بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

قال تعالی

قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ

صدق الله العظيم

سورة البقرة الآية 32

Dedication

To my mother...... Awadeyah
To my fatherMahdi
To my daughters...... Rahaf& Ragad
.....To my sisters ... and my brother
...To all friends and teachers in my life
...To all people making my life better

Acknowledgement

First of all I thank Allah for giving me the strength , I would like to thank my supervisor Dr. Hussain Gad El karim Ahmed, Head of histopathology department medical laboratory Science University of Khartoum who helped and supported me patiently to complete this work. I would like to thanks the General administration of traffic – Khartoum State. For their endless encouragement and help in the collection of specimens .My particular thanks extend to Dr.Ahmed Abdulbadei and Dr.Ahmed Omar in histopathology and cytology department in Alribat hospital for help. My thank also to ustaz .Abdulla Hasabalnabi. Finally Iwould like to thank all people who helped me to .perform this work

Abstract

This study was carried out among traffic policemen in Khartoum state during the period between Januarys to May 2009, the study aimed at assessing the cytological changes in sputum smears taken from traffic policemen. Cytological specimens of sputum were taken from 150 individuals exposed to traffic pollution (cases) and 150 not exposed to traffic pollution (controls).

Early morning sputum specimens were collected and processed by the conventional method of sputum cytology and stained by Papanicolaou staining method and examined microscopically. Inflammatory cells infiltrate were detected among 41 (27.4%) from cases and 18 (12.0%) from controls. This finding documented the role of traffic pollution as a risk factor for the increase of the inflammatory cells P<0.002.

Few Metaplastic cells were detected among 44 (29.3%) from cases and 19 (12.6%) from controls. Numerous metaplastic cells were detected among 14 (9.3%) from cases and 7(4.7%) from controls. These indicated that traffic pollution is an important factor for the increase in the metaplastic cells in sputum smear P<0.0001. Dysplastic cells were detected among 7 (4.6%) of the cases and 2)1.3%) of the controls. These indicated that traffic pollution is factor for the increase of the dysplastic cells in sputum smear P<0.0001. In conclusion, traffic pollution can cause cytological changes in lung epithelial cells which can be identified by sputum cytology; sputum cytology is simple and convenient method in the diagnosis and assessment of pathological conditions of the respiratory tract. In view of these findings, we recommend the application of sputum cytology as a suitable method for the assessment of individuals who are at risk of developing lung cancer.

00000 00000

أجريت هذه الدراسة على رجال شرطة المرور في ولاية الخرطوم خلال الفترة من يناير حتى مايو 2009م, هدفت الدراسة إلى معرفة السمات الخلوية لقشع رجال شرطة المرور. تم أخذ عينات القشع من 150 شخصاً معرضين للتلوث المروري (عينات دراسية) و 150 شخصاً غير معرضين للتلوث المروري (عينات تحكيمية)

.

جمعت عينات القشع في الصباح الباكر وتمت معالجتها بالطريقة التقليدية المستخدمة لعينات القشع ثم صبغت بطريقة بابانيكولا لعلم الخلايا وتم فحصها مجهرياً.

ظهرت الخلايا الإلتهابية المرتشحة في 41 (27.4%) من عينات الدراسة و 18 (12%) من العينات التحكيمية. هذا يشير إلى أن التلوث المروري عامل يزيد من ظهور الخلايا الإلتهابية، وكان ذلك ذا دلالات احصائية. اكتشفت الخلايا المتحولة البسيطة في 44 (29.3%) من عينات الدراسة و 19(6.21%) من العينات التحكيمية. اكتشفت الخلايا المتحولة المتعددة في 14 (9.3%) من عينات الدراسة و 7 (4.7%) من العينات التحكيمية. هذا عينات الدراسة و 7 (4.7%) من العينات التحكيمية. هذا عينات الدراسة و 7 (4.7%) من العينات التحكيمية. هذا عشير إلى أن التلوث المروري عامل مهم يزيد من طهور الخلايا المتحولة في شرائح خلايا القشع, وكان طهور الخلايا المتحولة في شرائح خلايا القشع, وكان

ذلك ذا دلالات إحصائية. اكتشفت الخلايا السيئة النمو في 7 (4.6%) من عينات الدراسة و 2 (1.3%) من العينات التحكيمية. هذا يشير إلى أن التلوث المروري عامل يزيد من ظهور الخلايا السيئة النمو في شرائح خلايا القشع ، وكان ذلك ذات دلالات إحصائية .

