

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

قال الله تعالى :

قال يا قوم أرأيتم إن كنتم على بيته من رب
ورزقني منه رزقا حسنا وما أريد أن أخالفكم
إلى ما أنهاكم عنه إن أريد إلا الإصلاح ما
استطعت وما تؤدي فيقي إلا بالله عليه توكلت
وإليه أنيب (88)

صدق الله العظيم

سورة هود الآية 88

Dedication

To my parents who support me
throughout my life.

To my supervisor Dr. Humodi Ahmed
Saeed

To the coming generation that I hope
will benefit from my work.

Acknowledgement

First of all thanks to Allah that my work is brought to reality.

Thanks to my supervisor Dr. Humodi Ahmed Saeed who was so kind, patient and stood beside me along the way to here.

My thanks are extended to Dr. Mogahid Mohammed Elhassan for his efforts in the performance of Multiplex PCR.

Finally, thanks to Miss. Suheir Ramadan and Miss. Igbal A. Ahmed for their technical assistance.

Abstract

Extended-spectrum β -lactamases (ESBLs) have become widespread throughout the world and are now found in a significant percentage of *Citrobacter youngae* and other enterobacteriaceae strains in certain countries. This study was conducted in the Research Laboratory in Sudan University of Science and Technology. The study was carried out during the period from December 2009 to May 2010, to detect TEM, SHV and CTX-M genes in ESBLs-producing *C. youngae*.

Six *C. youngae* strains were obtained from the Research Laboratory. All strains were checked for purity by sub-culturing on nutrient agar and examined microscopically. Bacterial DNA was extracted from each isolate using boiling method. Multiplex PCR was adopted to detect these genes. The result revealed the presence of *TEM* gene only in four of the isolates. It is concluded that, *TEM* gene is the commonest gene in *C. youngae* isolates. Further studies with large number of bacterial isolates are required to evaluate this result.

المستخلص

تعتبر الإنزيمات الممتدة الطيف منتشرة في كل العالم وتوجد بنسبة وافية في سلالات الليمونية اليوذ قية والسلالات الأخرى ضمن عائلة الأمعاءيات في دول معينة. هذه الدراسة تُقدّم في مختبر البحوث في جامعة السودان للعلوم والتكنولوجيا في الفترة من ديسمبر/ 2009 إلى مايو/ 2010، للكشف عن الجينات (*TEM* و *SHV* و *CTX-M*) في الليمونية اليوذ قية المنتجة لإنزيمات بيتا لاكتام واسعة الطيف.

تم الحصول على ستة عزلات الليمونية اليوذ قية من مختبر البحوث بالجامعة والتأكد من نقاوتها بإعادة تزريعها على الأجار المغذي ومن ثم فحصها مجهريا. تم استخلاص الحمض النووي منقوص الأكسجين للسلالات باستعمال طريقة الغليان. استخدمت طريقة تفاعل البلمرة المتسلسل المتعدد الإرسال للكشف عن هذه الجينات. أظهرت النتيجة وجود الجين *TEM* في أربع عزلات. وخلصت الدراسة إلى أن الجين *TEM* هو الأكثر شيوعا في سلالات الليمونية اليوذ قية. وان دراسات اضافية بعدد أكبر من العزلات الباكتيرية مطلوبة لإثبات هذه النتيجة.

Table of Contents

1	ةالا	I
DEDIC	Dedication	II
3	Acknowledgement	III
4	Abstract	IV
5	Arabic Abstract	V
6	Table of Contents	VI
7	List of Abbreviations	IX
Chapter One: Introduction		
1.1	Introduction	1
1.2	Rationale	2
1.3	Objectives	3
Chapter Two: Literature Review		
2.1	<i>Citrobacter</i>	4
2.1.2	Clinical significance of <i>Citrobacter youngae</i>	5
2.2	Antibiotic resistance	5
2.2.1	Extended-spectrum beta-lactamases (ESBL)	6
2.2.2	ESBL-producing bacteria	8
2.2.3	ESBLS classification and properties	8
2.2.4	Selection of ESBLs	9
2.2.5	Detection of ESBLs	11
2.2.6	Prevention	13
Chapter Three: Materials and Methods		
3.1	Study design	14
3.1.1	Type of study	14
3.1.2	Study area	14
3.1.3	Duration of study	14
3.1.4	Bacterial strains	14
3.2	Activation of bacterial strains	14
3.2.1	Purification of bacterial strains	15
3.3	Molecular Methods	15
3.3.1	Preparation of reagents	15
3.3.1.1	Primers	15

3.3.1.2	Preparation of 10x TBE buffer	16
3.3.1.3	Preparation of 1x TBE buffer	16
3.3.1.4	Preparation of agarose gel	16
3.3.1.5	Preparation of ethidium bromide	16
3.3.1.6	Preparation of loading dye	16
3.3.2	DNA extraction	17
3.3.2.1	Preparation of bacterial strains	17
3.3.2.2	Extraction procedure	17
3.4.3	Detection of DNA	17
3.4.4	Multiplex Polymerase Chain Reaction Techniques	18
3.4.4.1	Preparation of master mix	18
3.4.4.2	PCR amplification	18
3.4.4.3	Visualization of PCR products	19
Chapter Four: Results		
4.1	Source of <i>C. youngae</i> clinical isolates	20
4.2	Reactivation of bacterial strains	20
4.3	Purification of bacterial strains	20
4.4	Multiplex PCR Technique	20
Chapter Five: Discussion, Conclusion and Recommendations		
5.1	Discussion	22
5.2	Conclusion	22
5.3	Recommendations	23
	References	24

List of Abbreviations

BP	Base pair
CTX-M	Cefotaxime
DW	Deionized water
DNA	Deoxynucleic acid
dNTPs	Deoxynucleotide pyrimidines
DDD	Double Disc Diffusion
ESBLs	Extended Spectrum Beta Lactamases
M	Marker
MgCL ₂	Magnesium chloride
NA	Nutrient Agar
PCR	Polymerase Chain Reaction
SHV	Sulphydryl variable
TBE	Tris base Boric acid EDTA
TEM	Temoniera
UV	Ultraviolet Light