Chapter 1
Sum Rules for Jacobi Matrices and Their

Applications to Spectral Theory

We show and prove a bound of a Jacobi matrix. And we give complete
description for the point and absolutely continuous spectrum, while for the
singular continuous spectrum additional assumptions are needed, we prove a
characterization of a characteristic function of a row contraction operator and
verify its defect operator. We also prove a commutability of an operator of this
row contraction.

Section (1-1): Spectral Form for Jacobi Matrices:

The case of some rules and were efficiently used to relate properties of
elements of a Jacobi matrix of certain class with its special properties. For
instance spectral data of Jacobi matrices being a Hilbert space-Schmeidt
perturbation of the free Jacobi matrix were characterization [42,101,135] and

we suggest a modification of the method that permits us to work with
higher order sum rules. We obtain sufficient conditions for a Jacobi matrix to
satisfy certain constraints on its spectral measure. We consider a Jacobi matrix

[129,124].

Where <a«=f{a}l.aw and bv={b}l.b6C , We assume that ' is a compact

perturbation of the free Jacobi matrix



b 1

A scalar spectral measure > is defined by the formula

((J—Z)eo,eo)=jdx5£z) with -= \ , the absolutely continuous spectrum

a0) of - fills in [-2, 2]and the discrete spectrum consist of two sequences

+

wl with properties ~== , %-2 and =2 x —2
Let & =a.—-.} for a given * and +~ we construct a sequence @ by
formula ¥(4), =4 —o-9.. where <—— and 1 isa sequence of units

Theorem (1-1-1) [87]:

Let 7=s(a») be a Jacobi matrix described above. If

(i) a—,bCL"", 8,8 I’
(i) w(a) L%k =3, fgn +1)/ 2E (2)
-1
Then (i") Iz2log5'(x).(4—x2) 2dx >—oo
+ m+1/2
(ii") > (x—2 —4) <oo 3)

When ~= the theorem gives the fact of theorem (1-1-1)
Proof:

Define <« as (V)= (3 =2.(I+.(3

:%T 210g6%X).(4—x2)m_;dx+szm(x;—r) .

We have to show that «) == We put o =lla)] and d =lla)} | where
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Define sequences ®~-%: in the same way (of course, with replaced by

).

Let /~=’@..t.)  As we readily see, 4~ —%bn —0. ai. &i —0 _ apnd

vi(ay) —0 in corresponding norms, as ~ — by the Lemma

(1-1-4) below, we have for ~ =~ -

“'Um (J) —, (JN)‘ =Y, (C’I'v"bN') SCl(Ha]'V, _1Hm+1 +HbN'Hm+1
+H50N'H2 +H5bN'H2 +ZHyk (dN')H1)

or efr(Ty) —¢f7(J),as N o<

on the other hand (/~» —=)" —(7 —2)" forz¢ \R| and consequently < —=

weakly = (SF=imyincaz (=) gnd ' e (@) ==(3 we bound the latter

quantity |#4=(/) =316.()  —=c.(a —; T +wl22)  with some constant © .

Summing up we obtain

A S =<lim,, sup H X ) =lim, supefJ,) =lLim ¢/(J ) =¢/fJ)
The proof is complete. It is easy to give simple conditions sufficient for
w(@or for the instance put (A(a)), =a. +.+a. (k1) a then
relations @ —ermm.a@ca* gpd A« Akm)=(m+1)(m+2-)  jmply that

v(a)oL | In particular we have the following corollary.
Corollary (1-1-2) [87]:
Theorem (1-1-1) holds if conditions (i), (ii) are replaced with



2(k,m - _ — |]n+1|:
Acla) Er2tem, 2G> —6n > =~ where k=47, F we observe that

relations (i) and (ii) are trivially true in the case of discrete Schrodinger
operator i.e., when ~—¢» |
Corollary (1-1-3) [87]:

Then inequalities @)anaG)  let hold » —e» | If eca~ | acr [ the
corollary is still true if »0r | m being even. The proof is a sum rule of a
special type. First we obtain it assuming rank ¢ —.)=<= _ Applying methods

we see that

iﬁ}ogﬁ.@ —XZ)m% dx + szm (in) =, (7)

Where «#()=#.» and Gm(x):(—l)mHCO(x2—4)m+%+o(x2—4)m+g with ). R\’ 2,2

- being a positive constant. where

w,(J) =tr %W(J% _Jgk)_(z(r;m_)ll)!ulogAE (4)

- 22k+1k C

m!!

Where A=dgiasia} and Ca =(m—ma - Notation * is used for “even” or
“odd” factorials.
Lemma (1-1-4) [5]:

Let »=—«» we have

] Hm+1)/25 C
. (J)[=c et el 0], ol + S | % (a) HI:& (5)

Where ¢ depends on ° only. Above, norms | refer to the standard ~-

space norms. We begin with considering expressions tr *-/) a rising in
(4). Defining v = —. =@ —=») we have

072k g2k fy 2K i vyip
= J %':trz - H;HVJO VI

we prove the lemma in steps.



Proof:

First we bounded summands corresponding to P=m2+ Lm in [87]. We

get |0 ) =vrr. @), =lF G- vl and for these »
Vol =l v, = (@ —n s -l )

(6)
With the constant depending on ' . Similarly | <|=c,la =5 | let

» === now. As we already mentioned in [134]

ve zpz(sipp,j(a’b) +Dp; (a’b)gj)

It is easy to show by induction that the polynomials #-¢-»> are particularly

simple. Namely 7.2 —=w.-<w. yields that

(2m —) 1

v E () =(0)"

trv>rPJg

o,p

—(—)” (2m —)n

2p(2m) " tr(Pp,p(a, P) +P,,,,,(a,b)p)

—() Zr U S

2p(2m)n

Since «v’7..=o for -=-—- _ Hence tr%"Fp(JoH(—l)"ﬂMa"E

b (2m —1) 11 .
=(—1) (Z;Zng,, > —aa..-F -  and we obtain that

aVOE, (1)) +(—1)"" (2m —1) 1

N T P
2p(2m)!!a

=Cu|y, (a)], (7)

Where < dependson ~~ andsequences (4 are defined in [134]

Observe that %(a)=0 when -r— .Furthermore we have for -— that

Sl —aa.) =5 Slat 2aa., +at.)

