الآيــة

قال تعالى :

(اقْرأْ بِاسْمِ رَبِّكَ النِي خَلَقَ (1) خَلَقَ الإِنسَانَ مِنْ عَلَقٍ (2) اقْرأْ ورَبُّكَ الأَكْرَمُ (3) الَّذِي عَلَّمَ بِالْقَلَمِ (4) عَلَقٍ (2) اقْرأْ ورَبُّكَ الأَكْرَمُ (3) الَّذِي عَلَّمَ بِالْقَلَمِ (4) عَلَّمُ الإِنسَانَ مَا لَمْ يَعْلَمُ (5))

صدق الله العظيم سورة العلق، الآية (1-5)

Dedication

This research work is dedicated to:

My mother

My father

And
All those
Whom I love

Manahil

Acknowledgment

I would like to express my deep gratitude to my supervisor Dr. Kamal Mahir Sulieman for his guidance, without his help this work would be difficult, If not impossible to accomplish. Deep thanks to Dr. Awad Musa.

Thanks are also extended to all friends for their invaluable support.

My gratitude goes also to my family for their patience and financial support, especially my father.

In particular I feel in debated to any one whose works pushed me to continue this works and to go on.

My thanks to the Gadearf University for the scholarship.

Firstly and finally, thanks and praise be to Allah , the almighty.

الخلاصه

فى هذا البحث تم تناول اكسيد الخارصين ((ZnO) لاهميته كماده شبه موصله واستخدامها فى كثير من التطبيقات وتناولت الدراسه تاثير درجه الحراره على الخصائص الكهربيه (Resistance –Conductivity) ودراسة التركيب بواسطة الاشعه السينيه .

لإيجاد المقاومة والموصلية، تم دراسة ثلاثة عينات من اكسيد الخارصين التجاري ، والخارصين المؤكسد إلى أكسيد الخارصين في درجة حرارة 950 ° ° وكبريتيد الخارصين المؤكسد الى أكسيد الخارصين في درجة حرارة 550 ° ، حيث وجد أن العينات الثلاثة لها خواص شبيهة بخواص أشباه الموصلات، وأيضاً وجد أن المقاومة تقل بزيادة درجة الحرارة.

شُخنت العينات الثلاثة لأكسيد الخارصين ((ZnO في درجات حرارة مختلفة وتمت دراستها بواسطة الأشعة السينية (X-Ray).

استنتج من الدراسة أن درجة الحرارة لها تأثير وان أكسيد الخارصين التجاري ZnO هو الأفضل وربما يعزى ذلك الى درجة نقائه ونقصان في كمية الاكسجين لبقية المواد.

Abstract

This study aims to investigate the importance of ZnO as a semiconductor material, and its usages in various applications also the effect of temperature on electrical properties (Resistance-Conductivity), and the structure by X-Ray diffraction.

To find the Resistance and conductivity of ZnO, three sample of commercial ZnO, Zn oxided at 950 °C and ZnS oxided at 550 °C have been investigated, and it founded that all samples have a similar properties of semiconductors, and also founded that the Resistance decrese by the temperature while the conductivity increases.

The three samples of ZnO have been annealed at different temperatures and characterized using X-Ray.

The most important and the best finding achieved through the study is commercial ZnO powder has the best structure and electrical properties that the other and this maybe for the high purity of the powder and oxygen vacancy in the oxidized powders.

Table of Contents

Торіс	Page No
الاية	i
Dedication	ii
Acknowledgement	iii
الخلاصه	iv
Abstract	V
Table of continents	vi
List of figs	viii
List of table	X
Chapter (1)	
1.Introduction	1

