الآيسة

(رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعَمْتَ عَلَيَّ وَكُنْ أَشْكُر نِعْمَتَكَ الَّتِي أَنْعَمْتَ عَلَيَّ وَعَلَى وَالِدَيُّ وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وَأَدْخِلْنِي وَعَلَى وَالِدَيُّ وَأَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ وَأَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ } برحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ }

صدق الله العظيم

سورةالنمل،الآية (19)

I would like to dedicate this research to all those who always have been there for me.

To to the souls of my Father and mother

To my wife and son..

With much love

Isam

Acknowleagments

My greatest depth of gratitude must go to the Staff College of Graduates Studies, of them I would like to thank my supervisor, Dr. Mogahid Mohamed El Hassan who saved me from insensitivities and obscurities of research by his firm guidance and superior standing and knowledge.

My thanks are extended to my colleagues for their kind support and their beautiful friendship.

I would also like to thank my old and little family for their patience and support.

Abstract

The spread of multidrug-resistant (MDR) strains of *Mycobacterium tuberculosis* has become a major public health concern since these bacteria often cause incurable disease, even when expensive second- and third-line drugs are available.

This study aimed to identify *M. tuberculosis* among suspected tuberculous patients in Khartoum and Gazeera States by using conventional methods also to identify rifampicin resistance *M. tuberculosis* by amplifying rpoB gene, using polymerase chain reaction (PCR). Moreover, it aimed to detect *M. tuberculosis* from direct sputum by PCR.

Out of 228 of sputum samples, 128 and 100 were collected from suspected tuberculosis patients in Khartoum and Gezeera states respectively. Smears were made stained directly using Ziehl-Neelsen (ZN) stain. The results showed that, among Khartuom state suspected patients, 36 (21.7%) were positive for acid fast bacilli (AFB) while 92 (78.3) were negative, and among Gazeera state suspected patients 23(23%) were positive while 77 (77%) were negative. All sputum samples from Khartuom were inoculated on Lowenstein Jensen (LJ) medium and incubated aerobically at 37°C, the isolates showed obvious growth in 46 (36%) whereas 82 (64%) showed no growth, while samples from Gazeera were suspected to direct to PCR.

Selected biochemical tests were performed to all *Mycobacterium tuberculosis* complex (MTC) isolates of Khartuom state, the results revealed that all isolates were sensitive to Para-nitro benzoic acid (growth was inhibited by PNB), resistant to thiophene - 2 - carboxylic acid

hydrazide (TCH), positive for nitrate reduction and were catalase negative at 68°C.

All the forty six isolates that showed typical growth of MTC on LJ medium were subjected to PCR to amplify IS 6110 gene. The results indicate clearly that all isolates showed 123bp bands for IS6110 gene, Drug sensitivity tests were performed to all isolates, the results showed that 26(20.3%) as MDR-TB, 16 (34.8%) as sensitive to rifampicin, Isoniazid, Ethambutol and streptomycin, 2 (4.4%) as resistance to streptomycin, and 2(4.4%) as triple resistance to Isoniazid, Ethambutol and streptomycin.

The twenty six resistant isolates were subjected to PCR searching for rifampicin resistance gene (rpoB) with band equal to 193bp in size, the results showed existence of this band in 20.3% of the mycobacterium tuberculosis isolates, of them 86.7% had resistance to rpoB gene.

Regarding Gazeera state, out of 74 isolates the resistant strains were 25 (33%) only 19 (19%) gave band typical in size to the target gene rpoB (193bp) as indicated by standard DNA ladder for the present of rifampicin resistant gene, of them 76% had resistance to rpoB gene.

Due to the low sensitivity of ZN technique and the long time required to conduct drug susceptibility test (DST) through conventional method, the results concluded the PCR is a valuable, rapid and sensitive technique which can replace conventional method, and PCR is also useful when taken directly from sputum.

The study recommended that, PCR assay could be introduced as a diagnostic tool for tuberculosis, and recommended to support the development of new tools and enable their timely and effective use.

مستخلص الرسالة

بات انتشار المنفطرة السلية متعددة المقاومة للادوية من الشواغل الرئيسية للصحة العامة حيث ان هده البكتريا غالبا ما تسبب مرض عضال, بتوفر الادوي البديلة باهظة التمن.

