =                                                       (81)

 Where  mP≤ is  the orthogonal  projection of  ( )ns HF 2  on the subspace  of  all 

polynomials  of  degree  m≤ .  Using  again  that  range  TsT DFK ⊗⊂ 2  and  the 
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contained Poisson Kernel satisfies the equation ( ) TFTJ KIPK
sC
⊗= 2,  we deduce 

that   

                ( )[ ] ( )( )[ ]TFmTTmT KIPIPKrankKIPKrank
s
⊗⊕=⊕ ≤≤ 2

**  

                                              ( )( )[ ]TJFmT Cs
KIPIQKrank ,

*
2 ⊗⊕= ≤

                                              ( )( )[ ]IPIQKrank
sC FmTJ ⊗⊕= ≤ 2

*
,

                                              ( )[ ]IQKKrank mTJTJ CC
⊕= ≤

*
,,

Where  mQ≤  is the projection of 2
sF  onto the subspace of all polynomials of 

degree  m≤  the last  two equalities  hold since   the operator  ( )IQK mTJC
⊕≤

*
,  

has finite rank and TJC
K ,  is one -to-one on the range of ( )IQK mTJC

⊕≤
*

, .  Now 

using relation (81) we obtain the last formula of the theorem. The proof is 

complete. 

Let [ ] ( )HBTTT in ∈,,...,1   be a pure row contraction and let J  be a wot-

closed two-sided ideal of  ∞
nF  such that  [ ] 0,...,1 =nTTϕ  for any

[ ] JSS n ∈,...,1ϕ  

(82)

where  [ ]nTT ,...,1ϕ  is  defined  using  the  ∞
nF  functional  calculus  for  row 

contraction is unitary equivalent to the compression of kkk IBIB ⊗⊗ ,...,1  to a 

co-invariant subspace ∈   under each operator niIB ki ,...,1, =⊗   therefore we 

have the  ( ) , 1,...,i i kT P B I i n= ∈ ⊗ =  following result  is a commutative lifting 

theorem for pure constrained row contraction.

Theorem (1-3-12) [61]:

Let  ∞≠ nFJ be a WOT-closed two- sided ideal of the non commutative 

analytic  Toeplitz  algebra  ∞
nF ,  and  [ ]nBB ,...,1 and  [ ]nWW ,...,1 be  the 

corresponding constrained shifts acting on JN .  For each ,2,1=j  let A be a 
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Hilbert space and j j jN Kε ⊆ ⊗  be a co-invariant subspace under each operator 

niIB ki ,...,1, =⊗   if 1 2:X ε ε→  is a bounded such operator such that 

                         ( ) ( )
1 1 1 2 2 2

, 1,...,i k i kX P B I P B I X i nε ε ε ε ⊗ = ⊗ = 

then there exists

                              ( ) ( ) ( )kkBWWWWWG nn ,,...,,..., 111 ⊗∈  

(83)    such that    

                             ( ) *
2

*
1,..., XWWG n =∈ and  ( ) XWWG n =,...,1   

 In particular if  jj kG⊗=∈  where  G  is a co-invariant subspace under each 

operator niBi ,...,1, =   then the above implication becomes an equivalence.

Corollary (1-3-13) [61]:                          

Let  ∞≠ nFJ  be a wot-closed two- sided ideal of the non commutative 

analytic  Toeplitz  algebra  ∞
nF  and  let  nBB ,...,1  and  nWW ,...,1  be  the 

corresponding constrained shift acting on  JN . If  K  is a Hilbert space and 

JNG ⊆  is an invariant subspace under each operator  *
nB  and *

nW  , ni ,...,1=  

then  ( )[ ]{ } ( )[ ] ( )KBGWWWPIGBBWP nGknG ⊗=′⊗ ,...,,..., 11  we  remark  that 

theorem (1-3-10) can be extended to the following more general setting. The 

proof follows exactly the same lines so we shall omit it. For each  ,2,1=j  let 

jJ  be  a  wot-closed  two-  sided  ideal  of  ∞
nF  and  let  ( ) ( )[ ]j

n
J BB ,...,1  be  the 

corresponding constrained shift acting on iJ
N . Let ij J jN kε ⊆ ⊗  be an invariant 

subspace under each operator ( )
jk

j
i IB ⊗

*

, ni ,...,1=  where jK  A Hilbert space. 

If  1 2:X ε ε→  is  a  bounded  operator  such  that  ( )( )1 1

1

ii kXP B Iε ε⊗ = 

( )( )2 2 2

2
i kXP B Iε ε⊗  , 1,....,X i n=  then there exists  [ ] ( )21,

2
kkBNRPG

ij JnN ⊗∈ ∞  such 

that  2 1
P G Xε ε =   and XG = .

Theorem (1-3-14) [61]:
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Let J  be a wot-closed two- sided ideal of ∞
nF  and let nBB ,...,1  be the 

corresponding constrained shift acting on  JN  . Let  kλλ,...,1  be  k  distinct 

point in the zero set ( ){ }JfanyforfBz nJ ∈=∈= 0: λλ  and let ( )kBAA k ∈,...,1  then 

there exists  ( ) ( ) ( )kBBBWBB mk ⊗∈ ,...,,..., 11φ  such that  ( ) 1,...,1 ≤nBBφ  and 

( ) kjA jj ,...,1, ==λφ  if and only if the operator matrix 

kk
ji

jik

I

AAI

×












−
−

λλ ,

*

 

(84)

is positive semi definite 

Proof:

Let  ( )
1
, ...., , 1,...,

n

n
j j j j kλ λ λ= ∈ =£  and  denote  jimjijij λλλλα ,....,21=  if 

+∈= nimii F.ggg ..21α  and  0gjλ define  kjeZ
n

j

F
j ,...,2,1, == ∑

+∈
α

α
αλ λ  notice  that  for 

any  JzJf ∈∈ λ,   and  +∈ nFβα1  we have  ( ) ( ) ( ) 0,1,...,1 == βαλβα λλλfzSSSfIS n  

which  implies  JNz ∈λ  for  any  Jz∈λ .  Note  also  that  since  Jii NSB ** = for

ni ,...,1=  we  have   ij jizizB λλ λ=*  for  ni ,...,1=  and  kj ,...,1= .  Define  the 

subspace  { }kjzSpanM i ,...,1: == λ ,  and the operators  ( )kMBX i ⊗∈  by setting 

kMiM IBPX ⊗=   , ni ,...,1= . Since  k
zz λλ ,...,

1 are linearly independent we can 

define an operator ( )kMBT ⊗∈  by setting ( ) hAZhZT jii

** ⊗=⊗ λλ   for any kh∈  

and ( )kj ,...,1=  notice that TXTX ii =  for ni ,...,1=  can apply theorem (1-3-12) 

and find ( ) ∈nWW ,...,1φ  ( ) ( )kBWWW n ⊗,...,1  such that 

                                  ( ) ( ) **
1

*
1 ,...,,..., TMWWWW nn =φφ  

(85)

and ( ) TWW n =,...,1φ  one can prove that ( ) , 1,...,j jA j kϕ λ = =  if and only if 

(85)  holds.  Moreover  ( ) 1,...,1 ≤nWWφ  if  and  only  if  MITT ≤*  which  is 
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equivalent to the fact that the operator matrix (84) is positive semi definite. 

This completes the proof. 
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