Acknowledgements

I would like to express my deep thanks to Dr. Ahmed ELsadig Mohammed Saeed, my Supervisor for suggesting the idea of the work and for his helpful, advice and guidance during the course of the work. I am greatly indebted to my co-supervisor Dr. Izz Eldeen ELfatih Barakat for help and notable assistance in the work.

I would like to thank the following:

Prof. Dr. Moutasim Ibraheem Khalil, Chemistry Department, Faculty of King Saud University, for ¹H- and ¹³C-NMR analysis.

The staff of chemistry department in Sudan University of Science and Technology and offer my special thank to Ustaz Abd Elkariem Mohammed, Ustaz Ahmed Abd Elazzem and Ustaz Tagreed Mohammed for help, Ustaz Nadia Khater, Ustaz Safa Abd Elbbagi and Mr. Babiker Khalid for their help in I.R. and U.V. spectroscopy analysis.

Ustaz Mohammed Aisa, Faculty of Education in Khartoum University, for his help in work U.V. and IR spectroscopy analysis.

Deep thank to Ustaz Eltahir Mohammed Eltahir for printing the manuscript.

Abstract

The chemistry of 2-amino-5-substituted-1,3,4-thiadiazole family of compounds indicating their preparations, reactions, properties together with review of their most important biological activities were dealt with in chapter one.

Eleven final products were prepared in this work together with their corresponding intermediates. The appropriate retrosynthetic analysis of the compounds revealed five possible routes for the target 2-amino-5substituted-1,3,4-thiadiazoles.

Five methods were tried to prepare the final products. The first one-step route involve a direct reaction between acid chloride and thiosemicarbazide using dehydrating agent such as sulphuric acid or phosphoric acid and benzene as solvent. A second route involve a reaction between acid and thiosemicarbazide using sulphuric acid as cyclizative dehydrating agent without other solvent.

Three approaches involve two step reaction. The first one involve the reaction between appropriate aldehyde and thiosemicarbazide, which form thiosemicarbazone then dehydrative cyclization using phosphoric sulphuric. The second one involve the reaction acid or thiosemicarbazide and acid unhydride or acid chloride to form the substituted thiosemicarbazide. which undergoes the dehydrative cyclization with sulphuric acid or phosphoric acid. The third one involve a reaction between an aldehyde and thiosemicarbazide that produced a Schiff base which when react with ferric chloride in an oxidation reduction reaction to produce the target 2-amino-5-substituted 1,3,4thiadiazole.

The methods which were tried resulted in the formation of the same product.

The last product react with ethylchloroformate to produce 2-(N(ethyl formate)amino-5-substituted-1,3,4-thiadiazole. The later when react with the appropriate amine yields the final product alkyl thiadiazolyl urea.

The reaction course was followed with TLC and the identity of the product was identified through IR, ¹HNMR and MS.

The retrosynthetic analysis of the compound were discussed together with suitable mechanism of each different reaction. The spectral data were discussed and interpreted.

The final products were tested found to have moderate biological activities against seven microorganisms examined except compound No. XI which was found to have high activity against all of the microorganisms.

الخلاصية

تمت دراسة كيمياء 2-أمينو-5-الكيل (اريل) 4,3,1-ثيا ثنائي زول وتم توضيح طرق تحضيرها ، تفاعلاتها وخواصها بالإضافة لنشاطها ضد الكائنات الدقيقة.

تم تحضير أحد عشرة مركباً نهائياً مع عدد من مركباتها الوسيطة. عملية التخليق الضدي اتبعت في هذه الدراسة وتم الوصول إلى خمسة طرق للحصول على المركبات المستهدفة.

خمس طرق للتحضير تم استخدامها ووجد أنها تقود إلى نفس النتائج (2-أمينو-5-مستبدل-4،3،1-ثياثنائي زول).

طريقتين من خطوة واحدة يم استخدامها.