1.1 Semiconductor materials	1
1.2 Basic principle of semiconductivity	2
1.3 Band structure of semiconductors	3
1.4 The importance of ZnO	4
1.5 Semiconductor as the nanometer scale	5
1.6 Free carrier concentration	5
1.6.1 Doping of semiconductors	6
1.6.2 Free carrier concentration in	7
semiconductor nanoparticles	
1.7 Aim of the work	7
1.8 Presentation of thesis	8
Chapter (2)	
2.Introduction	9
2.1 Crystal structure	9
2.2 lattice parameters	11
2.3 Electronic band structure	12
2.4 Properties of wurtzite ZnO	12
2.5Electrical Properties	14
2.5.1 Electrical Properties of Undoped ZnO	15
2.6 Optical properties	16
2.7Thermal properties	17
2.7.1Thermal expansion coefficient (TEC)	17
2.7.2 Thermal conductivity	18
2.8Brief overview of ZnO characteristics	19
Chapter (3)	
3.1Introduction	21
3.2 Materials	21
3.3 Apparatus	21
3.4 Methods	21
3.5 characterization techniques	23
3.5.1 X- ray Powder Diffraction	23
3.5.2 Generation of X- Ray	23
3.5.3 Bragg's law	25

3.5.4 Crystallite size measurement	27
3.5.5 Determination of lattice Parameters	31
Chapter (4)	
4. Result and discussion	32
4.1 Introduction	32
4.2 Data analysis	32
4.2.1 X- Ray diffraction analysis	32
4.2.2Electrical properties	33
4.2.3 Findings	34
4.3 Coclusions	60
5. Future work	60
References	61

LIST OF FIGURES

No of Figure	Name of figure	Page No
1.1	Band structure of a) an insulator, b)a	4
	semiconductor, and c)a conductor	
2.1	schematic representation of a wurtzitic Zno	10
	structure	
2.2	Wurtzite ZnO lattice parameters as a function of	18
	temperature	
2.3	Thermal conductivity of fully sintered ZnO heated	19
	from room temperature to 1000 °C	
3.1	Schemtic of simple electrical circuit	22
3.2	X-ray spectrum ,with a bremsstrahlung background	24
	and electrons excitations	
3.3	Bragg's diffraction condition	25
3.4	Schematic of asymmetric reflection in	26

	reciprocal space	
3.5	Effect of crystal size on diffraction	28
3.6	Effect of fine crystallite size on	29
	diffraction curves	
1.(a)	Relation between Temperature °C and	42
	Resistance (ohm) of ZnO	
1.(b)	Relation between Temperature °C and	43
	conductivity (ohm.cm) Of ZnO	
2.(a)	Relation between Temperature °C and	44
	Resistance (ohm) Of Zn	
2(b)	Relation between Temperature °C and	45
	conductivity (ohm.cm) of Zn	
3(a)	Relation between Temperature °C and	46
	conductivity (ohm.cm) of Zn	
3(b)	Relation between Temperature °C and	47
	-	
1 (-) \\DD	conductivity (ohm.cm) of ZnS oxidied 550 °C	40
1.(a) XRD	for ZnO annealed at Temperature = 300 °C	48
1.(b) XRD	for ZnO annealed at Temperature = 400 °C	49
1.(c) XRD	for ZnO annealed at Temperature = 500°C	50
1.(d) XRD	for ZnO annealed at Temperature = 600 °C	51
2.(a) XRD	for ZnO annealed at Temperature = 300 °C	52
2.(b) XRD	for ZnO annealed at Temperature = 400 °C	53
2.(c) XRD	for ZnO annealed at Temperature = 500°C	54
2.(d) XRD	for ZnO annealed at Temperature = 600 °C	55
3.(a) XRD	for ZnO annealed at Temperature = 300 °C	56
3.(b) XRD	for ZnO annealed at Temperature = 400 °C	57
3.(c) XRD	for ZnO annealed at Temperature = 500°C	58
3.(d) XRD	for ZnO annealed at Temperature = 600 °C	59

List of Table

No of Table	Name of Table	Page No
2.1	Measured and calculated lattice constants and u parameter of ZnO	11
2.2	Physical properties of wurtzite ZnO	13
4.1	Relation Between Temperature and Resistance of ZnO .	36
4.2	Relation Between Temperature and Resistance of Zn .	37
4.3	Relation Between Temperature and Resistance of ZnS	38
4.4	Relation between Temperature °C and conductivity (ohm.cm) of ZnO.	39
4.5	Relation between Temperature °C and conductivity (ohm.cm) of Zn.	40

4.6	Relation between Temperature °C and	41
	conductivity (ohm.cm) of ZnS.	