بسم الله الرحمن الرحيم

Sudan University of Sciences & Technology

College of post graduate Studies and Scientific Research

Estimation of Bone Scientigraphy Accuracy in Diagnosis of Multiple Myeloma with bone scientigraphy

Thesis submitted for partial fulfillment for the award of M.Sc. degree in nuclear medicine technology

By:

Sharaf Ali Ahmed Shareef

B.Sc. in Diagnostic Radiology (2007)

Supervisor:

Dr. M. Elfadhel Mohammed

April2011

بسم الله الرحمن الرحيم

الرحمن: 1-6

Abstract

Multiple myeloma is one of common cancer in Sudanese people and it's once of common cause of cancer death and want good diagnosis to begin the first road to kill this disease. Therefore evaluation of multiple myeloma with bone scientigraphy it's crucial. Hence the main objective of this study is to evaluate the multiple myeloma by using bone scientigraphy with 99mTc-MDP. The data of this study was collected from 50 patients of multiple myeloma attending to RICK (Radiation and Isotope Center of Khartoum) and RICA (Radiation and Isotopes Center of Al-jazeera). The procedure done by taking 25 mCi of Tc-99m MDP utilizing 3 hour delayed regional planar images on a Mediso SPECT (Single Photon Emission Computed Tomography) body scan and get all last investigations done as laboratory tests, bone marrow aspiration, and X-ray from the patient's file. The bone scientigraphy analysis to show the accuracy of bone scientigraphy by comparing with X-ray and was comparing the bone scientigraphy with other investigations to evaluate the bone scientigraphy.

The results of this study showed that there is a high incidence multiple myeloma in male than female almost two folds, were 32 (64%) male and 18 (36%) female. The age of the patient ranged from 27-80 years with a higher incidence of multiple myeloma in the age ranged between 59 to 80 years (48%). The bone scientigraphy demarcated 32 (64%) as have multiple myeloma, while X-ray reveals 44 (88%) patients as having typical characteristics of multiple myeloma out of 50 patients. Laboratory test result for multiple myeloma patients which include HB, WBC, Platelets and calcium in general they are within the normal limits.

ملخص الدراسة

سرطان المايلوما المتعددة من السرطانات المنتشره في السودان أحد أنواع

السرطانات المسببه للوفاة ويحتاج الى تشخيص جيد للبدء في أول الطرق لل قضاء على هذا المرض لذلك ت قويم المايلوما المتعددة بواسطة فحص العظام باستخدام النظائر المشعة يعتبر من الأهميه بمكان لذا كان الهدف الأساسى من قيام هذه الدراسه هو ت قويم المايلوما المتعددة بواسطة فحص العظام باستخدام التكنيشيوم المشع المحمل بالميثالين داي فوسفانيت. أجريت على المرضى عملية ح قن بالمادة المشعة التكنيشيوم المحملة بال أم دي بي وبعد ثلاث ساعات أجريت لهم عملية التصوير فحص العظام بواسطة الرقاما كاميرا لكافة الهيكل العظمي، كما قورنت نتائج فحص العظام بالمادة المشعة بفحوصات المريض السابرة مثل فحوصات المختبر، فحص نخاع العظام المخبري، وكذلك فحص العظام بالأشعة السينية.

النتائج التي ظهرت من خلال هذه الدراسة أن مرض المايلوما المتعدد أكثر انتشاراً في الذكور 32 (64%) من الإناث 18 (36%)، كما أن أعمار الحالات محل الدراسة هم من بين 27 إلى 80 سنه ولوحظ أن هذا المرض أكثر انتشاراً في الأعمار من 59 إلى 80 سنة (48%). أظهر فحص العظام بواسطة التكنيشيوم المحمل بإم دي بي 32 حالة (64%) بأنها تحمل المايلوما المتعدد، في حين أن الأشعة السينية أظهرت 44 حالة (88%) بأنها تحمل ذلك المرض. الفحوصات المخبرية التي أجريت لهؤلاء المرضى هي فحص الهيمو قلوبين، كريات الدم البيضاء، الكالسيوم، وكذلك الصفائح الدموية وكانت النتائج بشكل عام في العد العادي أي لا يوجد اختلاف كبير عن الشخص الصحيح.

Dedication

With my love and appreciation I dedicate this thesis:-

To my father's soul,

To my mother for her endless support and who always prays for me,

To any one who ever taught me,

To my brothers and sisters,

To my colleagues and to all people that I do love and respect.

Acknowledgement

Firstly Praise and thanks are due to *Allah*, the lord creator.

Secondly I would like to express my sincere thanks and gratefulness to my supervisor *Dr. Mohammed AL-fadel Mohammed* for his continuous guidance, supervision and patience during the preparation of this thesis.