=1 o —a,
— T i
2 J

1
) =Ll



So the left hand-side of (7) for -= can be estimated by <-lI<=i:- It is also

clear that inclusion and &=+ give that %(a)© for »=-=—= | Indeed

,
wehave & —aoy..a,, =Sa" (a—a,. ), wy-m
=

The terms in the latter sum look like &i)-au,yle—a,)) for some

i =G—i.) . QObviously e~ =a—a, =0atx*  Applying the Holder

. . P 1 .
inequality D e = q?a}’fk E with a, =Hex),| a, ==(p —) for
J

1
;== — and a,, =‘(C¥—O§p )k‘ 4, =5 We get that
| e —c=ays- - @, =D)L HaED

Which is finite for ~=-=—= . Thus gathering the above argument which is
complete( see [134] )we complete the proof of the lemma

Lemma (1-1-5) [87]:

Let =%.-—-i.) and Zis:" then

(R RTN il

P by

m,p;
+> AV LI B [V T]C,

Where  » =p..p..p.).r <..L...)  agnd  ~-#-< are some bounded
operators
Lemma (1-1-6) [87]
Let >i=2k=P wehave [r(vi vuy —vesi=)=c.(a|. +e|.)
With ¢ depending on ™' only. The lemma exactly bounded ,we may

assume that operators ' and ' to commute we estimating ()



(2m-1) 1

Wi (1) = BB v, (1) =5 Mo 1+ ®

Where é&t=diag{a,} =A — gnd

m

FP(JO)==K; ]—C( ) Eyeit OF /A o
k /2

22k+1

Here ¢ is a usual binomial coefficient, observe that for ~=-— we have

er @ P, (00)) =E, U V7| oy =. (la 107 =2l )

Where - is the norm in the class of nuclear operators, hence it remains to
bound the first m terms in (8) we have

_1) pH

log(l1+a&n) = Z( a+o(8’r2’"“)

Set - to be a symmetric matrix with 1’s on p-th auxiliary diagonals and o’s
elsewhere the following lemma holds.
Lemma (1-1-7) [87]:

Wehave £ () =(-r 2oty

Combining this with explicit form of » and the series expansion for

st +2> we get the required bound (7).
Section (1-2): Spectral Properties of Self-adjoint Extensions

Let A be a closed symmetric operator on a separable Hilbert space

If A has equal deficiency indices =4 =dim (heran(a=ir)) _then A has a

lot of self-adjoint extensions. These self-adjoint extensions can be labeled by

the so-called Weyl function ~© [82, 83, 84]. The generalization is based on
concept of a boundary triple ™=H.r..ri}  for + being an abstract
generalization of the Green’s identity. Here - is a separable Hilbert space
with dim (H)=n.(4) and * and " are linear mapping from dom “ to

so that Green’s identity is satisfied [108,119].



The problem is the following. Let ~© be the Weyl function of a
certain self-adjoint extensions * of * introducing the associated scalar

Weyl function .0 =(On.n).nm  jg jt possible to localize the different

spectral subsets of * knowing the boundary values M.(x+io).xii of the

associated scalar Weyl function. Let © be separable Hilbert space. Recall that

an operator function - with values in ® is said to be a Hirglotz or

Nevanlina function or R-function if holomorphic in  and for every ¢

(F(2)-F(2))

2i

the operator +© in - is dissipative i.e., sm(F(z))= >0 . Inthe

following we prefer the notion R-function. The class of R—functions with
values in * is denoted by * .If fO=(r.) then there exist bounded self-

adjoint operator L in K, a bounded non-negative operator <=  with

Rl[keH =0 gych that

1

1
F(z) =C, +C,z +R> (I, +zL)(L —z) " R?|H, z[If, 9)

Denoting by =0 the spectral measure of the self-adjoint operator one

immediately obtains from (9) the representation

t

F(z) =C, +c1z+i§i—z—l+t2%2(t),zﬂ£+ (10)

F

Where 2" is an operator valued Borel measure on * given by

1 1

dFZ(t) =(1-¢*)R?dE, ()R? , tOi (11)

the measure ' is self-adjoint and obeys

—“+oo

S SO EiH]

(12)



In contrast to spectral measures of self-adjoint operators it is not necessary

true that ran =2 is orthogonal to ran (3¢) for adjoint Borel sets  and

However the measure 2! is uniquely determined by the R-function .

The integral in (10) is understood in the strong sense in the following 2V is

called the spectral measure of - defined by

[ S/ (13)

The distribution function ' is strongly left continuous and satisfies the

condition
zt) zzt)* s 25) szt) ,—oo=5 =t =<
The distribution function ' is called the spectral function of v .

We note that the spectral function ' can be obtained by the Stieltjes

transformation:

t

%Z(HO)"”Z(I)—%Z(S+0)+Z(s) = w—lim [Sm(F(x +iy)jdx , ts0Oi (14)

y-011)
Where it is used that the spectral function is strongly left continuous.

A will always denote a closed symmetric operator with equal deficiency
indices -(4)=n_(A) [97,140,147,148].

We can assume that A is simple. This means that A has no self-adjoint parts.
Definition (1-2-1) [96]:

A triple ™=(H.r..r:} consisting of an auxiliary Hilbert space ‘ and linear

mapping F:dom(A’) —H.,i=01 jg called a boundary triple for the adjoint
9



operator ~ * =+ is called a boundary triple for the adjoint operator «

of if

(i)  The second Green’s formula takes place

(A r)r.A9) < r.79) (I 7.159). f.gCHom(A") (15)

(i)  The mapping r={ro.r}:dom(a”) —H =1 jgsurjective
Definition (1-2-2) [96]:
(i) A closed linear relation in * is closed subspace  of == .
(ii) The closed linear relation  is symmetric if (9.7%)—(r.2.) =0 forall
{r.a}ir.. e} e
(iii) The closed linear relation  is self-adjoint if it is maximal symmetric.
Definition (1-2-3) [96]:
Let {+.%.w} be a boundary triple for
(i) for every self-adjoint relation ~ in * we put

D Caom(A™): Ior.ITf CEAC=A"|D (16)

(ii)  In particular we set A =A%.i =0.1 if&.i =01
(i) If === where B is an operator on * ,then we set a"a
Proposition (1-2-4) [96]:

Let {#.-.ri} be a boundary triple for + then for every self-adjoint
relation  in * the operator + given by definition (1-2-3) is self-adjoint
extension of ' the mapping v+ from the set of self-adjoint extensions in

onto the set =« of self-adjoint extensions of ' is bijective. It is well
known that Weyl function are an important tool in the direct and inverse
spectral theory of singular Sturm-Liouville operators.
Definition (1-2-5) [96]:

Let {#r.7} be a boundary triple for the operator « . The Weyl function

of A corresponding to the boundary triple -7} is the unique mapping

10



MQ): £4) —H  satisfying
f, =M f,. f, CN,, =z )kbA,) 17)
Where ~. =xer(a” —1) above implicit definition of the Weyl function is correct
and the Weyl function ~© is a R-function obeying
o T sm(M (i)))
Definition (1-2-6)[96]:

A closed linear relation in * is called boundedly invertible if the
inverse relation < —teryrm=+:{r.oc js the graph of a bounded operator
defined on * . we say = belong to the resolvent set < if the closed
linear relation <= =f{r.eo—=}:{r.ad== js boundedly invertible.

Proposition (1-2-7) [96]:

Let A be a simple closed densely defined symmetric operator in h.

Suppose that .7} is a boundary triple for « ~© is the corresponding
Weyl function , a self-adjoint relation in * and 2944) . Then the
following holds.