الطريق الأول يشمل مفاعلة كلوريد الحمض و ثيوسمكاربازايد مع استخدام حمض الكبريتيك أو حمض الفوسفوريك كعوامل نازعة للماء لاغلاق الحلقة والبنزين كمذيب. الثاني يشمل مفاعلة الحمض المعني وحمض الكبريتيك فقط بدون مذيب آخر.

ثلاث طرق من خطوتين تم استخدامهما.

الطريق الأول يتضمن تفاعل الألدهيد المطلوب وثيوسميكاربازايد ليعطي سمي ثيوكاربازون الذي يتفاعل مع حمض الكبريتيك أو الفوسفوريك المركز.

الطريق الثاني يتضمن تفاعل كلوريد الحمض أو انهيدريد الحمض المطلوب ليعطي ثيوسمي كاربازايد المستبدل الذي يتفاعل مع حمض الكبريتيك أو حمض الفوسفوريك.

الطريق الثالث يتضمن تكوين ثيوسمي كاربازون ثم مفاعلته مع كلوريد الحديد III في تفاعل أكسدة اختزال ليعطى الناتج المطلوب.

الناتج الأخير تم مفاعلته مع اثيل كلوروفورمات ليعطي الأميد المقابل 2(N-أثيل فورمات)أمينو-5-"مستبدل" 4،3،1-ثياثنائي زول.

هذا الناتج تم مفاعلته مع الأمين المناسب ليعطي الناتج النهائي وهو كستبدل ثياثنائي زول يوريا.

هذه التفاعلات تمت متابعتها باستخدام كروماتوغرافيا الطبقة الرقيقة وتم تحديد صيغ المركبات النهائية والوسيطة بواسطة التحليل بالأشعة فوق البنفسجية ، الأشعة تحت الحمراء وطيف الرنين النووي المغنطيسي وطيف الكتلة.

عملية التخليق الضدي التحليلية وميكانيكيات التفاعل تمت مناقشتها بالتفصيل بالإضافة للبيانات الطيفية تمت مناقشتها.

وجد أن المركبات النهائية لها نشاط حيوي فوق الوسط ضد سبعة من الكائنات الدقيقة المختبرة باستثناء المركب رقم 11 فقد وجد أن له نشاط حيوي قوي جداً

Table of Contents:

		Page
	Acknowledgements	i
	Abstract	ii
	الخلاصية	iv
	Table of Contents	v
	List of Tables	viii
	List of Figures	X
	List Schemes	xii
	List of Abbreviations	xii
	Chapter One: Introduction	1
1.1.	Introduction	1
1.2.	Nomenclature	1
1.3.	Physical and spectral properties	2
1.4.	Structure of 1,3,4-thiadiazole	2
1.5.	Synthesis of 1,3,4-thiadiazoles	3
1.5.1.	Synthesis of 1,3,4-thiadiazole from thiosemicarbazide	3
	and acid chloride	
1.5.2.	Synthesis of 1,3,4-thiadiazole from thiosemicarbazide	4
	and phosphoric acid	
1.5.3	Synthesis of 2-amino-5-phenyl-1,3,4-thiadiazole from	5
	thiosemicarbazide and formic acid	
1.5.4	Synthesis of 1,3,4-thiadiazole from thiosemicarbazide	6
	and carbon disulfide	
1.5.5.	Synthesis of 1,3,4-thiadiazol from thiosemicarbazide	7
	and ethylorthoformate	
1.5.6.	Synthesis of 2-amino-5-phenyl-1,3,4-thiadiazole from	7
	thiosemicarbazone and ferric chloride	
1.5.7.	Synthesis of 1,3,4-thiadiazole from thiocarbazides	10
1.5.8.	Synthesis of 1,3,4-thiadiazole from dithiocarbazate	11
1.5.9.	Synthesis of 1,3,4-thiadiazole from dimethylformamide	12
	and thionyl chloride	
1.5.10.	Synthesis of 2,5-dialkyl-1,3,4-thiadiazole from	13
	hydrazine aldehyde and elemental sulphur:	
1.6.	Chemical reactions	13
1.6.1.	Reactivity	13
1.6.2.	Reaction with electrophiles	13
1.6.2.1.	Electrophilic attack at nitrogen	13

