

قال تعالى :

وَيَسْأَلُونَكَ عَنِ الرُّوحِ [فَلِ الرُّوحِ مِنْ أَمْرِ رَبِّيِّ وَمَا أَوْتَيْتُمْ مِنَ الْعِلْمِ إِلَّا قَلِيلًا]

صدق الله العظيم

سورة الإسراء الآية 85

Dedication

I dedicate this research to

My great father My
great mother.....

Who taught me how I could be human ate

My brothers and sisters For their
support and kindness

My friends and my colleagues.....

Acknowledgement

First, praise to almighty Allah who gave me power, patience and ability
.to complete this research

I am particularly indebted to my supervisor Dr. Mogahid Mohammed
Elhassan for his guidance, advice and encouragement during the study
.period, for them I convey my thanks and gratitude

In this respect I would like to express my appreciations and gratitude to
Mr.Muatsium Ahmed Mohammed and Miss. Nuha Yousif Ibrahim
researchers' at the National Tuberculosis Reference Lab, for their
valuable ideas and discussion in both practical and theoretical aspects of
this study.

I would like to express my deep gratitude to all staff member in National
Tuberculosis Reference Lab, Miss. Ramia Mohammed and Mr. Ahmaed
Hassn

In this moment I can only keep silent in front of the support and
continuous encouragement of my family father, mother, sisters, and
brothers.

Abstract

The spread of multidrug-resistant (MDR) strains of *Mycobacterium tuberculosis* has become a major public health concern since these bacteria often cause incurable disease, even when expensive second- and third-line drugs are available.

This study aimed to identify *M. tuberculosis* among suspected tuberculous patients in Khartoum State by using conventional methods also to identify rifampicin resistance *M. tuberculosis* by amplifying (rpo B) gene, using polymerase chain reaction (PCR).

128 sputum samples were collected from suspected tuberculosis patients. Direct smears were performed by using ZN stains, the results showed that 36 (21.7%) were positive for AFB while 92 (78.3) were negative. All sputum samples were inoculated on Lowenstein Jensen medium and incubated aerobically at 37°C, the isolates showed obvious growth in 46 (36%) whereas 82 (64%) showed no growth.

Selected biochemical tests were performed to all *Mycobacterium tuberculosis complex* (MTC) isolates, the results revealed that all isolates were sensitive to Para-nitro benzoic acid (growth was inhibited by PNB), resistant to Thiophene - 2 - Carboxylic Acid Hydrazide (TCH), positive for nitrate reduction and were Catalase negative at 68°C.

All the forty six isolates that showed typical growth of MTC on LJ medium were subjected to PCR to amplify (IS 6110) gene .The results indicate clearly that all isolates showed positive results for (IS 6110), 123bp.

Drug sensitivity tests were performed to all isolates, the results showed that 26 (56.5%) as MDR-TB, 16 (34.8%) as sensitive to rifampicin, Isoniazid, Ethambutol and streptomycin, 2 (4.4%) as resistance to streptomycin, and 2(4.4%) as triple resistance to Isoniazid, Ethambutol and streptomycin.

The thirty resistant isolates were subjected to PCR searching for rifampicin resistance gene (*rpoB*) with band equal to 193bp in size, the results showed existence of this band in (86.7%). Due to the low sensitivity of ZN technique and the long time required to conduct Drug susceptibility Test (DST) through conventional method, the results concluded the PCR is evaluable, rapid and sensitive technique which can replace conventional method.

الكلمات المفتاحية

بات انتشار المنفطرة السلية متعددة المقاومة للأدوية من الشواغل الرئيسية للصحة العامة، حيث أن هذه البكتيريا غالباً ما تسبب مرض عossal، حتى بتوفر الأدوية البديلة باهظة الثمن.

هدفت هذه الدراسة للتعرف على المنفطرة السلية بين المرضى المشتبه بإصابتهم بالسل في ولاية الخرطوم، باستخدام الطرق التقليدية، والتعرف على الجين المقاوم ريفامبيسين (rpo B) بين السل متعدد المقاومة للأدوية باستخدام تفاعل البلمرة التسلسلي.

تم جمع عدد مئة وثمان وعشرون من عينات التفاف من المرضى المشتبه بإصابتهم بالسل،

أظهرت 36 (21.7%) نتائج موجبة للعصويات المقاومة للأحماض، 46 (36%) أظهرت نتائج موجبة لترزير المنفطرة السلبية في وسط ليونيستين جنسن عند درجة حرارة 37°C و 82 (64%) أظهرت نتائج سالبة.