(i) 2o« if and only if oo |

(i) 20a(4’) if and only if oDF(e—M(A).z=p.c

If A is a simple symmetric operator then the Weyl function o
determines the pair {+4} up to unitary equivalence. We shall often say that
~0 is the Weyl function of the pair {~~} or simply of * . We can prove
w() and () withvaluesin * and ™M are connected via

M. (o) =ML (K D (18)

Where »=p"ciH.l  and «~i+..H.d  js boundedly invertible. With each

boundary triple we can associate a so-called  -field = (.) corresponding to

is defined by
Az)=(r,|N,) " :H =N, .,z O5(A,) (19)

11



One can easily check that

Kz) (A —20) (A —2)7 MKz) s 220 TIAA) (20)
And consequently ' isa  -field. The = -field and the Weyl function v
are related by

M (2) =M (2,) =z —2,) Mz) Hz). 2.z CIHA) (21)
The relation (21) means the ~© isa -function of a pair {44} Further we
note that if A is simple then ~..z—<a) is generating with respect to *

too .

Let  be a Borel measure on . A support of is a set ° such that

#i\s)=0 we note that -+ implies that ' is a support too. Measures
and ' on ' are called orthogonal if some of their supports are disjoint. The
topological support <« of  is the smallest closed set which is a support of

.According to the Lebesgue-Jordan\decomposition #<=<rss 2 =8 +=<
. Where <<<s-<« and are the corresponding singular pure point, singular
continuous and absolutely continuous measures of  respectively. We set

S: (43 =s(es). T =s.pp.sc.ac the set =.(xs.(xs.Cxs.>  gre closed and
called singular, pure point, singular continuous and absolutely continuous
supports of , we denote that the closed supports s« | s.(>s.(>  and

s are not generally mutually disjoint to obtain mutually disjoint supports

we introduce the following sets .

SO'(,L) :{t i :d/_(t)dt existsand d/_(t) :o<} (22)

S;F(M :{tlzli :/J({t})iO} (23)

SL(1) =0 :due)d(c) exists d’;(t) —coand p4(t) =0F (24)
| t C

Si (1) =@Di :%exists and 0 <d g4(t) / dt <00E (25)

12



Where the distribution function # is similar to (13) defined by it turns out
that. Since the sets siW | = ==--== are of Lebesgue measure zero and
mutually disjoint we find that for any Borel set ~= one has

Hx s () =14 (X). T =s. pp.sc,ac (26)
The sets  sid  sué | sid - and  s.@ singular pure point ,singular
continuous and absolutely continuous supports of  respectively. We note

that

sn(3=, (A and SA(W S (Y Os(y) | T==wcoe (27)

In general it is not possible to replace inclusion by equalities, let now >V be

a measure with values in * the measure =¥ admit a Lebesque- Jordan
decomposition >=>"->>->"+> .As above the notation
5.5=5357.5, >5=s>5".5.. Z=S(Z ) and Suc(z )=S(Zaf )

stand for the singular pure point , singular continuous and absolutely. We get

s, (> )=z }: S({8) =0 (28)
we have s.(3X)=s.(3>) and 5.(Z)=s.(=) with each operator-valued

measure >V we can associate a scalar measure >,() =(S0h.h).hrCH | Ip

the following we are interested in the problem whether the spectral properties

of the operator valued measure =Y can be characterized by a family of

scalar measures. To this end let z={n},,. 1=~ =+ be atotal setin ' with

we associate the family >, {}i~. of scalar measures. Let us introduce the

following sets.

s/(>7)=csi(3, ) (29)
sw(>=7) =055 (> ) (30)
si(>7)=su(> )1sn () (31)

13



si(= 9 =rtusi (>, )1si(>) (32)
Lemma (1-2-8) [96]:

Let * be a separable Hilbert space and 7 ={n.}...1=n~=+=< be a total

set in * .Then the sets ! (ZT),SLP(ZT)’SS'C(ZT) and 54(2’) are

singular ,pure point ,singular continuous and absolutely continuous supports of

>0 respectively i.e.,
Z()(ms;( z T)) =ZT(M, T =s, pp, sc,ac (33)
For any Borel set ~= . In particular the following relations hold.

S, > S0 ( > T) and

SP(Z)I:IS;(ZT) DS(Z),T:S,SC,GC (34)

Proof:
By the Lebesgue-Jordan decomposition one easily gets that for each

v We have

( Z(,\ﬁh, h) ZZ,T()& , T =s, pp, Sc,ac (35)

For any Borel set ~+ where >..0) arises from the Lebesgue-Jordan

decomposition of the scalar measure 3.l .Let - . Since mes S;(Zr) =0
We get

(Sfxosi(z 7)) nn) =5 (xosi(Z ) =5 (xosi(=9)) @36)
Forany ™% using (35),(36) and

>, (x0si(>Z9)) =3 (xnsi(Z 1) st )

=>. (xosi(= 7)) =5, (% (37)

14



We find (Z(XHSQ(ZT))hk,hk)=§(X)hk,hk% for any nor . Since  is

total we finally obtain Z(X ns; (ZT)) =>(x) for any Borel set o

Similarly we prove the statements for « ===«

Let x0s,> 7 . Then there is Ao such that XDSLP[thJ . Hence
>, () =(=(n.n)=0  which yields =tp= or s(=) | e,

su(>.7)08,(3 ] conversely if xts.(=) then there is a = such that
>@h=0  If this is not the case then for each " one has
S H) S n)=o Since s total this yields
(SUDh. h) =S2() —o

For each "+ Contrary to the assumption. however, if there is a *™ such
that ° =.@D=0  then x0s,(37).tes,(3 )08, 37 hence S, (3)=s;,>7

Further from (33) we get

ST(Z ) I:IS}(Z T) , T =s, pp,Sc,ac

Taking (27) into account we get Si(>, )0s(>, ). z=sscacse  for each

nor . Since  SI3, J9s(Z ) for each +  we get s(Y:  which

immediately proves (34). Taking (20) and (21) into account we obtain that

<= which leads to the representation.