1.6.2.2.	Electrophilic attack at carbon	14
1.6.3.	Reaction with nucleophiles	14
1.6.4.	Reactions involving ring formation	17
1.7.	Biological activity	18
1.8	Aim of the project	20
	Chapter Two: Experimental	
2.	Experimental	21
2.1	Materials	21
2.1.1	Chemicals	21
2.1.2	Solvents	21
2.1.3	Reagents	21
2.2.	Thin layer chromatography (TLC)	21
2.3	Instruments	21
2.3.1	Infrared spectrophotometer (IR)	21
2.3.2	Ultraviolet-visible spectrophotometer (UV-Vis)	21
2.3.3	Proton-nuclear magnetic resonance (¹HNMR)	22
2.3.4	Mass spectrometry (MS)	22
2.3.5	General instruments	22
2.4	Methods	22
2.4.1	Preparation of Benzalthiosemicarbazide (Ia)	22
2.4.2	Preparation of benzoyl thiosemicarbazide (IIa)	22
2.4.2.1	Method 1	22
2.4.2.2	Method 2	23
2.4.3	Preparation of 2-amino-5-substitued-1,3,4-thiadiazole	23
	(IIIa) and (IVa)	
2.4.3.1	Method 1	23
2.4.3.2	Method 2	24
2.4.3.3	Method 3	24
2.4.3.4	Method 4	24
2.4.4	Preparation of 5-substituted-2-(N-ethyl formate) amino-	25
	1,3,4-thiadiazole (VIa, VIIa)	
2.4.5	Preparation of substituted thiadiazolyl urea (I-XI)	25
2.4.6	Preparation of substituted thiadiazolyl urea (I, II, III, IV,	25
	V, VI, VII, VIII, IX, X, XI)	
2.5	Chemical names of the prepared compounds	29
۷.5	Chapter Three: Results and Discussion	23
3.	Discussion	55
J.	Biological activity:	55 74
	Chapter four: Conclusion and Recommendations	/ 4
4.	Conclusion and Recommendations	75
⊸.	References	75 76
	134.14.14.44.4.5	/ \)

List of Tables

Table 2-1a Table 2-1b	Chemical names of thiosemicarbazide derivatives Chemical names of 2-amino-5-substituted-1,3,4-	29 29
Table 2-1c	thiadiazole Chemical names of 2-(N-ethylformate)amino-5-	30
Table 2-1d	substituted-1,3,4-thiadiazole Chemical names of N-substituted-N-[5-phenyl-	30
Table 2.1e	1,3,4-thiadiazol]-2-yl urea Chemical names of 2-(N-acetyl)amino-5-	31
Table 2-2a	substituted-1,3,4-thiadiazole Yield percentage, recrystallization solvent, melting	32
	point, molecular formula and molecular weight of	
Table 2-2b	thiosemicarbazide derivatives Yield percentage, recrystallization solvent, melting	32
	point, molecular formula and molecular weight of 2-	
Table 2-2c	amino-5-substituted-1,3,4-thiadiazole Yield percentage, recrystallization solvent, melting	33
	point, molecular formula and molecular weight of 2-	
	(N-methylformate)amino-5-alkyl-1,3,4-thiadiazole	
Table 2-2d	substituted Yield percentage, recrystallization solvent, melting	33
	point, molecular formula and molecular weight of	
Table 2.2e	1,3,4-thiadiazolyl urea derivatives Yield percentage, recrystallization solvent, melting	34
	point, molecular formula and molecular weight of	
Table 2.3	1,3,4-thiadiazolyl urea derivatives $R_{\rm f}$ values of N-substituted N-(5-phenyl-1,3,4-	35
Table 2.4a Table 2.4b Table 2.4c	thiadiazol)2-yl urea IR data of thiosemicarbazole derivatives IR data of 2-amino-5-substituted-1,3,4-thiadiazole IR data of 2-(N-ethylformate)amino-5-substituted-	36 36 37
Table 2.4d	1,3,4-thiadiazole IR data of substituted-1,3,4-thiadiazolyl ureas	37