العينات الموجبة لترزير خضعت لاختبارات البيوكيمائية وأظهرت حساسية بنسبة (100%) لحامض البرانايتروبنزويك (تمثيل النمو واستطحاح البرانايتروبنزويك)، مقاومة للثيوفين - 2 - حمض كاربوكسيليك أسيد هيدرازيد، موجبة لاختبار اختزال النترات وكانت سلبية لاختبار الكتاليزفي درجة حرارة 68°C .

أظهرت اختبارات الحساسية للأدوية بـ 26 (56.5%) منفطرة سلية، متعددة المقاومة للأدوية، 16 (34.8%) سلالة حساسة النوع الأول من لأدوية، سلالتين (4.4%) مقاومة فقط للستريتومايسين، و سلالتين ثلاثة مقاومة للايزونيزايد، الستريتومايسين والإيثامبوتول.

ستة وأربعون (36 .%) من عزل المنفطرة السلبية اختبرت بواسطة تفاعل البلمرة التسلسلي.(100 .%) من العزلات أظهرت حزمة مطبقة في القياس(123 bp) للجين المستهدف

(IS 6110). ثلاثة من عزلات المنفطرة السلبية المقاومة للأدوية اختبرت بواسطة تفاعل البلمرة التسلسلي للجين المقاوم للرفامبسين، أظهرت حزمة مطابقة في القياس (193 bp) بنسبة (86.7 .%). نتيجة لانخفاض حساسية الصبغة المقاومة للأحماض، الفترة الطويلة المستغرقة لداء التزريع و اختبار الحساسية للأدوية ، أظهرت النتائج بوضوح أهمية ، وحساسية، وجدو تفاعل البلمرة التسلسلي كأداة سريعة لتشخيص والكشف عن المتفطرة السلبية وللجين المقاوم للرفامبسين .

TABLE OF CONTENTS

2.6 Diagnosis of Tuberculosis	9
2.6.1 Specimen	10
2.6.2 Transportation of Specimen	11
2.6.3 AFB smears staining	12
2.6.4 Culture technique of sputum	12
2.6.5 Decontamination and homogenization	13
2.6.6 Culture Media	13
2.6.7 Identification	14
2.6.8 Molecular characterization	15
2.6.9 Genotypic methods	15
2.6.10 Polymerase chain reaction	15
2.7 Treatment	16
2.7.1 Treatment Regimens	18
2.7.2 Chemotherapy	19
2.7.2.1 Isoniazid	19
2.7.2.2 Rifampicin	19
2.7.2.3 Ethambutol	20
2.7.2.4 Streptomycin	20
2.8 Drug Resistance Mechanisms	20
2.8.1 Natural Drug Resistance	20
2.8.2 Acquired Drug Resistance	21
2.9 Multi-drug resistant Tuberculosis MDR-TB	21
2.10 Control of Infection	22
2.10.1 Direct Observation-Short Course Strategy (DOST)	22
2.10.2 Vaccination	23
2.11 Bio-safety in Mycobacteriology Laboratory	24

2.11 Epidemiology of Tuberculosis	25
CHAPTER THREE MATERIALS AND METHODS	
3.1 Study Design	27
3.1.1. Type of the Study	27
3.1.2. Study Area	27
3.1.3 Study Population	27
3.2 Collection of Specimens	27
3.3 Identification of Mycobacterium (Conventional Methods)	27
3.3.1 Direct Ziehl-Neelsen Stain	27
3.3.2 Culture of Mycobacteria	28
3.3.2.1 Culture Media	28
3.3.2.2 Decontamination of Specimen	28
3.3.3 Isolation and Preservation Techniques	28
3.3.3.1 Isolation	29
3.3.3.2 Preservation	29
3.3.4 Identification	29
3.3.4.1 Primary Identification	29
3.3.4.1.1 Growth Rate	29
3.3.4.1.2 Pigment Production	29
3.3.4.2 Biochemical Test	29
3.3.4.2.1 Catalase Test	29
3.3.4.2.1.1 Heat Stable Catalase Test at (pH7/68 ⁰ C)	29
3.3.4.2.1.2 Semi-quantitative Catalase Test	30
3.3.4.2.2 Nitrate Reduction Test	30
3.3.4.2.3 Para Nitro-benzoic Acid (PNB) 500mg/l Susceptibility Test	31