M(z) =C, +Iﬁ_iz—1it2 +SalZ(t),sz (38)
Lemma (1-2-9) [96]:
Let A be a simple densely defined closed symmetric operator on the a

separable Hilbert space with  n.(a) =) | Further, let ™=[H.%.1] be a

15



boundary triple of « with Weyl function >v . If £.0 is the spectral
measure of A =kerX)m~)  and >V that of the integral representation

(38) of the Weyl function > . Then the measure #.) and =© are

equivalent. In particular one has &(4.) =a(X)

Theorem (1-2-10) [96]:

Let A be a simple densely defined closed symmetric operator on a

separable Hilbert space h with ~.()==(2 | Further let ™=H."..r.] be a
boundary triple of + with Weyl function ~o .
If = is the spectral measure of A = kerro(=xc) and >V that of

the integral representation (38) of the Weyl function ~© | then for each total

set
T={h}), . 1=N=+e in ' thesets S/(3.7).5,(>7).5.(37) and s.(Y7) .
Singular pure point, singular continuous, and absolutely continuous supports
of £.0 respectively, i.e. we have
E, (xnsi(> 7)) =E4 (%) (39)
For each Borel set ~= . In particular the relations < (A)=s,>7 and
&(A) I8! > 701X A,) . 7=s.sc,ac hold,

Proof:

Since by lemma (1-2-8) the sets Si(&7).7=s.pp.sc.ac gre supports of

>0 | one immediately gets from lemma (1-2-9) that the same sets are

supports of .0 of the same type, i.e., (39) holds . If *0s;,(>.7) then there
is at least one ~ —=--~ such that

(B4 ({23) Ai) B Ai) 1) =0
Hence ~==) conversely, if ~==) then due to the fact that il is

16



Generating for .00 then is at least one ~ —=---~ such that

(EAO ({ X}) V(l) h, y(z) hk) #=0

Hence *Us,Y¥7 which proves 3(A)=s,(>7) the relations & (A)0s/(3 1|0

AA,). r=s.sc.ac gre consequences of lemma (1-2-8) and lemma (1-2-9) .we

characterize the spectral properties of the operator-valued measure =9
using the boundary behavior of the Weyl-function ~© . A first step is to

develop a corresponding theory for scalar measure = which satisfies

M<—I—oo
1+¢2

(40)
Let us associate with the Poisson integral

B yd p(t)
V)= ‘;!’(t—x)Z vy

,z=x+iy O£,
(41)
Which defines a positive harmonic function in ‘' . Conversely it is well
known that each positive harmonic function v in ' admits the
representation Vi) == () with <= and v© of the form (40) and (41).
Below we summarize some well-known facts on positive harmonic function
Proposition (1-2-11) [96]:

Let be a positive Radan measure obeying (40) and let *© be a
positive harmonic function in z=x+yE. defined by (41). Then one has.

(i) for any -~ the 1mv(x—+o)=limv(x+y) exists and is finite, if and

only if symmetric derivative 2+

D, (x) =lim H(x +g)2::,u(x —g) (42)

Exists and is finite. In this case one has
V (x +io) =71,,(x) (43)

17



(i) if the symmetric derivative ~+4)  exists and is infinite the

v () == 3 z —=x

(iii) foreach = one has smG¢—=WE) ——=&H gs = =

(iv) v© converges to a finite constant as - —=~ , if and only if the
derivative d#t)dt exists at = and is finite.

The symbol -’ means that the limit lmV (x +re'?).x CR  exists uniformly

in eds7—< foreach <0772  Proposition (1-2-11) allows us to introduce

measures satisfying (40) the following sets = =(x +iv)

s/ x0T :V(2) —e¢ ag - == (44)
57, (A =< T3 :Smjim (z-x)V (#) =0 (45)
SZ(£) =[x T3 :V(2) —ooand (z—x)V(z) —Oasz —=x} (46)
SZ(£) ={x 5V (x +i0)exists and 0 =V (x +i0) <o} (47)

Obviously the sets = and s: as well as s»(. sid and .4 are
mutually disjoint. By proposition (1-2-15) one immediately gets that
si(ey=s5 (> and

S1(4) C57(4) £5 (49 (48)
Indeed the relation s»(3=s%.(3 is a consequence of (iii).By (ii) we get

sS4 C1s2(8)
Similarly we prove si(dmsi(d  using (ii) and(iii).Finally the relation
si(asi(4 follows from (i). We note that it can happen that s-(«=° and

the inclusion s<(2ts2(4 s strict even if #«=° . Furthermore we note that
from (26) and the inclusion 57 (4 5357 (4. z=s. pp.sc.ac we find that
A xnS2(4)) =£4(x) (49)

For any Borel set 7 . Now we are going to characterize the spectral parts of
the extension * by means of boundary values of the Weyl function ~© .

18



Using the integral representation (38) of the Weyl function we easily get that

v, (2) ZJ'Myz_'_yZth(t)ZSm(Mh(z)),zEIE, h OH (50)
Where M. (z) (M (z)h.h).z E. hCH (51)

The function ™0 is a scalar R-function. Since *.0 arises from the Weyl
function we call it the associated scalar Weyl function v0 is imaginary

part of the associated scalar Weyl function *.0 and the theory developed we
can relate the boundary behavior at the real axis the imaginary part of
associated scalar Weyl functions with the spectral properties of the self-adjoint

extension * . To this end in addition to (29) and (32) we introduce.

si(>) =rtusi(, ) (52)
sp(=7)=0usn (=, ) (53)
st(>o) =tusn(>, )vsn (=) (54)
st(Sr) =tiasi (3, )vsi(S) (55)

By definition the sets /(Y7 are disjoint. They holds for s.(¥.7) .

Furthermore we denote that the sets /(3] have Lebesgue zero, i.e., mes

si(Y.7)=0.7=spp.sc. | it turns out that the sets S/(Y.7) in theorem (1-2-14)

can be replaced by the sets /(3 7|

Theorem (1-2-12) [96]:

Let A be a simple densely defined closed symmetric operator on a
separable Hilbert space H with ~.(2)=(2) | Further, let ™={H.r..r'}  bea
boundary triple of + with Weyl function ~o . If £l is the spectral

measure of A =akerri=xc.)  gnd total set 7 ={m}..1=~N=2e jin - the

19



sets s:(Y1 , sn(>7).s:(>7) and s:(Yr are singular ,pure point ,
singular continuous and absolutely continuous supports of  E.l
respectively , i.e., we have

Ea, (’Yﬁs;’( ZT)) =E (Xx).T=s,pp.sc,ac (56)
For each Borel set »* _In particular ithold & (4)=s;(>7 and

a(A) I:IS}'(ZT) O A,) . r=s,sc,ac |
Proposition (1-2-13) [96]:

Let 4 be a scalar R-function. Then for almost all ~» the limit

o wr0y ]imO %oy exists and moreover in this case one has
y-»

& x +io) =lim ¢(z)

Theorem (1-2-14) [96]:

Let A be a simple densely defined closed symmetric operator on a
separable Hilbert space h with ~.()=(4 Further let ™={Hr.".} be a
boundary triple of « with Weyl function *' and let £.() be the spectral
measure of the self- adjoint extension + of Af r={n}. , »==— isa
total set in ' then sets <(M7) = @, (M7) = Q. (m;7) gpnd (M) gre

supports of E.0 respectively. i.e., we have

E 4, (XhQ(MT)) =E 5 (X)), =s.pp..scac (57)
For each Borel set ~= In particular it holds <(a)=<.,(M:9  and

a3 (Aa) o (M:;7) Ox(4A) for === . We note that the inclusions

3 (A) O (M;7) and <& (a) 0. (m:7)  of theorem (1-2-14) may be strict

even if <(a) isempty.