Table 2.5a	Mass spectra of thiosemicarbazide and some of its	38
m 11 o e1	substituents	20
Table 2.5b	Mass spectra of 2-amino-5-phenyl-1,3,4-thiadiazole and some of its substituents	38
Table 2.6a	N.M.R data of some substituted thiosemicarbazide	39
	and 1,3,4-thiadiazole	
Table 2.6b	N.M.R data of some phenyl-1,3,4-thiadiazolyl urea	39
Table 2.7	UV/Vis Data of the phenyl-1,3,4-thiazolyl urea	40
Table 2.8	Antimicrobial activity of synthesized compounds	41

List of Figures

		page
Figure 1.1	Chemical structures of different thiadiazoles	1
Figure 1.2	Nomenclature of thiadiazole	2
Figure 1.3	Nomenclature of the reduced forms of thiadiazole	2
Figure 1.4	structural parameters in 1,3,4-thiadiazole	3
Figure 1.5	Action of acyl halide on thiosemicarbazide	4 4
Figure 1.6	Action of phosphoric acid on dibenzoyl	4
	thiosemicarbazide	
Figure 1.7	Cyclization action of formic acid on acyl	5
	thiosemicarbazides	
Figure 1.8	Cyclization action of formic acid on phenyl	6
8		
E' . 10	thiosemicarbazide	C
Figure 1.9	Action of KOH and CS ₂ on different	б
	thiosemicarbazides	
Figure 1.10	Oxidative cyclization action of FeCl ₃ on	8
Figure 1.11	Oxidative cyclization action of FeCl ₃ on benzal	9
	thiosemicarbazones.	
Figure 1.12	Oxidation of thiosemicarbazones by hydrogen	10
8		
E' . 110	peroxide and calcium ferricyanide	10
Figure 1.13	Effect of formic acid and trifluoroacetic anhydride	10
	on dithiocarbazate	
Figure 1.14	Acid catalyzed cyclization of benzyl	10
	dithiocarbazate.	
Figure 1-15		11
116416 1 10		
T' 4.40	chloride	4.4
Figure 1.16	One pot synthesis of 2,5-alkyl-1,3,4-thiadiazole	11
Figure 1.17:	Electrophilic attack at nitrogen	11
Figure 1.18	Dependence of the leaving group potential on the	12
	action associated with the anionic nucleophile	
Figure 1-19	Nucleophilic substitution on 1,3,4-thiadiazole	12
Figure 1.20	Isomerization of sub-thiadiazole under alkyl	13
	condensation	
Figure 1.21	Reaction of ethylaceotacetate with 2-amino-1,3,4-	14
.0	•	- •
E' - 4 00	thiadiazole	1.4
Figure 1.22	The reaction of pentadione with 2-amino-1,3,4-	14