Thanks are also due to the staff of Chemistry and Radioisotope department specially nuclear medicine department in Radiation and isotopes Centre of Khartoum (RICK) and Radiation and isotopes Centre of Al-jazeera (RICA) staff for their grateful Co- operation during this study.

Thanks are also extended to the staff of department of documentation and statistic department of Radiation and isotopes Center of Khartoum and Aljazeera.

Finally, thanks for all those who helped me in the preparation and improvement of this thesis.

Last not least thanks to the department of nuclear medicine, college graduate studies and Sudan University of Science and Technology for giving me the chance to do my M.Sc. study.

LIST OF CONTENTS

Content Page

	No.
The study title	I
الآية ال قرآنية	II
Abstract (English)	III
Abstract (Arabic)	IV
Dedication	V
Acknowledgement	VI
List of Contents	VII
List of Tables	XII
List of Figures	XIII
List of Abbreviations	XIV
CHAPTER ONE (INTRODUCTION)	
1-1 Introduction	2
1-2 objectives	7
1-3 Significance of the study	8
1-4 Overview of the study	8
CHAPTER TWO(LITERATURE REVIEW	/)
2-1 Structure and morphology of plasma cells	10
2-1-1 Light microscopy	10
2-1-2 Electron microscopy	12
2-1-3 Establishing clonality of plasma cells in myeloma and	13
other plasma cell disorders	
2-1-4 Immunophenotypic features	13

2-1-5 Variations in plasma cell morphology in myeloma and	16
their significance	
2-1-6 Detection of circulating plasma cells	18
2-1-7 Development of plasma cells	19
2-1-8 Plasma cell proliferation in myeloma and its	22
significance	
2-1-8-1 Role of IL-6 in normal and malignant plasma cells	23
2-1-8-2 Role of soluble IL-6 receptors (sIL-6R) in myeloma	24
2-1-8-3 Role of IL-1b	24
2-1-8-4 PCLI	25
2-1-8-5 Other factors that influence plasma cell proliferation in	26
myeloma	
2-2 Immunoglobulins	28
2-2-1 Genetics of immunoglobulin synthesis	28
2-2-2 Structure of the immunoglobulins	33
2-2-2-1 Heavy- and light-chain structure	33
2-2-2 Hinge region	35
2-2-3 Enzymatic fragmentation	35
2-2-4 Somatic mutations of immunoglobulins	36
2-2-4 Immunoglobulin subtypes	36
2-2-4-1 Immunoglobulin G (IgG)	36
2-2-4-2 Immunoglobulin A (IgA)	37
2-2-4-3 Immunoglobulin M (IgM)	39
2-2-4-4 Immunoglobulin D (IgD)	40
2-2-4-5 Immunoglobulin E (IgE)	41

2-3 Imaging of Multiple Myeloma	42
2-3-1 Radiographic skeletal survey	43
2-3-2 Computed Tomography (CT)	44
2-3-3 Magnetic Resonance Imaging (MRI)	45
2-3-3-1 Normal marrow on MRI scans	45
2-3-3-2 Types of MRI sequences	46
2-3-3-3 Bone marrow MRI changes in myeloma	48
2-3-4 Nuclear Medicine (Radionuclide) scan	51
2-3-4-1 Positron Emission Tomography (PET)	51
2-3-4-2 Technetium-99m-MIBI Scintigraphy	57
2-4 Investigation of multiple myeloma	64
CHAPTER THREE (MATERIAL & METHODS)	
3-1 Materials	70
3-2 Study Methodology	70
3-2-1 Study design	70
3-2-2 Area of the study	
3-2-3 Sample size	71
3-2-4 Study Population	71
3-2-5 Methods of data collection	71
Preparation	71
Imaging Technique	73
CHAPTER FOUR(RESULTS)	
4-1 Results	74

CHAPTER FIVE (DISCUSSION & CONCLUSION)	
5-1 Discussion	83
5-2 Conclusion	85
5-4 Recommendations	86
References	87
Appendices	98

LIST OF TABLES & FIGURES

LIST OF TABLES

Table	Page No.
Table 2-1 Immunophenotypic features of normal and malignant plasma cells	14
Table 2-2: Properties of human immunoglobulins	38
Table 2-3: Properties of IgG subclasses	38
Table 2-4: Patterns of normal bone marrow signal on T1-weighted MRI of the spine in different age groups	47
Table 2-5: overall background marrow signal: comparison of normal and abnormal	49
Table 2-6 Semiquantitative scoring of 99mTc-MIBI bone marrow uptake according to its extension (E-score)	60
Table 2-7 Use of Tc-99m-MIBI scientigraphy in multiple myeloma	62
Table 4.1: The frequency distribution of gender for multiple myeloma patients	75
Table 4-2: The frequency distribution of the age for multiple myeloma patients	76