20



Let 4 be a Borel measure on ' and let x“ be a Borel set the set

CL,. (x) =x i :mes((x-sx+5) Nx) =0 CE=S (58)

is called the absolutely continuous closure of set obviously the set
cr.)tx  js always closed and one has

Lemma (1-2-15) [96]:

Let <+ be a scalar R-function which has the representation (10) then

S.. (1 =crL,.(2.()

Proof:

If ~x—=r.(<2.(é» then thereisan = such that mes(x—sx+9 "2 (H =6
24 (x —=x +8) =44 (x —=x +2) 2 (H =0 (59)
Hence  x=sl«)=s.(d  which yields s«(d—cr.(2.(8)  conversely if
~5.(«)  then there is an <~ such that (—sx+9 <2 (4 =0 then
#H.(x—=x+e) =0 ysing

oo (x—sx+8) = g (x—ex+e)n(@f . .., M=o (60)

and proposition (1-2-11) (i) and (vi) one gets
H (x—sx+g) = %{xfxﬂaﬂc(¢,5m(4@r—n‘o))dr=o (61)
Hence sm(de—iodac—eo for aets(x—sx+s n<2.(¥» . However by definition
of the set <@ one has sm(#z+i0))dac=0 for all =2.(d  which implies
mes ((x —&x +&) N, (@) =0
Hence xtcr.(2(4) orequivalent cLo(2(hs.(4 |

Proposition (1-2-16) [96]:

Let A be a simple densely defined closed symmetric operator a

separable Hilbert space with ~.()=-(2) | Further let ™=Hr.r} be a

N

boundary triple of + with Weyl function ~0 If r={n};, | === isa
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total set in + then the absolutely continuous spectrum of the self-adjoint

extension * of ' is given by.

3.(a) =05 cL,.[(Q,.(m,)) (62)
Theorem (1-2-17)[96]:

Let ' be a simple densely defined closed symmetric operator on a
separable Hilbert space ' with r«)=-() | Further, let ™=H.r..r'} be a
boundary triple of « with Weyl function ~© .

If 7={n}. , === Jisatotal setin ° ,then for the self-adjoint extension

+ of ' the following conclusions are valid :

(i)  The self-adjoint extension * of has no point spectrum within
the interval «» . ie., <) ~@» = if and only if for each
« —=--~ one has

lim yM ,, (X +iy) =0
y —0

(63)

forall ~-¢» | In this case the following relation holds
oo = AL 570 oo fos o

(i)  The self-adjoint extension * of - has no singular continuous

spectrum within the interval (a.2).ie.@(a) —a.p)== if for each

~ ===~ the set <2.(m,) ~a.b) s countable in particular, if
(a.p)|2.(M.)  is countable.

(iii) The self-adjoint extension * of ' has no absolutely continuous

spectrum within the interval «» .ie., <) ~«r)=¢ jf and only
if for each ~ —=-~ the condition
Sm(M , (x +i0)) =0 (65)
holds for a.e. ~~¢= _in this case we have
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F(A) n(ab) =3 (M:7) A(a.b)

Proof:

(i) If condition (65) is satisfied for all ~-¢» andall * ==~ | then a
simple computation shows that !m(z—=x)M. =0 holds for all ~=e»
and each = =~ too. Therefore <#®.)~ar)=o for  « =~
whichyields =#¢r:m ~@r = theorem (1-2-14). Implies &()n

(«b)=0 which yields <) Aat) =0
(i) Conversely if =) ~Aer)=o0 then F)~.r)=0  again by theorem

(1-2-14) we find <) Aa.r)=0 therefore <) ~«.r)=0  for each

~~ _ However this implies that Jm(z =)M.(2)=0 which

yields lyiglthk(XHy):O for all ~#+ and each ~-—=-~ . The

first of relation (64) is consequence of <®) ==} <XA) and

g,(4)n  (ap)=0  The second part of relation (64) is a consequence of

theorem (1-2-18) which shows that

F(A) T2 (M3 2) =[1, €2 (M: 7) CIXA,) , 7=sc,ac (67)

and <)== <x(a)  Both facts imply that 0.4, n (a,b]0

CL, <2 (M,.) 1. <2 (M,,) —a.b) CE$A,) —(a.b) =XA,) —(a.b) (68)
Which proves (64)
(ii) By (53) we gets that s« (S )=s15,.. )es2(5, )e2em.) | Therefore if
<2.(M,) ~@>) is countable, then so is Si(3, |nlab) this yields that the

singular continuous measure =.-© is supported within the interval «»

on a countable set. However this implies that =<2 =2 for each
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K —mo o~ and every hEH one has > x.c(ab) =0 which yields

>"(ab)=0 _ Therefore by lemma(1-2-9) one gets Ex(a.t)=0  which proves

() Aar)=o | If |ab\0. M, is countable, then by QSC(th)U(G,b)\Qac th)

the set <>(.) is countable too which completes the proof (ii).

(iii) If for each ~—=--~ the condition (65) holds for a.e. ~=¢=  each
=0 one has mes(x—sx+&n.(M,)n(ab)=6 hence CL.(<2.(M,))~(a,b)=0
taking proposition (1-2-16) into account we find < (a) ~@.r)=o  Conversely
if @) ~@p)=o then proposition (1-2-16) for each ~—=--~ we have

cr, (2. (M,,)) ~(a,b) =CL,. (3. (M, )) ~(a.b) =0
Which verifies condition (65) for a.e > &» [ Using <) ~a.r)=x4) and

2(A) B2 (m;7) X A)  which was proved in theorem (1-2-14)
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Section (1-3): Characteristic Function for Row

Contraction and Factorization
We give new result for the characteristic function associated with an
arbitrary row contraction and show that
I e =, k;
Where * is the Poisson kernel of ' . Consequently we will show that the
curvature invariant and characteristic associated with a Hilbert model over
. generated by an arbitrary row contraction ' can be expressed only in
terms of the characteristic function of -+ [62,63].
The characteristic function associated with an arbitrary row condition
T =r....7.]. 7, em#H) was introduced for the classical case -— and it was
proved to be a complete unitary invariant for completely non-coisometric
(c.n.c) row contraction. Using the characteristic of multi-analytic operator on
Fock spaces, one can easily see that the characteristic function of * is multi-
analytic operator [64, 65].