هدفت هذه الدراسة للتعرف على المنفطرة السليب بين المرضى المشتبه إصابتهم

كل من ولاية الخرطوم و ولاية الجزيرة ، باستخدام الطرق التقليدية، والتعرف علي الجين (rpoB) المفاوم للمضاد ريفامبيسينبين السل متعدد المفاومة للادوية باستخدام تفاعل الجين البلمرة التسلسلي والدي المنافعة العزل المنفطرة السلية مباشرة من كهدف اخر.

من بين 228 من المرضى المشتبه إصابتهم بمرض السل تم جمع عدد منه وتمان وعشرون عينة من الخرطوم ومائة من الجزيرة.

ZN. أظهرت النتائج أنه من بين عينات ولاية الخرطوم36 (21%) كانت موجبه للعصيات المقاومة للاحماض، بينما 92 (78.3%) كانت سالبة. ولدى ولاية الجزيرة (23%) كانت موجبه للعصيات المقاومه للاحماض بينما 77 (77%) كانت سالبه.

فيما يخص المجموعة و لاية الخرطوم 46 (36) كانت نتائج موجبة لتزريع المنفطرة السلبب في وسط ليونيستين جنسن عند درجة حرارة 30° و 82 (64) اظهرت . وقد خضعت العينات من و لاية الجزيرة مباشرة لتفاعل البلمرة التسلسلي.

العينات الموجبة للتزريع خضعت للاختبارات البيوكميائية و اظهرت (100) لحامض البرانايتروبنزويك) مقاومة لحامض البرانايتروبنزويك) مقاومة للتيوفين 2- حمض كاربوكسيليك اسيد هيدرازيد ، موجبة لاختبار اختزال النترات وكانت سلبية لاختبار الكتاليزفي درجة حرارة 68 °م.

اظهرت اختبارات الحساسية للادوية ان 26 (20.3) منفطرة , متعددة المقاومة للادوية (34.8) فلنوع الاول من لادوية, سلالتين (4.4) مقاومة للادوية (34.8) فقط للستربتوميسين و الإيتامبوتول. فقط للستربتومايسين ، وسلالتين تلاتية المقاومة للايزونيزايد, الستربتوميسين و الإيتامبوتول. ستة واربعون (36) من عزل المنفطرة السلي اختبرت بواسطة تفاعل البلمرة التسلسلي. (100) من العزلات اظهرت حزمة مطابقة في القياس (123 bp) للجين المستهدف (156 من عزلات المنقطرة السلي المقاومة للادوية اختبرت بواسطة تفاعل البلمرة التسلسلي للجين المقاوم للرفامبسين اظهرت حزمة مطابقة في القياس (193bp). و20.3)

اما فيما يخص المجموعة ولاية الجزيرة خمسة وعشرون (25%) من عزلات المنفطرة السلي المقاومة للادوية اختبرت بواسطة تفاعل البلمرة التسلسلي للجين المقاوم للرفامبسين وكانت موجبة، بينما تسعة عشر (19%) اظهرت حزمة مطابقة في القياس (193bp) وكانت من بينهم (76%) مقاومة للجين (rpoB).

نتيجة لانخفاض حساسية الصبغه المفاومة للاحماض الفترة الطويلة المستغرفة لاداء التزريع واختبار الحساسية للادوية اظهرت النتائج بوضوح اهمية وحساسية وجدوى تفاعل البلمرة التسلسلي كاداة سريعة للتشخيص والكشف عن المتفطرة السلبية وللجين المقاوم للرفامبسين. كما انه يمكن استخدام تفاعل البلمرة التسلسلي مباشرة من الحشعة المريض.

اوصت الدر اسشة بضرورة اعتبار تفاعل البلمرة التسلسلي كاداة تسخيصية لمرض السل، كما اوصت بدعم وتطوير وسائل التشخيص الحديثة وتقييم نتائجها السريعة والدقيقة.