في نهاية الدراسة خلصنا إلى أن التلوث المروري يمكن أن يتسبب في ظهور التغيرات الخلوية في الخلايا الظهارية للرئة والتي يكشف عنها بواسطة خلايا القشع. خلايا القشع سهلة وبسيطة يمكن استخدامها في تشخيص ومتابعة الحالات المرضية بالجهاز التنفسي.

بناءً على نتائج هذه الدراسة نوصي بتطبيق الدراسة الخلوية للقشع كطريقة مثلى لمتابعة الأفراد المعرضين للإصابة بسرطان الرئة .

List of contents

الاية القرانية	i
Dedication	ii
Acknowledgments	iii
Abstract English	iv
Abstract Arabic	V
Contents	Vİ
List of Tables	viii
List of Microphotographs	ix
Chapter One	
1-Introduction	1
Chapter Two	
Review of literature	4
2- Scientific background	4
2.1. Normal Histology of respiratory tract	4
2.2. Normal cytology of respiratory tract	5
2.3. Diseases caused by environmental pollution	6
2.3. 1. Occupational asthma	6
2.3.2. Chronic obstructive pulmonary disease (COPD)	7
2.3.2.1. Chronic bronchitis	7
2.3.2.2. Emphysema	8
2.3.2.3. Asthma	8
2.3.3. Acute respiratory infections (AR1) among infants &	9
Children	
2.3.4. Chronic diffuse interstitial lung disease:	10
2.3.4.1 Idiopathic ILD	10
2.3.5. Pneumoconioses	11
2.3.5.1. Coal worker's pneumoconiosis (Anthracosis)	12
2.3.5.2. Silicosis	12
2.3.5.3.Asbestosis	13
2.3.5.4.Chronic beryllium disease (beryliosis)	14
2.4. Tumour's of the Bronchi and lungs	14
2.4.1. Benign Tumours	14
2.4.2. Malignant Tumours	14
2.4.2.1.Small cell carcinoma	15
2.4.2.2.Squamous cell carcinoma	15
2.4.2.3. Adenocarcinoma	16
2.4.2.4. Large-cell carcinoma	16
2.4.3. Secondary tumours in the lung	16
2.4.4. Pleural Mesothelioma	16
2.5. Diagnosis	17

2.5.1. History and physical examination	
2.5.2. Laboratory tests	17
2.5.3. Radiographic imaging	17
2.5.4. Tissue sampling	17
2.5.5. Cytology	18
2.6. Cytological screening programs	19
2.7. Traffic Pollution	20
Chapter Three	
Materials and Methods	
3.1. Study design	22
3.2. Study population	22
3.3. Sample size	22
3.4. Materials	22
3.5. Methodology	22
3.5.1. Sample collection	22
3.5.2. Sample preparation	23
3.5.3. Specimens processing	23
3.6. Assessment of cytological smear	23
3.7 Result interpretation	24
3.8 Statistical analysis	24
3.9. Ethical consideration	24
Chapter Four	
Results	25
Chapter Five	
Discussion	44
Chapter Six	
Conclusions and Recommendations	48
References	49
Appendix	55

List of Table

No	Table Tittle	No
		page
Table (1)	Shows the distribution of study population according to age	28
	Shows the distribution of study population according to age	29
Table (3)	Shows the distribution of the study population according to dysplastic changes	30
Table (4)	Shows the relationship between the duration of exposure (cases) and dysplastic changes.	31
Table (5)	The relationship between dysplastic changes and smoking in cases and controls.	32
Table (6)	Shows the relationship between age and dysplastic changes.	33
Table (7)	Shows the distribution of cases and controls by Metaplasia	34
Table (8)	Shows the relationship between the duration of exposure (among cases) and metaplasia.	35
Table (9)	Shows the relationship between metaplasia and smoking	36
Table (10)	Shows the relationship between inflammatory infiltrate and metaplasia	37
Table (11)	The relationship between age and metaplasia	38
Table (12)	Shows the distribution of cases and controls by inflammatory cells infiltrate	39

List of Photomicrographs

No	Tittle	No
		page
Microphotograph (1):	Dysplastic cells.	40
Microphotograph (2):	Metaplastic cells	41
Microphotograph (3):	Pulmonary macrophages,inflammatory cells and mucus.	42
Microphotograph (4):	Pulmonary macrophages .	43