AR, R): P CD,. e F2(H,) D,

With the formal Fourier representation

" .0
T T +(1F2(HH)HAT ) %FQ(HH)DH -3 R OT 2 [R,O,,....R, DIH](IFZ(H") oA,

where #---=.  are the right creation operator on the full Fock space
are A, =§H ~-STT; E oBH) and o = 71)eBH)  while the defect
spaces are ~» —== and ©-=>"" where * denotes the direct sum of

copies of * , we need the following result .
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Lemma (1-3-1) [61]:

If eo...r)r®m=TBMH.X) Then SOT —lim&rR,...rR,) =6(R,....R,)

Proof:

We know that any multi-analytic operator <&.-=.> with formal

Fourier representation =.-r) ~ >SS R.0€. rBMH.K) has the

6| Ry | =SOT —li S YRy 06 -
property that Ryses R | = m kgo‘ a‘z:kr a“%  where the series
converge in the uniform norm for each -=®» now note that for every
~ArneH. and ortF*(m,)tk  we have

<6(R1,..., R,) (esh), g> =(e;h,O(R,,....,R,) Q)
=<eﬁ ':'h( 2 cor et Rer ':"9“) g>

:<( 2 ccri i< Ra mg@") (e Cn) g>
therefore
&R,....R,) (e,Th) >, . R, e h)
similarly we have
ErR,.....rR,) (e [ h) =(Zﬂ"+"q$ﬁr‘dR; €2 fe . h)
Using the last two equalities we obtain
lim &(rR,,...,rR, ) (es Ch) =4R,.....R,) (e [h)
for any #°r° and h on the other hand according to non commutative von
Neumann inequality | <& r=.3|—==....=.> for any -~~®©» . Hence and
due to the fact that the closed span of all vectors <« with & rncw.
coincides with 7*(#.)=H we deduce that

SOT —lim &(rR,,...rR,) =6&(R,,...R,)



The proof is complete. The following factorization play an important role
Theorem (1-3-2) [5]:
Let 7 =#..7.1. 7 =m@)  be arow contraction, then
R
(69)
where  is the characteristic function of * and ‘ is the corresponding
Poisson kernel.

Proof:

Denoting 7 =l7,:(,) T L,y E0] and

the characteristic function of ' has representation

&R,,....R,) =SOT —lime E_I%FA%(IFZ(HH) —eﬁz%) i rﬁq%E (70)

r —1

define the operator

A=T", B==n, C ==, D =—F ’and s . O ———a

and note that

A BD_ET% AL L

0 += ' o7 is a unitary operator therefore
E D I:l % _]Q/E

v i e e e and e e o (71)
define e
And notice that using relation (71) we have [5]:
I )ty — D —eG —=AY EBDT Tz AT ) e"
e B N
e e —ZAY ZAc ATz G —AZ Y e
=G —=A)zz @ —aTzT ) e
S R R

=G =A@ —=ANT —Aa"z")—w=aA@ —a"z")
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—G —=A) ATz —=tz —w=mAaATz @ —AaT=z" ) o

=0 —=A)" —==z" Y1 —a =z ) <"

Therefore
T —<fmd ey —=G —=AI @ —=z" N —ATZ ) C
(72)
Therefore according to our notation for any -~©» the defect operator

PR, ) =t rr, Y s equal to the product [5]:

=G —RT Y R RN —TR Y =~

=(1 EIAT)(I SR DTi*)i[(l —r? ZﬂﬁiRi*) DI]@ —r ZR;‘ T, g(I FOA,)

:’Zgr”& OAN TS % —r? nZR,.R,.* Hor S@;rﬂR; OTA, E
@ 1=l D m =p
=S rar H —r2 SRR R, AT,
k;\r\:k, ip O FZIIDB AT T

Now for every «<s¥F" ntp,  we have

<[I —(5(1‘Rl ..... rr, )¢$(rRl ..... rrR,, )* :kealj) eﬂ>

= b e z<r“*ﬁ @ —r? ZR,-R,-* %Z;ea, ea,><AfT;TﬁArh, k)
using lemma (1-3-1) we have
SOT —lim @ (rR,,...rR,) =& (R,,...R,)

therefore the above computations imply that

(Ir —=r,..... R,ER,..... r.Y ke nde N
= me,\r\s&amf,\ﬁsw Z<R’TP£ Ree,, ew> <ArTPZT;3A h, k>
= SR Q) e U T T 3. k) =TT 0. k)

For any #.xt®, and <>,  Summing up the above computation we deduce

that + —=%=..... rD<Hr.... =Y —=.~;  which complete the proof.
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We recall that the spectral radius of an n-tuple of operators

x =x...x,] s defined by

XX,
L&

A closer look at the proof of theorem (1-3-2) reveals the following

%k
r(X)Zlim

k >0

factorization result. We should add that operator -—=7- invertible because

r(x)=

Corollary (1-3-3) [61]:
Let 7 =f.... 7.} 7. =BH)  be a row contraction and let be its

characteristic function. If x =x.....x.1lx, t®B() s g row contraction with

spectral radius ', then i, —€(X.nX,)@ (XX ,) =01 —XT%)"

(1 —XxX")(1 %) "2« . Where = ==. rsu...x. vz potation as in proof

of theorem (1-3-2).
Theorem (1.3.3) [5]:

Let Tos(#) be arrow counteraction, if @€+« « =  where is the

characteristic function of * and = is the corresponding Poisson kernel, then

@A BL . :
for A=r%B= and <- the operator $= 5 af commute with if and

only if * commute with '+ and +* are self-adjoint.

Proof:
. [A"TA A'B+B'ALC . [AA" AB"+BA'C
If ss=g . C and SS =0 . C
0o AA C 0o AA C

Equating, then ss-ss- if and only if aa=aa”is normal and

A'B =BA"~

29



Theorem (1-3-4) [61]:
Let # be the complete free semigroup algebra generated by the free
semigroup * with generators <---= and natural element : any n-tuple
-7, of bounded operators on a Hilbert space ‘- gives rise to a Hilbert
model over ¢ in the natural way fr=f(%...T.)h. fLCEF" hEH  we say

that ' is a contractive * model if 7 =.---7.) s a row contraction

which is equivalent to la-h +..+g.h, | S| |h|".h.....h,CH  we say that -

is of finite rerkir rank(H)=rank &~ <= The curvature invariant and Euler

characteristic associated with an arbitrary row contraction ° were introduced

trace H — ¢ (I)

and studied we recall cuv(T)=1lim = and
m—e | +n+..+n
X(1)= limM where + is the completely positive map associated

m-w]+n+... +n""

with + ie., «(x) =§Ti =T using theorem (1-3-2) and some results we can

show that the curvature and the Euler characteristic of arrow contraction
can be expressed only in terms of the standard characteristic functions
Theorem (1-3-5) [61]:

Let 7 =....r) | nest)  contraction with rank # == and <@

and ~» denote its curvature and Euler characteristic respectively then

Curv(T) =rank A; —lim tracelHT@fm( Pr DI)J and X(T) = lim rankl(I _BTHT)P,?TI B II
m —oo n m— oo 1+n+...+n

Where #.(esp-P=) in the orthogonal projection of full Fock space #*(#.)
onto the subspace of all homogenous polynomials of degree (resp-polynomials

of degree = ).
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Proof:

. K, Or . N
Since  curv(r) = tim T (P BB Uging the factorization results

m —oo n

of theorem(1-3-2) the first result follows

xtr) = 73)
Since K (P, 1) has finite rank we have
ranki<; (P, 0¥) =rank|ran k;(P==¥)]  on the other hand ,since * is one- to-
one on the range of i =1 we also have

rank|K; (Po, 1) =rank|x, Kk (P=1)] | Hence using relation (73) and theorem
(1-3-2) we complete the proof.