LIST OF CONTENTS

Topic	Page	
آية من القرآن الكريم	I	
Dedication	II	
Acknowledgment	III	
Abstract (English)	IV	
Abstract (Arabic)	V	
List of content	VI	
CHAPTER ONE INTRODUCTION AND OBJECTIVES		
1.1 Introduction	1	
1.2 Rationale	3	
1.3 Objectives	3	
1.3.1 General objective	3	
1.3.2 Specific Objectives	3	
CHAPTER TWO		
LITERATURE REVIEW		
2.1 Genus Mycobacterium	4	
2.1.1 Definition and Taxonomy	4	
2.1.2 Mycobacterial Taxonomy	5	
2.1.3 Classification	6	
2.1.4 Morphology and Structure Characteristics	7	
2.1.5 Microbiologic Characteristics of the Genus	8	
2.1.6 Mycobacterium tuberculosis Complex	8	
2.3 2.1.7 The Cell Wall	9	
2.1.8 Nutritional and Environmental Requirements for Growth	10	
2.1.9 Metabolic and Biochemical Markers	11	
2.1.10 Resistance to Physical and Chemical Challenges	13	
2.2 Pathogenesis	13	
2.2.1 Virulence Mechanisms	13	
2.2.2 Tuberculosis	14	
2.2.3 Primary Tuberculosis	14	
2.2.4 Secondary or Reactivated Tuberculosis	15	
2.2.5 Mode of Transmissions	15	
2.2.6 Prognosis	15	
2.2.7 Clinical Feature	16	
2.2.7.1 Pulmonary Disease	16	
2.2.7.2 Tuberculosis Meningitis	16	
2.2.7.3 Lymph Node Tuberculosis	17	
2.2.7.4 Bone and Joint Tuberculosis	17	
2.2.7.5 Gastrointestinal Disease	18	
2.2.7.6 Cutaneous Tuberculosis	18	
2.2.7.7 Genitourinary Tuberculosis	18	
2.3 Epidemiology	19	
2.4 Laboratory Diagnosis	21	
2.4.1 Conventional Methods for Identifying MTB	22	
2.4.1.1 Microscopic	22	

2.4.1.2 Traditional Culture Techniques	22
2.4.1.3 Biochemical Tests for Identification of MTB	23
2.4.1.4 Immunological Diagnosis	24
2.4.1.5 Molecular Diagnosis	24
2.4.1.5.1 Classical Polymerase Chain Reaction Method	24
2.5 Susceptibility Tests for MTB	25
2.6 Treatment	26
2.7 Multidrug Resistance Tuberculosis (MDR)	27
2.7.1 Epidemiology of Multidrug-Resistant TB	28
2.8 Molecular Basis of Drug Resistance	30
2.9 Rifampicin	30
2.10 Management of Drug-Resistant Tuberculosis	31
CHAPTER THREE	
MATERIAL AND METHODS	
3.1 Study Design	33
3.1.1. Type of The Study	33
3.1.2. Study Area	33
3.1.3. Study Population	33
3.1.4 Sample Size	33
3.2 Collection of Specimens	33
3.3 Conventional Identification of Mycobacterium species	33
3.3.1 Direct Ziehl-Neelsen Stain	34
3.3.2 Culture of Mycobacteria	34
3.3.2.1 Culture Media	34
3.3.2.2 Decontamination of Specimens	34
3.3.3 Isolation and Preservation Techniques	34
3.3.3.1 Isolation	34
3.3.3.2 Preservation	35
3.3.4 Identification	35
3.3.4.1 Primary Identification	35
3.3.4.1.1 Growth Rate	35
3.3.4.1.2 Pigment Production	35
3.3.4.2 Biochemical Test	36
3.3.4.2.1 Catalase Test	36
3.3.4.2.1.1 Heat Stable Catalase Test at (pH7/68 ⁰ C)	36
3.3.4.2.1.2 Semi-quantitative Catalase Test	36
3.3.4.2.2 Nitrate Reduction Test	36
3.3.4.2.3 Para Nitro-benzoic Acid (PNB) 500mg/l Susceptibility Test	37
3.3.4.2.4 Thiophen-2-carboxylic Acid Hydrazide (TCH) 5ug/ml	37
Susceptibility Test	37
3.3.5 Drug Susceptibility Test (DST) (Proportion Method)	37
3.3.5.1 Preparation of Stock Solution for Drugs	38
3.3.5.1.1 Isoniazid	38
3.3.5.1.2 Rifampicin	38
3.3.5.1.3 Dihydro-Streptomycin Sulfate	38
3.3.5.1.4 Ethambutol	38
3.3.6 Preparation of Drug Containing Media	38
3.3.6.1 Para Nitro-benzoic Acid	39