Figure 1.23	thiadiazole The reaction of diethylmalonate with 2-amino-1,3,4-	15
Figure 1.24	thiadiazole The reaction of haloaldehyde and haloketone with	16
Figure 1.25	2-amino-1,3,4-thiadiazole Isomerization of sub-thiadiazole under alkyl	16
Figure 1.26	condensation Reaction of ethylaceotacetate with 2-amino-1,3,4-	17
Figure 1.27	thiadiazole The reaction of pentadione with 2-amino-1,3,4-	17
Figure 1.28	thiadiazole The reaction of diethylmalonate with 2-amino-1,3,4-	17
Figure 1.29	thiadiazole The reaction of haloaldehyde and haloketone with	17
Figure 2.1	2-amino-1,3,4-thiadiazole Main fragmentation routes of the mass spectra of	42
Figure 2.2	some of the prepared compounds IR spectra of compound I	43
Figure 2.3	IR spectra of compound Ia	43
Figure 2.4	IR spectra of compound IIa	44
Figure 2.5	IR spectra of compound III	44
Figure 2.6	IR spectra of compound (IVa)	45
Figure 2.7	IR spectra of compound (VI)	45
Figure 2.8	IR spectra of compound (VII)	46
Figure 2.9	IR spectra of compound (VIIa)	46
Figure 2.10	IR spectra of compound (VIII)	47
Figure 2.11	¹ HNMR spectra of compound (I)	47
Figure 2.12	¹ HNMR spectra of compound (Ia)	48
Figure 2.13	¹ HNMR spectrum of compound (IIa)	48
Figure 2.14	¹ HNMR Spectra of compound (III)	49
Figure 2.15	¹ HNMR Spectra of compound (IVa)	49
Figure 2.16	¹ HNMR Spectra of compound (VII)	50 50
Figure 2.17 Figure 2.18	¹ HNMR Spectra of compound (VII) ¹ HNMR Spectra of compound (VIIa)	50 51
Figure 2.19	¹ HNMR spectra of compound (VIII)	51
Figure 2.15	MS spectra of compound (1)	52
1 18010 2.20	The opening of compound (1)	ے د

Figure 2.21	MS spectra of compound (Ia)	52
Figure 2.22	MS spectra of compound (IIa)	53
Figure 2.23	MS spectra of compound (IV)	53
Figure 2.24	MS spectra of compound (VIIa)	54
Figure 2.25	MS spectra of compound (VIII)	54
Figure 3.1	General retrosynthetic approach in 2-amino-5-alkyl-	55
	1,3,4-thiadiazole.	
Figure 3.2	retrosynthetic	56
Figure 3.3	The C ₅ -S and C ₅ -N disconnection in 2-amino-5-	56
	alkyl-1,3,4-thiadiazole.	
Figure 3.4	Structure of carbonyl group	57
Figure 3.5	Structure of carbonyl group	57
Figure 3.6	Protonation of carbonyl carbon atom	58
Figure 3.7	Activation of carbonyl group with acids and	58
	hydroxylic solvent	
Figure 3.8	The general mechanism of the reaction of carbonyl	59
	and primary amine	
Figure 3.9	The mechanism of the reaction of carbonyl group	61
	with primary amines	
Figure 3.10	A two step preparation of 2-amino-5-phenyl-1,3,4-	63
	thiadiazole	
Figure 3.11	The mechanism of amminolysis of acid chloride	64
Figure 3.12	The mechanism of dehydrative cyclization of	65
	substituted thiosemicarbazide	
Figure 3.13	Retrosynthesis of amino ester	66
Figure 3.14	The mechanism of the reaction of amino group and	66
	acid chloride	
Figure 3.15	Mechanism of the amminolysis of ester	67

List of Schemes

Scheme 2.1	Derivative of thiosemicarbazole	26
Scheme 2-2	2-amino-5-phenyl-1,3,4-thiadazole	26
Scheme 2-3	2-amino-5-methyl-1,3,4-thiadazole	27
Scheme 2-4	2N(substituted)-amino-5-substituted-1,3,4-	27
	thiadiazole	
Scheme 2-5	N-substituted N-(5-aryl-1,3,4- thiadiazol)-2yl urea	28

List of Abbreviations

R.T = Room temperature

St = Stretching

S = Singlet

vib = Vibration

m = Multiplet

d = doublet

j = Coupling constant

p- = para

m- = meta

o- = ortho

g = gram

U.V = Ultra violet

¹H-NMR = Proton nuclear magnetic resonance

M.S = Mass spectroscopy

I.R = Infra red

 \Rightarrow = Transform

M.f = Molecular formula

M.p = Melting point

q = Quartet

mm = Millimeter

inh = Inhibition

Compd = Compound

rec = recrystallization