A constrained characteristic function is associated with any constrained
row contraction. For pure constrained row contractions we show that this
characteristic function is a complete unitary invariant and provide a model in
terms of it. We also show that Arveson’s curvature invariant and Euler
characteristic associated with a Hilbert model over <t=.-—-=.1 generated by a
commuting row contraction can be expressed only in terms of the
constrained characteristic function

Let be a wot-closed two —sided ideal of the non commutative
analytic Toeplitz algebra = generated by a family of polynomials * we
define the constrained characteristic function associated with a J-constrained
row contraction 7 =¥u.---.7.1l7 ©m@EH) o be the multi-analytic operator

(with respect to the constrained shift [B.....B,]

& Wy, ..., W) N, [CID,. — N, [ID,,

Defined by the formal Fourier representation

_IN, or +(NJ DAP)@NTEH —;E_W, I:ITi* E[Wl LTy, w, 01, (IN, DAf*)
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Taking into account that * a co-invariant subspace under == can see
that ¢ is the maximal J-constrained pieced of the standard characteristic
function * of the row contraction ' . More precisely we have
RV, D)=, U, and
Py, ow, €XR,.... RN, D, =2, (W,....W,,))
(74)
Let us remark that the above definition of the constrained characteristic
function makes sense when ' is an arbitrary wot-closed two sided ideal of
# and 7 =571 jsan arbitrary c.n.c constrained row contraction.
Theorem (1-3-6) [61]:
Let ‘== be wot-closed two seded ideal of ~ generated by a family
of polynomials *
T ... ml7 tm@EH). g J-constrained row contraction then
Inyin, =€, =K, K], (75)
where ¢ is the constrained characteristic function of ' and ~- is the

corresponding constrained Poisson Kernel

Proof:
The constrained Poisson Kernel associated with ' is
FoaH oy e s en o ez defined
K, =(Py, OI44K, ) (76)
Where + is standard Poisson Kernel of * . Aswell as = =». == using

theorem (1-3-2) and taking the compression of relation (69) to the subspace
N, B, TR (H,) CD, e obtain
In, cm, —Pn, i, EXRy .. R)DEAR,....R,)|IN, CID, =P, K, K,.|IN, D,
taking into account relation (74) and (76) and that =~ ==/~ + == we

refer that 7~ c», —=2 O W) Wiew, Y =<, K5 as in the proof of
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theorem (1-3-5) one can use corollary (1-3-3) to obtain the following
constrained version of it.
Corollary (1-3-7) [61]:

Let =+  be closed sided ideal of ~ generated by a family of

polynomials * and let 7 =¥ .17 ©=m@E) be a J-constrained row

contraction. If x =x....x,]. x,tB(k). js a J-constrained row contraction
with spectral radius ~>= | then

Liiw, — €2, (X200 X,)E2, (X4, .., X, =t —RT")"'(0 X2t %) "'
where * =fx.cm.....><. el and the other notations are from the proof of
theorem (1-3-2). Now we present a model for pure constrained row
contraction in terms of characteristic function.

Theorem (1-3-8) [61]:

Let - =7~ be a wot-closed two-sided ideal of = and 7 =T.--1.].

7. 0B(H).  be a pure J-constrained row contraction. Then the constrained

characteristic function < rw®va....w.)Tm@,..>.) g a partial isometry
and ' is unitarily equivalent to the row contraction
e, B =2, )H, ... P, (B, =, Y, .1
(77)
where #.. is the orthogonal projection of ~ == on the Hilbert space
H,, =N, CD,)&e, (N, CD,.)
Theorem (1-3-9) [61]:
Let == be a wot-closed two-sided ideal of = andlet 7 =[Tw---T.].
T, CB(H).T Hr...r]r" tB(H) be two J-constrained pure contractions
then © and are unitarily equivalent if and only if their constrained

characteristic function ¢ and ¢- coincide.

Proof:
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Assume that * and °© are unitarily equivalent v:» —+" let ' be a

unitary operator such that = =v'zv for any ‘—--- simple computation

reveal that v~ =ov  and

il
Ui U’ define the unitary operator

TR

I

- and ' by setting * =20 2~ and T =

10,U]D. - D, Taking

into account the definition of the constrained characteristic function it is easy
to see that

(INJ 0T)86, =91,T'(IN, oT’)

Conversely assume that the characteristic function of * and coincide.

According to the remarks preceding the theorem there exist unitary operators

r:p, —0- - and HZDT* . DT» such that the following diagram

N,0D. OtE. N, 0D,
VI, Ur* VI, Ur

N, 0D, 0. N, 0D,

Is commutative i.e.,

Iy, e, =g =g, (1, )

(78)

Hence we deduce that ~={iv, =)=, :#,. —H,. s a unitary operator where
#. and "~ are the model spaces for * and ' respectively. Since
(B cu,,, Nin, ) =1, cr")B CU1,,,.). i =t..on and  H.lespH,0)  is a co-

invariant subspace under B: WV, (respp.B; I, ). i =L...n  we deduce that

(87 oy, o, ) = (87 o, Jay, Cor )H, ). i =L

Hence we obtain
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ITH,'T (B.* ¥, )(HJ,T ) =y, ,. (Bi ¥, )(HJ,T')I_’ i=,..., n

Now using theorem (1-3-7) we conclude that * and are unitary
equivalent. The proof is complete.
Theorem (1-3-10) [61]:

Let = be a WOT-closed two- sided ideal of + such that ' and

condition spar{BAZ:aAF}="®B...B) is satisfied. If =~ is an
invariant subspace under =--#. and T —Eu-TdT —E m M —n
then » =<-(.t>o.) where ¢ is the constrained characteristic function
of + the reproducing Kernel Hilbert space with reproducing Kernel
x,s8,>5, —£ defined by

_ 1
Kn(z,w) _71_<Z,W>:En , z,w 0B,

The algebra w~=-.- was proved to be the - -closed algebra
generated by the operators =-=--~ and the identity. Moreover * can
be identified with the algebra of all multiplies of * under this identification
the creation operator =--=  become the multiplication operator

Moo M, by the coordinate functions e 2 of . Let

T =fr,... 1,17, ©®mMH) be a  constrained row  contraction @ i.e.,

T, =T 0 = under the above-mentioned identifications the

constrained characteristic function of + the multiplier (multiplication
operator)
€ .T:H?[D,. —H” D,

defined by the operator. Valued analytic function on the open unit ball

1
5 =(z,,.,z,)OF 2|z | =(‘z I+ +Hz ‘2)2 <1E

given by
2, @)=F v —=17 —. —=,17) 204z, 1, ] .z B,
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We going to use the same notation for the multiplication operator
Mg 08(H* 0p,.p.)  and its symbol ¢ which is a 2@.2.)  valued
bounded analytic function in * . All the results of this part can be written in
this commutative setting. Using theorem (1-3-5) and corollary (1-3-6) and
some result we show that Euler characteristic associated with a commutative
row contraction = with rank 2=<== can be expressed in terms of the
constrained characteristic function @-
Theorem (1-3-11) [61]:
Let 7 =n....mlzn ©m@H).  be a commutative row contraction with
rank ~=- and let ~» and ~» denote Arveson’s curvature and Euler

characteristic respectively.