3.3.6.2 Thiophen-2-carboxylic Acid Hydrazide	39	
3.3.7 Quality Control of Prepared Media	39	
3.3.8 Preparation of Bacillary Suspension	39	
3.3.9 Preparation of McFarland Solution I	40	
3.3.2 Polymerase Chain Reaction Method	40	
3.3.2.1 DNA Extraction by Phenol-Chloroform	40	
3.3.2.2 Primers of Insertion Sequence IS6110	40	
3.3.2.3 Primers for rpoB 273 and rpo B105	40	
3.3.2.4 Preparation of PCR Mixture	41	
3.3.2.5 Polymerase Chain Reaction (PCR)	41	
3.3.2.6 Preparation of Agarose gel	41	
3.3.2.7 Visualization of PCR Product	41	
CHAPTER FOUR		
RESULT		
4.1 Epidemiological Findings	43	
4.1.1 Gender	43	
4.1.2 Age Group	44	
4.2 Bacteriological Findings	45	
4.2.1 Direct Ziel-Neelsen Staining	45	
4.2.2 Sensitivity of Smears vs. Culture	46	
4.2.3 Drug Susceptibility Test	47	
4.2.4 Isolates of MTB	48	
4.2.5 Growth Rate	48	
4.2.6 Indirect Ziehl-Neelsen Staining	48	
4.2.7 Cultural Characteristics	49	
4.2.8 Biochemical Tests	50	
4.1.9 Treatment status	50	
4.2.10 Drugs susceptibility Test	52	
4.3 Polymerase chain Reaction from culture	53	
4.3.1 Amplification of the IS6110 Target Sequences	53	
4.3.2 Detection of rpoB Gene	54	
4.4 Polymerase chain Reaction from direct sputum	55	
4.3.1 Amplification of the IS6110 Target Sequences	55	
4.4.2 Detection of rpoB Gene	56	
CHAPTER FIVE		
DISCUSSION		
Discussion	57	
CHAPTER SIX	-	
CONCLUSION AND RECOMMENDATIONS		
6.1 Conclusion	61	
6.2 Recommendations	62	
References	63	
APPENDICES		
Appendix-I	74	
Appendix-II	75	
Appendix-III	76	
Questionnaire	77	

List of Figures

Figure	Page
Figure 1: Distribution of patients with pulmonary infection according to gender in Khartoum and Gazeera.	43
Figure2: Correlation between age and Tuberculosis infection among target population in Khartoum and Gazeera	44
Figure 3: The results of direct smears using ZN technique among enrolled patients in Khartoum and Gazeera	45
Figure 4. The results of culture technique among an enrolled patients in Khartoum state.	47
Figure 5. The results of drug susceptibility test among target patients in Khartoum State	48
Figure 6. Result of indirect ZN stains showing acid fast bacilli	49
Figure 7 . Characteristic growth of a 3 weeks old culture of <i>M. tuberculosis</i> on LJ medium	50
Figure 8 . Results of catalase test; positive to the left side and negative on right side	52
Figure 9. Results of nitrate reduction test	53
Figure 10 . The amplicon of <i>IS 6110</i> (123bp) on agrose gel after stained with ethidium bromide	54
Figure 11. The amplicon of rpoB gene (193bp) on agrose gel after stained with ethidium bromide	55
Figure 12 . The amplicon of <i>IS 6110</i> (123bp) on agrose gel after stained with ethidium bromide	56
Figure 13. The amplicon of rpoB gene (193bp) on agrose gel after stained with ethidium bromide	57

List of Tables

No	Description	Page
1	Table 1; Different treatment status among enrolled	50
	patients in Khartoum and Gazeera States	
2	Table 2. The result of selected biochemical tests	51