3.3.4.2.4 Thiophen-2-carboxylic Acid Hydrazide (TCH) 5ug/ml Susceptibility Test	31
3.3.5 Drug Susceptibility Test (DST)(Proportion Method)	31
3.3.5.1 Preparation of Stock Solution for Drugs	32
3.3.5.1.1 Isoniazid	32
3.3.5.1.2 Rifampicin	32
3.3.5.1.3 Dihydro-Streptomycin Sulfate	32
3.3.5.1.4 Ethambutol	32
3.3.6 Preparation of Drug Containing Media	32
3.3.6.1 PNB	33
3.3.6.2 TCH	33
3.3.7 Quality Control of Prepared Media	33
3.3.8 Preparation of Bacillary Suspension	33
3.3.9 Preparation of McFarland Solution	33
3.3.2 Polymerase Chain Reaction Method	33
3.3.2.1 DNA Extraction by Boiling	33
3.3.2.2 Primers of Insertion Sequence <i>IS6110</i>	34
3.3.2.3 Primers of Insertion Sequence <i>rpoB273</i> and <i>rpoB105</i>	34
3.3.2.4 Preparation of PCR Mixture	34
3.3.2.5 Polymerase Chine Reaction (PCR)	34
3.3.2.6 Preparation of Agarose \	35
3.3.2.7 Visualization of PCR Product	35
CHAPTER FOUR RESULTS	
4.1 Epidemiology Finding	36
4.1.1 Gender	36
4.1.2 Age Group	36

4.1.2 Sensitivity of Smears and Culture	37
4.1.3 Drug Susceptibility Test	38
4.1.4 Multi-drug Resistant	39
4.2 Bacteriological Finding	39
4.2.1 Direct Ziel-Neelsen Staining	39
4.2.2 Isolate of MTB	39
4.2.3 Growth Rate	39
4.2.4 Indirect Ziehl-Neelsen Staining	40
4.2.5 Cultural Characteristics	40
4.2.6 Biochemical Tests	41
4.2.7 Drug susceptibility Test	42
4.3 Polymerase chain Reaction	42
4.3.1 Amplification of the <i>IS6110</i> Target Sequences	42
4.3.2 Detection of <i>rpoB</i> Gene	43
CHAPTER FIVE DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS	
5.1 Discussions	45
5.2 Conclusion	48
5.3 Recommendation	48
REFERENCES	49
APPENDICES	
APPENDIX I	57
Preparation of media (Lowenstein-Jensen Egg medium)	57
APPENDIX II	58
1. Ziehl-Neelsen Staining	58
2. NaOH	59

3. N HCL	59
4. Phosphate buffer solution (PBS):pH7	59
5. Tween reagent	59
6. Tween80-hydrogen peroxide mixture	59
7. Nitrate substrate solution	60
8. Lame Reagent	60
APPENDIX III	61
Questionnaire	61

List of Figures

Figure 1. Distribution of patients with pulmonary infection according to gender	35
Figure 2. Correlation between age and MTB	36
Figure 3. The results of direct smears using ZN technique among annulled patients	36
Figure 4. The results of culture technique among annulled patients	37
Figure 5. The results of drug susceptibility test	37
Figure 6. . Result of indirect ZN stains showing acid fast bacilli	40
Figure 7. Characteristic growth of a 3 weeks old culture of M. tuberculosis on LJ medium	40
Figure 8. Results of catalase test; positive to the left side and negative on right side	41
Figure 9. . Results of nitrate reduction test from the left; first tube is negative, 2 is faint, 3, +; 4, ++; 5, +++; 6, +++++	42
Figure 10. The amplicon of IS 6110 gene (123bp) on agrose gel after stained with ethidium bromide. lane 1, MW marker, lane 2, control negative, lane (3,,4,5,6,7,8,9,10,11,12and 13) patients samples showing positive results for IS 6110 gene	43
Figure 11. The amplicon of rpoB gene (193bp) on agrose gel after stained with ethidium bromide. Lane 1 MW marker, lane 2 control negative, lane (3, 4,5,6,7 and 8) patients samples showing positive results for rpoB rifampicin resistant gene.	44

List of Tables

Table 1. Multi-drug resistant (Old and New cases)	38
Table 2. The result of selected biochemical test	40