Then

K(T) =_£3” 1r1£111 trace % —9_r (rd) g (rZ)* %B( <)

trace T, T qu,T (Qm DIDT ) H

m

=rank A; —(n —1) lim

m —oo n

where ¢ is the projection of » onto the subspace of homogeneous

polynomials of degree ' and

- 2
X(T) =n!lim A, _(n—l) rank &1 HJ(;,T J(;T)(Qsm DIDT)EI

m —oco m

Where © is the projection of » onto the subspace of all polynomials of
degree
Proof:

Using the factorization result of corollary (1-3-6) in our particular case

we obtain

(t—a .28 .(z)) = =)l —=1" — —=.7.)"C =T —= —=2,) " =
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for any -== the first formula follows from the definition of the curvature
and the above-mentioned factorization for the constrained characteristic

function of ' . Using (60) and we have.

trace {jp, OI) K, K;

n—1

K(T) =(n—1)lim o
Where « is the Poisson on Kernel of ' and ' is the orthogonal projection

of r() onto the subspace of all homogeneous polynomials of degree
Since ° is a commutative row contraction ' -constrained we have range

=,crz o, and the constrained Poisson Kernel satisfies the equation

K,.r =\P DIJK, where ¢ is the symmetric Fock space. Using the

standard properties. For the trace and above relation we deduce that

; 0
K(T) :(n—l)limtrace %c’CTKnjjf (2. D1)E (79)
r—1 m
where  @.=rP.n[F’ is the projection of ¢ onto the subspace of

homogenous polynomials of degree. According to theorem (1-3-5) we have
1-9,8, =K, K;, (80)

taking into account relation (79),(80) we deduce the second formula for the

curvature. Here of course we used Arveson’s identification of symmetric

Fock space ¢ with his space » and Arveson’s showed that his Euler

. e : kE—gr (1
characteristic satisfies the equation  x(7) =n!lim 5 ¢T CIs we here

m —oo m

is the completely positive map associated with * we get

rank BK; (P, OI)K, H (81)

T)=n!l
Xx(T) =n!lim -

Where = is the orthogonal projection of #(#) on the subspace of all

polynomials of degree - . Using again that range .=+, and the
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contained Poisson Kernel satisfies the equation .. ={B.: BI)K:  we deduce

that

rank |K; (P, CI)K, | =rank|K; (P, CI)P,. O )K, |
=rank|K;(Q, CI)P,. CI)K,_,]
=rank|K;_.(Q., CII)(P,. CI1 |
=rank|K,_.K;_,(Qs, )|

Where < is the projection of ¢ onto the subspace of all polynomials of
degree - the last two equalities hold since the operator ... (Qa =¥)

has finite rank and X.- is one -to-one on the range of «..(e= =) | Now
using relation (81) we obtain the last formula of the theorem. The proof is
complete.

Let [r...7.1.7, tm@)  be a pure row contraction and let © be a wot-
closed two-sided ideal of + suchthat <#.--.7.J== for any

as,.....5, 13

(82)
where <#.--7.1 is defined using the = functional calculus for row
contraction is unitary equivalent to the compression of = === =n tga
co-invariant subspace under each operator = © = -+=-~ therefore we
have the = =pt(s tu).i=t..n following result is a commutative lifting
theorem for pure constrained row contraction.
Theorem (1-3-12) [61]:

Let ‘== be a WOT-closed two- sided ideal of the non commutative
analytic Toeplitz algebra ~ , and [5--5]1 and ©.--w.1 be the

corresponding constrained shifts acting on * . For each -—+ let A be a
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Hilbert space and < @~ ™k, be a co-invariant subspace under each operator

s oen.i=..~ jf x:5-s jgabounded such operator such that
x, B(B on,)|.FP. (B O, )|, X ,i=1..,n

then there exists

(83) such that

G w,Y 1o3=x" gnd IS, w, )| =X ||
In particular if =+=* where is a co-invariant subspace under each
operator =-7==--~  then the above implication becomes an equivalence.
Corollary (1-3-13) [61]:

Let ’=+ be a wot-closed two- sided ideal of the non commutative
analytic Toeplitz algebra + and let =--» and v be the
corresponding constrained shift acting on * . If  is a Hilbert space and

o~ js an invariant subspace under each operator * and * , ‘==

then {w@....B)c]lra1} sfrww....w,)c]lTB() we remark that

theorem (1-3-10) can be extended to the following more general setting. The

proof follows exactly the same lines so we shall omit it. For each == let
be a wot-closed two- sided ideal of = and let [B”.-.B"] be the

corresponding constrained shift acting on » .Let < ©~. 5 be an invariant

subspace under each operator 5" =1, | - —=-~ where * A Hilbert space.
If xs-= is a bounded operator such that x&(8"0L]). =
xp, (B 01, )|, x.i=...n  then there exists & 4, RN, [FB(. &) such

that PBGl.=x and < —=

Theorem (1-3-14) [61]:
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Let be a wot-closed two- sided ideal of ~ andlet =--=. be the

corresponding constrained shift acting on » . Let -~ be ' distinct
point in the zero set z, ={ACB,: (A =0 forany r v} gnd let -~ =2¢>  then
there exists <&....B)tw(@s,....5,)Ts&) guch that I<=----8.3= and

“43)=, .7 =« if and only if the operator matrix

I:IIk _AiA* [}
=0
= _<)\>/\,~> H.
(84)
is positive semi definite
Proof:
Let A Z(Aj],....,)tin ) aO£",j =1,..,k and denote T 7, S RS A lf
o—9.9.--9. %" and '» define %» i;;/‘f”e” - J=L2-k o potice that for

any 2=+ and e=~v" we have (S GnsI Ly =SS0

which implies -~ for any *» . Note also that since = ==~ for
«—=-~ we have B =3 for ==~ and ~—=-= . Define the

subspace M =span{-2:;=...x} _and the operators x =®( = by setting
X =eumle oo o= Since a2 are linearly independent we can

define an operator = t==¢r == by setting 77z, th)=z, Dajr  for any o

and ¢ —--~> notice that =<7 for ‘-—--~ can apply theorem (1-3-12)
and find @W,,...W,)0  woviw.)TB6  such that

W, W, Y M =
(85)
and |<€=..w.Jl ==l one can prove that #A)=A.Jj=L..k if and only if

(85) holds. Moreover I<e=...w.)==if and only if = = which is
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equivalent to the fact that the operator matrix (84) is positive semi definite.

This completes the proof.
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