Table 4-3: a confusion matrix shows the sensitivity of bone scientigraphy "rows"	
in demonstrating multiple myeloma as seen or unseen, while the columns shows	78
the sensitivity of X-Ray	
Table 4-4: The mean values laboratory tests of multiple myeloma patients	79
compared to the normal values (reference)	79
Table 4-5 the mean, max and min values of the lab test for the multiple myeloma	70
patients according to its manifestation status on the bone scan	79
Table 4.6 a linear regression results using stepwise method, lab test use as	80
independent variable and nuclear medicine results as dependant one	80
Table 4-7 one way analysis of variance of the lab test result to	
test the significant difference between the seen and unseen	
group of the multiple myeloma patients in respect to nuclear	81
medicine	

LIST OF FIGURES

Figure	Page No.
Figure 2.1 : Normal mature plasma cell. Note the clumped chromatin, eccentric nucleus, and perinuclear hof.	11
Figure 2.2 Electron micrograph of normal plasma cell showing abundant endoplasmic reticulum (ER),Golgi apparatus (GA), and mitochondria (M).	12
Figure 2.3 Plasmablast (arrow). Note the fine chromatin, large nucleus, scanty cytoplasm, and absence of perinuclear hof.	17
Figure 2.4 Immature plasma cell. Note the resemblance of the nucleus to those of plasmablasts, but immature plasma cells have bundant cytoplasm	19
Figure 2-5: Maturation of B cell to plasma cell and memory cell by antigenic stimulation.	21
Figure 2-6: Plasma cell labeling index (PCLI).	26
Figure 2-7: Diagram of immunoglobulin molecule structure	30
Figure 2-8: Diagram of immunoglobulin heavy- and light-chain loci.	30
Figure 2-9: diagram of the VDJ heavy-chain gene recombination and initial mRNA splicing to form μ - or δ -chain mRNA.	31

Figure 2-10: Diagram of k-chain gene recombination.	31
Figure 2-11: Diagram of IgA and secretory IgA (sIgA) molecules.	41
Figure 2-12: Diagram of IgM pentameric structure	41
Figure 2-13: lateral view of the skull. Multiple punched-out lytiv lesions are present in the calvarium	43
Figure 2-14: Diffuse marrow involvement.	47
Figure 2-15 Patterns of spinal involvement in myeloma	50
Figure 2-16 Effects of radiation on bone marrow.	50
Figure 2.17 PET-identified sites of osseous myeloma with CT correlation	52
Figure 2-18 show high level of markers correlation with a higher uptake of radiotracer	59
Figure 4.1: A Pie plot demonstrates the percentage distribution of gender for multiple myeloma patient patients.	75
Figure 4-2: shows the percentage of levels the age value of multiple myeloma patients.	76
Figure 4-3 scatter plot with a trend line shows the linear relationship between the age and the frequency of multiple myeloma where it increase linearly with age.	77
Figure 4-4: a bar graph shows the percentage of frequency distribution of the sensitivity of bone scientigraphy and X-Ray in detecting multiple myeloma	78
Figure 4-5 a line plot shows the mean values of the lab test for multiple myeloma patients classified as depicted on bone scan. Platelet shows obvious variation.	80

LIST OF ABBREVIATIONS

APC Antigen Presenting Cells

bFGF basic fibroblast growth factor

CBC Complete Blood Count

CD Cluster of Differentiation

CDRs Complementary Determining Regions

CNS Central Nervous System

CRP C-reactive protein

CT Computed Tomography

E Extension

ECOG Eastern Cooperative Oncology Group

ER Endoplasmic Reticulum

FDG Fluorodeoxyglucose

FISH Fluorescence In Situ Hybridization

FRs Framework Areas

GA Golgi Apparatus

Hb Hemoglobin

l Intensity

IgG Immunoglobulin G

IL Interleukin

M Mitochondria

MGUS Monoclonal Gammopathy of Undetermined

Significance

MHC Major Histocompatibility Complex

MIBI Methoxyisobutylisonitrile

MIG Monoclonal Immunoglobulin

MM Multiple Myeloma

MRI Magnetic resonance imaging

NM Nuclear Medicine

OAF Osteoclast Activating Factor

PCLI plasma cell labeling index

PET Positron Emission Tomography

POEMS Polyneuropathy, Organomegaly, Endocrinopathy,

Monoclonal gammopathy, and Skin changes

syndrome

RNA Ribonucleic Acid

SIFE Serum Immunofixation Electrophoresis

SPECT Single photon emission computed tomography

SPEP Serum Protein Electrophoresis

STK Serum Thymidinekinase

Tc-99m- Technetium-99m Methylene Diphosphonate

MDP

TGF Transforming Growth Factor

TNF Tumor Necrosis Factor

UIFE Urine Immunofixation Electrophoresis

UPEP Urine protein electrophoresis

VEGF Vascular Endothelial Growth Factor